Journal für praktische Chemie Chemiker-Zeitung

© Johann Ambrosius Barth 1992

Einfache Synthese von 2,4-Diamino-chinolin-3-carbonitrilen

K. Gewald*, U. Hain, G. Schwarzer und M. Gruner

Dresden, Institut für Organische Chemie der Technischen Universität Bei der Redaktion eingegangen am 12. Juni 1991.

Simple Synthesis of 2,3-Diamino-quinoline-3-carbonitriles

Es ist bekannt, daß bei der Reduktion von o-Nitrobenzylidenmalonitrilen, z. B. mit Eisen [1-3] oder an der Kathode [4] 2-Aminochinolin-3-carbonitrile entstehen. Der einfache Zugang zu β -Chlor- α -cyan-(o-nitro)cinnamonitril 2 durch Chlorierung von α -Cyan-(o-nitro)cinnamonitril 1 [5] veranlaßte uns, ersteres für die Herstellung der Titelverbindungen heranzuziehen [6]. Dabei wird 2 zunächst mit Ammoniak oder primären und sekundären Aminen zu den β -Amino- α -cyan-(o-nitro)cinnamonitrilen 3a-f umgesetzt. Diese werden nach der oben angegebenen Methode mit Eisen oder Zink in Essigsäure reduziert. Die entstehende o-Aminogruppe in 3 cyclisiert sich wie erwartet zu den Di-

amino-chinolin-3-carbonitrilen 4, die unseres Wissens noch nicht beschrieben worden sind. Wahlweise können die Amine 4 als Hydrochloride oder freie Basen isoliert werden. Aus 4 c kann sich bereits bei der Herstellung das Acetylderivat bilden, das sich mit wenig Hydrazinhydrat in siedendem Ethanol wieder zerlegen läßt. Für das Cyclohexylaminoderivat 3 f verläuft die Reduktion nicht einheitlich. Wir nehmen auf Grund der NMR-Spektren an, daß es sich bei der Beimengung trotz Reduktionsmittel um das entsprechende N-Oxid handelt.

An Stelle der Aminogruppe läßt sich in 2 auch die Alkoxygruppe einführen. Das als Beispiel hergestellte β -Ethoxy- α -

Tabelle 1	¹³ C-chemische	Verschiebungen vo:	n 3 c. 4 a – c	1. 5 und 6 (in ppm.	bezogen auf TMS.	Lösungsmittel DMSO-d ₆) ^{a) b)}

Nr.	C-1	C-2	C-3	C-4	C-5	C-6	C-7 bis C-10 ^{c)}
3 c ^{d)}	116,69sc)	49,03s	166,95m	128,38t	145,85t	116,27s ^{c)}	135,37d, 132,52d,
							130,06d, 125,37d
4a	157,30s	72,16m	156,81d	113,07m	148,95t	116,89s	131,91d, 125,82d
							122,88d, 120,94d
4 be)	157,56s	70,23m	153,91m	114,17m	148,50t	118,77s	131,26d, 125,88d
							121,58d, 120,80d
4 cf)	157,46s	83,03t	162,41m	117,61m	150,27t	117,74s	131,57d, 126,23d
							125,57d, 121,08d
4 dg)	157,43s	84,85t	161,62m	117,74m	150,29t	117,44s	132,03d, 126,36d
							124,78d, 121,78d
5h)	112,81sc)	64,84s	183,52q	123,75t	145,69t	111,41s ^{c)}	135,90d, 134,05d
							130,82d, 125,87d
6 ⁱ⁾	157,08s	82,52t	167,46t	116,53t	149,89t	115,30s	132,68d, 125,53d
							122,42d, 122,13d

a) zur Bezifferung der C-Atome vgl. die betreffenden Formeln

b) Angabe der Multiplizitäten im protonengekoppelten Spektrum über 3CH-Bindungen ohne Klammern, über 2 Bindungen in Klammern

c) Zuordnung auf eine bestimmte Position nicht möglich

d) NCH₃: 44,12 m, 42,08 m

e) NCH₂CH₃: 38,45(q), 15,28(t),

^{f)} NCH₃: 44,38q,

g) NCH₂CH₂O: 66,69(t), 52,44(t),

h) OCH₂CH₃: 71,50(q), 14,54(t),

i) OCH₂CH₃: 70,20(q), 15,22(t)

NO2 H

CN

Cl2

$$R^1$$
 R^2
 R^1
 R^2
 R^1
 R^2
 R^1
 R^2
 R^2
 R^3
 R^2
 R^3
 R^2
 R^3
 R^3
 R^2
 R^3
 R^3

cyan-(o-nitro)-cinnamonitril 5 cyclisiert sich bei der Reduktion und zwar zum 2-Amino-chinolinderivat 6. Beim Erhitzen in Benzylamin tauscht letzteres wie erwartet die Ethoxygruppe aus unter Bildung des Diaminochinolins 4g. Der Beweis für die Strukturen 4 und 6 ergibt sich leicht durch den Vergleich der protonengekoppelten ¹³C-NMR-Spektren in Tab. 1. Während die offenkettigen Ausgangsverbindungen 3 und 5 zwei scharfe Singuletts für die beiden CN-Atome sowie ein C-2-Singulett aufweisen, finden wir bei 4 und 6 nur jeweils ein CN-Signal sowie ein Multiplett, das aus der Fernkopplung des C-2-Ringatomes mit den NH₂- und NHR-Protonen resultiert.

Beschreibung der Versuche

 β -Amino- α -cyan-o-nitro-cinnamonitril (3 a)

Zu einer Lösung von 7 g (0.03 mol)2 in 70 ml Ethanol tropft man unter Rühren langsam 30 ml konz. wäßrigen Ammoniak zu, rührt nach 1 h in 400 ml Wasser ein und saugt ab. F. 215 – 217 °C (EtOH), Ausb. 5,46 g (85%).

C₁₀H₆N₄O₂ Ber. C 56,07 H 2,82 N 26,16 (214,2) Gef. C 56,08 H 2,84 N 26,18

 β -Ethylamino- α -cyan-o-nitro-cinnamonitril (3 b)

Zu einem Gemisch von 4,66 g (0,02 mol) 2, 4,2 g (0,03 mol) Kaliumcarbonat und 50 ml abs. Ethanol tropft man unter Rühren bei 70 °C Badtemperatur 6 ml ethanolische Ethylaminlösung langsam zu. Nach 1 h wird mit 200 ml Wasser verdünnt und nach 3 h abgesaugt.

F. 141 – 142 °C (PrOH), Ausb. 3,6 g (75 %). C₁₂H₁₁N₄O₂ Ber. C 59,50 H 4,16 N 23,13 (242,2) Gef. C 59,38 H 3,86 N 22,46

 α -Cyan- β -dimethylamino-o-nitro-cinnamonitril (3 c)

Eine Suspension von 9,32 g (0,04 mol) 2 in 70-80 ml abs. Ethanol versetzt man unter Rühren langsam mit 12 ml 33proz. ethanolischer Dimethylaminlösung (enthaltend 0,09 mol Amin). Nach 2,5 h wird in 250 ml Wasser eingerührt und abgesaugt. F. 158-160 °C (PrOH), Ausb. 3,4 g (70 %).

 $C_{12}H_{10}N_4O_2$ Ber. C 59,50 H 4,16 N 23,13 (242,2) Gef. C 59,45 H 4,13 N 22,68

 α -Cyan- β -morpholino-o-nitro-cinnamonitril (3 d)

Wie für 3c angegeben, werden 7 ml (0,08 mol) Morpholin (an Stelle der Dimethylaminlösung) umgesetzt und aufgearbeitet. F. 168 – 170 °C (PrOH), Ausb. 8,2 g (72 %).

C₁₄H₁₂N₄O₃ Ber. C 59,15 H 4,26 N 19,17 (284,3) Gef. C 59,25 H 3,86 N 19,61

 β -(p-Anisidinyl)- α -cyano-o-nitro-cinnamonitril (3 e)

Nach der für $3\,b$ angegebenen Vorschrift verwendet man $2.8\,g$ ($0.02\,m$ ol) p-Anisidin in $15\,m$ l abs. Ethanol (an Stelle von Ethylamin) und rührt $5\,h$ bei Raumtemperatur.

F. 148 – 150 °C (PrOH), Ausb. 4,1 g (80 %). C₁₇H₁₂N₄O₃ Ber. C 63,74 H 3,78 N 17,49 (320,3) Gef. C 63,71 H 3,74 N 16,85

 β -Cyclohexylamino- α -cyan-o-nitro-cinnamonitril (3 f)

Zu einer gerührten Suspension von 2,33 g (10 mmol) 2 in 20 ml abs. Ethanol tropft man 1 g (10 mmol) Cyclohexylamin zu und läßt die Temperatur nicht über 40 °C steigen. Es wird noch 2 h gerührt, mit 100 ml Wasser verdünnt und nach 2 h abgesaugt. F. 213-214 °C (EtOH), Ausb. 1,6 g (54 %).

C₁₆H₁₆N₄O₂ Ber. C 64,86 H 5,41 N 18,92 (296,2) Gef. C 63,73 H 4,77 N 18,52

2,4-Diamino-chinolin-3-carbonitrile (4)

a) Reduktion mit Eisen

0,02 mol 3 erhitzt man in $40-50\,\text{ml}$ Eisessig und nach Zusatz von 4g Eisenpulver $30\,\text{min}$. unter Rühren und mäßigem Rückfluß. Danach wird mit 5 ml konz. Salzsäure versetzt und 20 min in der Siedehitze gerührt. (Für $4\,\text{c}$ 40 min bei $50\,^{\circ}\text{C}$, sonst fällt es als 2-N-Acetylderivat an). Nach dem Erkalten verdünnt man mit $100\,\text{ml}$ Wasser und filtriert. Das

Tabelle 2 Zur Charakterisierung der Chinolin-3-carbonitrile 4a – g

4	Chinolin-3 carbonitril	F. °C (umkrist.)	Ausb. %		Hydro-	Summenformel	Analyse Ber./Gef.		
			a	b	chlorid ^{a)} F. °C	(Molmasse)	С	Н	N
a	2,4-Diamino-b)c)	303 – 305 (n-PrOH)	82	69	350 – 360	$C_{10}H_8N_4$ (184,2)	65,20 64,79	4,38 4,63	30,42 29,26
b	2-Amino-4- ethylamino	241 – 243 (MeCN)	63	52	262 - 267	$C_{12}H_{12}N_4 \cdot H_2O$ (230,3)	62,59 63,37	6,13 5,95	24,33 23,43
c	2-Amino-4- dimethylamino	205 – 207 (n-PrOH)	66	_	_	$C_{14}H_{14}N_4O \cdot H_2O^{d}$ (272,3)e)	61,88 61,76	5,77 5,88	20,39 20,59
d	2-Amino-4- morpholino ^{f)}	219 – 221 (n-PrOH)	63	58	245 – 249 (MeCN)	$C_{14}H_{14}N_4O$ (254,3)	66,12 65,92	5,55 5,35	22,04 22,10
e	2-Amino-4- (p-methoxy- anilino)	225 – 227 (EtOH)	67	58	159 - 162 (MeNO ₂)	$C_{17}H_{14}N_4O$ (290,3)	70,33 70,28	4,86 4,83	19,30 19,19
f .	2-Amino-4- cyclohexyl- amino	274 – 276 (n-PrOH)	-	56	234 – 236 (MeCN)	$C_{16}H_{18}N_4 \cdot H_2O$ (284,3)	67,53 67,63	6,37 7,03	19,69 19,74
g	2-Amino-4- benzylamino	190 – 191 (n-PrOH)	6	8	_	$C_{17}H_{14}N_4$ (274,3)	74,45 74,74	5,10 4,55	20,44 20,43

a) Produkt der Variante b

Filtrat wird mit wäßrigem Ammoniak auf einen pH-Wert von 6,2-6,8 eingestellt. Nach 1 h saugt man ab.

b) Reduktion unter Isolierung der Hydrochloride Nach der ausgeführten Reduktion a) bei der an Stelle von Eisen auch $4-5\,\mathrm{g}$ Zinkstaub verwendet werden können, wird das Reaktionsgemisch nicht mit 5, sondern langsam mit $15\,\mathrm{ml}$ konz. Salzsäure versetzt und $20-30\,\mathrm{min}$ bei $60-70\,^{\circ}\mathrm{C}$ gerührt. Entsteht keine klare Lösung, wird filtriert. Nach dem Erkalten, Anreiben und der Beendigung der Kristallisation saugt man das Hydrochlorid (Tab. 2) ab.

Zur Gewinnung der freien Base wird es in $50-100\,\mathrm{ml}$ siedendem Wasser oder wenig heißem DMF mit Ammoniaklösung versetzt, im ersten Fall wird $20\,\mathrm{min}$ gerührt.

α -Cyan- β -ethoxy-o-nitro-cinnamonitril (5)

Zu 2,33 g (10 mmol) 1 in 30 ml abs. Ethanol tropft man unter Rühren langsam eine Lösung von 0,23 g Natrium in 6 ml abs. Ethanol zu, wobei die Temperatur 40 °C nicht übersteigen soll. Nach 2 h rührt man in 70 ml Wasser ein und saugt ab. F. 139 – 141 °C (EtOH), Ausb. 2 g (82 %).

C₁₂H₉N₃O₃ Ber. C 59,26 H 3,93 N 17,28 (243,2) Gef. C 58,61 H 3,67 N 16,92

2-Amino-4-ethoxy-chinolin-3-carbonitril (6)

Unter Rühren versetzt man eine Lösung von 2,4 g (10 mmol) 5 bei ca. $100\,^{\circ}$ C portionsweise mit 2 g Zinkstaub. Nach 40 min fügt man 3 ml konz. Salzsäure zu und rührt weitere 15 min. Nach dem Erkalten wird mit 50 ml Wasser verdünnt, filtriert und das Filtrat mit wäßrigem Ammoniak auf pH 6-6,5 eingestellt. Nach 2 h saugt man ab. F. 206-208 (n-PrOH), Ausb. 1,3 g (61 %).

C₁₂H₁₁N₃O Ber. C 67,59 H 5,20 N 19,71 (213,2) Gef. C 67,67 H 5,48 N 19,33

2-Amino-4-benzylamino-chinolin-3-carbonitril (4 g)

1,06 g (5 mmol) 6 werden in 3 ml Benzylamin 1 h auf 135 °C (Badtemperatur) erhitzt. Nach dem Erkalten wird mit 15 ml Ethanol verdünnt und nach einigem Stehen abgesaugt (Tab. 2).

Literatur

- [1] H. Junek: Monatsh. Chem. 94 (1963) 896.
- [2] H. Junek, W. Wilfinger: Monatsh. Chem. **101** (1970) 1123.
- [3] G. Jones in: The Chemistry of Heterocyclic Compounds 32, I. (Hrsg.: G. Jones, J. Wiley, New York 1977, S. 213.
- [4] A. Chibani, R. Hazard, M. Jubault, A. Taller: Bull. Soc. Chim. Fr. 1987, 795.
- [5] K. Gewald, U. Hain, G. Schwarzer: DD-Pat. 265 143 (1989), Chem. Abstr. 111 (1989) 19 46 11.

Anschr. d. Verf.:

Prof. Dr. K. Gewald, Chem. Ing. U. Hain, Dipl. Chem. G. Schwarzer, Dr. M. Gruner Institut für Organische Chemie der Technischen Universität Dresden Mommsenstr. 13 O-8027 Dresden, Bundesrepublik Deutschland

b) N,N-Diacetylderivat durch Erhitzen von 4a in Ac₂O: F. 226 – 230 °C (EtOH)

c) UV: λ_{max} in DMF, nm/lg ϵ): 291 (3,87), 307s (3,76), 361 (3,58)

d) 2-N-Acetylderivat, F. 205 – 206 (n-PrOH).

e) Molmasse 4 c, gef. (massenspektrom.) 212.

^{f)} UV: λ_{max} in DMF, nm(lg ϵ): 277s (4,30), 328 (3,66), 383 (3,71)