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A B S T R A C T

A dibromo substituted BOPHY derivative (2) was prepared and found to exhibit photo-sensitization

capability. Rapid oxidation of 80% DPBF at the first 6 min was observed suggesting that 2 is a superior

photo-sensitizer than methylene blue. The HOMO–LUMO band gap for the lowest energy absorption

bands of the BOPHY 1 is smaller than that of PS 2, which is in good agreement with the red shift in the

absorption observed between 1 and 2.
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1. Introduction

Singlet oxygen (1O2) is of great importance to various
applications of cycloaddition reactions, photodynamic therapy
(PDT) and so forth [1–3]. Especially, PDT is a noninvasive technique
for the treatment of a variety of tumors by the combined use of
visible or near-infrared light with a photosensitizing drug [4–
7]. The tumor is selectively irradiated with low-energy light of
wavelength [8–11], resulting in excitation of the photosensitizer
(PS). Since the singlet oxygen is the key cytotoxic agent in the PDT
therapeutic process, the singlet oxygen generation from a
photosensitizer is regulated by the efficiency of a spin-forbidden
electronic transition from a singlet to a triplet state upon
irradiation [12]. Comparing to several types of directly linked
BODIPY dimmers without the use of heavy atoms as a PS [13,14],
the heavy atom effect was still advocated and has been a popular
and applicable chemical approach to improve intersystem crossing
(ISC) to generate the singlet oxygen in several molecules by
attaching heavy atoms [15–17].

Due to the excellent photochemical properties of boron
dipyrromethenes (BODIPY), such as high fluorescence quantum
yields, high absorption coefficients and so on, such derivatives
53
54
55
56
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have been widely investigated (Fig. 1) [18–31]. Recently, BODIPY
based photosensitizers were reported by promoting S1! T1

transition with attached heavy atoms [32].
Very recently, another type of unique pyrrole-BF2-based

fluorophore bis(difluoroboron)1,2-bis((1H-pyrrol-2-yl)methy-
lene)-hydrazine (BOPHY) was independently reported by Ziegler
and Hao et al. (Fig. 1) [33,34]. The new fluorescent BOPHY dye can
be smoothly obtained by the reaction of pyrrole-2-carboxalde-
hyde with hydrazine, and followed by complexation with Et3N-
BF3�Et2O. The symmetric structure is composed of four rings at the
same plane, including two BF2 units in six-membered chelate
rings in the center and two pyrrole units on the periphery (Fig. 1)
[33,34]. The fluorescence quantum yield for the unmodified
BOPHY is near 100% [33,34]. Since the new BOPHY dye has a rigid
structure, excellent optical properties promote us to use the
BOPHY scaffold as a template for further functionalizations. Our
recent research interest lies in the novel BODIPY/aza-BODIPY
family of fluorescent dyes and their application [35–43]. Very
recently, our group reported the study on a (p-dimethylamino)-
styryl-containing BOPHY as a turn-on fluorescent probe for pH
[44], and Ziessel et al. subsequently also reported the BOPHY dye
with the intramolecular cascade energy transfer [45]. However,
no other modifications on BOPHY dyes were reported. Herein, we
report our studies on the modifications on BOPHY dyes by
attaching heavy atoms as a photosensitizer for singlet oxygen
generation.
 substituted BOPHY dye for the singlet oxygen generation, Chin.

 Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cclet.2015.11.010
mailto:xdjiang@syuct.edu.cn
http://dx.doi.org/10.1016/j.cclet.2015.11.010
http://www.sciencedirect.com/science/journal/10018417
www.elsevier.com/locate/cclet
http://dx.doi.org/10.1016/j.cclet.2015.11.010


57 

58 be
59 m
60 sin
61 su
62 be
63 th
64 co
65 hi

66 2.

67
68 sp
69 do
70 NM
71 sp
72 w
73 w
74 co
75 

76 ph
77 ph
78 m
79 flu
80 ca

F

8182 He
83 A 

84 m
85 eq
86 

87 fro
88 le

89 2.

90 

91 an
92 20
93 so
94 fo
95 te
96 by

97
98
99
100
101
102
103
104
105
106
107
108

109

110
111
112
113
114
115
116
117
118
119
120

121

122
123
124
125
126
127
128
129
130

131

132
133
134
135
136
137
138
139
140
141
142
143
144

Fig. 1. The core structure of BODIPY and BOPHY.
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Singlet oxygen generation was studied with 1,3-diphenyliso-
nzofuran (DPBF), a well-known singlet oxygen scavenger, whose
aximum absorption at 416 nm diminishes upon reacting with
glet oxygen [46]. However, the reported BOPHY dyes are not

itable as a photosensitizer, due to the overlap of the absorption
tween BOPHY and DPBF or the no site to attach heavy atoms in
e BOPHY structure [33,34]. To avoid the defect, a tetraphenyl-
ntaining BOPHY dye as a PS was herein designed and found to be
ghly effective to generate the singlet oxygen.

 Experimental

1H NMR spectra were recorded on a Bruker AVANCE III 500 MHz
ectrometer. 1H NMR chemical shifts (d) are given in ppm
wnfield from Me4Si, determined by chloroform (d 7.26). 13C

R spectra were recorded on a Bruker AVANCE III 125 MHz
ectrometer. 13C NMR chemical shifts (d) are reported in ppm
ith the internal CDCl3 at d 77.0 as standard. Toluene solvents
ere distilled over CaH2. Merck silica gel 60 was used for the
lumn chromatography.
Fluorescence spectra were recorded on a FluoroSENS spectro-
otometer. UV/vis spectra were recorded on UV-2550 spectro-
otometer at room temperature. The refractive index of the

edium was measured by 2 W Abbe’s refractometer at 20 8C. The
orescence quantum yield (Ff) of the BOPHY system was
lculated using the following relationship (Eq. (1) [47]):

f ¼ Fref Fsampl Aref n2
sampl=Fref Asampl n2

ref (1)

re F denotes the integral of the corrected fluorescence spectrum,
is the absorbance at the excitation wavelength. Rhodamine 6G in
ethanol was used as the standard (Ff = 0.95 [48], in air
uilibrated water and deaerated solutions) for BOPHY 1.
The MO calculations were performed at the DFT level, and the
ntier molecular orbitals of BOPHY 1 and 2 at the MP2/6-31G*

vel with Gaussian 03.

1. Synthesis of BOPHY 1

3,5-Diphenyl-1H-pyrrole-2-carbaldehyde (45 mg, 0.18 mmol)
d hydrazine hydrate (5.0 mg, 0.09 mmol) were dissolved in
 mL of ethanol. Three drops of acetic acid were added, the
lution became yellow. After few seconds, a yellow precipitate
rmed and the reaction mixture was left to stir at room
mperature for an hour. The yellow precipitate was collected

 filtration and rinsed with cold ethanol (2 � 10 mL) and dried
Scheme 1. Synthesis of the tetrapheny

Please cite this article in press as: T.-F. Cui, et al., Synthesis di-brom
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under vacuum to afford a yellow solid. Then, Et3N (0.5 mL) was
added to a solution of this yellow solid in CH2Cl2 (10.0 mL).
BF3�Et2O (1.0 mL) was then added dropwise. The reaction mixture
was stirred at room temperature overnight. The reaction was
quenched with crushed ice, extracted with CH2Cl2, and purified by
chromatography on silica gel followed by recrystallization from
CH2Cl2/n-hexane to afford BOPHY 1 (25.1 mg, 47%) as red solids.
Mp: 287.0–288.0 8C. 1H NMR (500 MHz, CDCl3): d 8.21 (s, 2H), 7.84
(d, 4H, 3J = 7.5 Hz), 7.42–7.51 (m, 16H), 6.82 (s, 2H). 13C NMR
(125 MHz, CDCl3): d 152.2, 145.2, 138.3, 132.2, 131.4, 129.8, 129.2,
129.0, 128.9, 128.8, 128.4, 123.4, 117.1. HRMS-MALDI (m/z):
[M+Na]+ calcd. for C34H24B2F4N4Na: 609.2021; found 609.2069.

2.2. Synthesis of BOPHY 2

BOPHY 1 (21.5 mg, 0.036 mmol) was treated with bromine
(7.6 mg, 0.095 mmol) in dry CCl4 (15 mL) at 30 8C under nitrogen
for 12 h. The reaction was quenched with water, extracted with
CH2Cl2, and purified by chromatography on silica gel followed by
recrystallization from CH2Cl2/n-hexane to afford dye 2 (17.2 mg,
64%) as yellowish red solids. Mp: 291.0–292.0 8C. 1H NMR
(500 MHz, CDCl3): d 7.98 (s, 2H), 7.69 (s, 3H), 7.47–7.55 (m,
17H). 13C NMR (125 MHz, CDCl3): d 149.6, 142.9, 139.1, 130.1,
129.9, 129.5, 129.4, 129.1, 128.9, 128.1, 126.7, 123.0, 106.3. HRMS-
MALDI (m/z): [M+Na]+ calcd. for C34H22B2Br2F4N4Na: 767.0211;
found 767.0356.

2.3. Detection of singlet oxygen by DPBF oxidation

Singlet oxygen generation experiment was set up, using a
150 W xenon lamp at 0.5 mW/cm2. A toluene solution of
photosensitizer (5 � 10�6 mol/L) and 1,3-diphenylisobenzofuran
(6 � 10�5 mol/L) was exposed to the monochromatic light by the
optical filter at the peak absorption wavelength (500 nm) for 1–
2 min at 25 8C. The absorbance was measured several times after
each irradiation. Reaction of 1,3-diphenylisobenzofuran with
singlet oxygen was monitored by the reduction in intensity of
the absorption band at 416 nm over 32 min.

3. Results and discussion

Synthesis of the BOPHYs were outlined in Scheme 1. Utilizing
3,5-diphenyl-1H-pyrrole-2-carbaldehyde as the starting material,
a centrosymmetric tetraphenyl-containing BOPHY 1 was smoothly
obtained in a 47% yield based on the reported literatures
[33,34]. The PS 2 was prepared in a 64% yield by bromination of
BOPHY 1 with Br2.

The BOPHY 1 absorbs maximally at 508 nm and emits at
524 nm in CHCl3 (Fig. 2), with the high extinction coefficients
(e = 60,000 L mol�1 cm�1), the narrow full width at half maximum
(Fwhm = 78 nm) and the high fluorescence quantum yield
(Ff = 0.96), which optical properties are comparable to those of
the reported BOPHY dyes [33,34,44,45]. Due to remarkable
absorption difference between BOPHY 2 (506 nm) and DPBF
l-containing BOPHY 1 and the PS 2.

o substituted BOPHY dye for the singlet oxygen generation, Chin.
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Fig. 2. (a) Normalized absorption and (b) fluorescence spectra of 1 in CH2Cl2 at 293 K.

Fig. 4. Comparative DPBF (initial concentration at 6 � 10�5 mol/L) degradation

profiles over a period of 6 min in toluene by BOPHY 2.
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(416 nm), the detection of generating singlet-oxygen become
possible and was carried out in the following experiments.

A comparative study of singlet oxygen generation in toluene
was performed to assess the ability of the PS 2 to generate singlet
oxygen. The solutions were irradiated with monochromatic light
[49] at the peak absorption wavelength (500 nm) in the visible
region by using a 150 W xenon lamp at 0.5 mW/cm2. Singlet
oxygen generation was estimated experimentally by DPBF. The
decrease of the absorbance band at 416 nm was monitored, caused
by the oxidation of DPBF with reactive oxygen species, the singlet
oxygen [46]. The experiments were performed at initial concen-
trations of 5 � 10�6 mol/L of PS 2 and 6 � 10�5 mol/L of DPBF over
a period of 32 min. The absorption intensity of DPBF was rapidly
decreased 80% at the first 6 min (Fig. 3). A high rate (20.2-fold) of
oxygenation of DPBF by 2 was recorded, compared to that of the
reference methylene blue (Fig. 4) [26]. Finally, the absorption
intensity of DPBF completely disappeared in the following 26 min
(Fig. 3). Moreover, in H2O-DMSO (v/v: 9/1) system, the PS 2 also
generated the singlet oxygen when the solutions were irradiated
with the light (Fig. S1 in Supporting information).

Interestingly, the experimental results showed that PS 2 had
high the singlet oxygen production over the 6 min time period
(Fig. 3). In addition, no photobleaching of PS 2 was observed during
this experiment, based on the absorption intensity (labs = 506 nm)
in toluene (Fig. 3). These are evidences that the PS 2 bearing
Fig. 3. DPBF (initial concentration at 6 � 10�5 mol/L) degradation profile in toluene

by BOPHY 2 (5 � 10�6 mol/L), and the absorption (the bottom curve: labs = 506 nm)

of BOPHY 2 in toluene. Monochromatic light (500 nm at 0.5 mW/cm2) was used. The

curves display time-dependent decrease (0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22,

24, 26, 28, 30 and 32 min) of absorbance at 416 nm by oxidation of DPBF with

BOPHY 2.

Please cite this article in press as: T.-F. Cui, et al., Synthesis di-bromo
Chem. Lett. (2015), http://dx.doi.org/10.1016/j.cclet.2015.11.010
dibromo substituted groups could be thought to be an excellent PS
to be potentially used for the singlet oxygen generation.

The molecular geometries of BOPHYs 1 and 2 were optimized
using density functional theory (DFT) at the B3LYP/6-31G(d) level
Fig. 5. Frontier molecular orbitals of BOPHYs 1 and 2 at the B3LYP/6-31G(d) level

with Gaussian 03. HOMO/LUMO (eV) = �5.58/ � 2.63 for 1; HOMO/LUMO

(eV) = �5.80/ � 2.82 for 2.
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0]. The calculated HOMO and LUMO orbital energy levels were
mmarized in Fig. 5. As shown in Fig. 5, for BOPHY 1 and 2, the
MO are distributed at the BOPHY core, and the LUMO are

calized at the BOPHY core and two phenyl groups of the adjacent
 atoms. In addition, the BOPHY core is almost coplanar.
rthermore, the energy gap between the HOMO and LUMO of
e BOPHY 1 (2.95 eV) is slightly smaller than that of PS 2 (2.98 eV)
ig. 5), which is in good agreement with the red shift in the
sorption observed between 1 and 2.

 Conclusion

In summary, dibromo substituted BOPHY dye 2 was success-
lly obtained in 64% yield by the reaction of BOPHY 1 with

2. BOPHY 2 as a photosensitizer was able to high-efficiently
nerate the singlet oxygen. Singlet oxygen generation by 2 can

pidly accomplish the oxidation of 80% DPBF at the first 6 min. No
otobleaching of PS 2 was observed based on the absorption

tensity (labs = 506 nm) in toluene. PS 2 having dibromo
bstituted group can be thought to be a PS to be potentially
ed for the singlet oxygen generation. By MO calculations the
MO–LUMO band gap for the lowest energy absorption bands of

e BOPHY 1 is smaller than that of PS 2, which is in good
reement with the red shift in the absorption observed between 1
d 2.
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