Reactions of Amide Anions with a-Bromo-amides

By Giorgio Cavicchioni, Paolo Scrimin, Augusto C. Veronese, and Ferruccio D'Angeli* (Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Ferrara, Via Scandiana, 21, 44100, Ferrara, Italy)

Summary The reactions of α -bromoisobutyramides with the anions from amides and a thioamide afford oxazoli-din-4-ones and a thiazolidin-4-one, respectively; these are useful intermediates for preparation of ester derivatives.

 α -Bromo-N-benzyl-propionamide (1) and -isobutyr-amide (2a) undergo hydride-catalysed self-condensation to produce 2-amino-2-bromoalkyloxazolidin-4-ones (3); from these heterocycles the ester derivatives (4) and (5) were obtained. We considered that the reaction of a halogeno-

417

TABLE Bromo-amide cyclization products from amide or thioamide anions.

Anion precursor	Bromo-amide	Productsa,b	$\mathbf{R^2}$	\mathbb{R}^3	M.p./°C	% Yield ^c
MeCONHCH ₂ Ph	(2a)	(6a)	Me	CH,Ph	98-100	40
H ₂ C=CMe-CONHCH ₂ Ph	,,	$(\mathbf{6b})$	$H_2C=CMe$	CH , Ph	7375	58
PhCONHMe	"	(6c)	Ρħ	Me	9799	56
PhCONHPh	"	(6d)	Ph	\mathbf{Ph}	103 - 105	66
$MeCONHCH_2Ph$	(2b)	(6e) b	Me	CH,Ph	50 - 52	35
MeCSNHCH ₂ Ph	(2a)	(7)	Me	CH_2Ph	94 - 95	81

a All products gave satisfactory elemental analyses and spectra. b R¹ = CH₂Ph except for (6e) where R¹ = Bu^t. c Yields were not optimized.

amide with the conjugate base of a molecule of the same compound was a possible pathway to the formation of the

oxazolidinones (3). We therefore thought it possible that

MeCRBrC(:O)NHR¹
(1)
$$R = H, R^1 = CH_2Ph$$
(2a) $R = Me, R^1 = CH_2Ph$
(2b) $R = Me, R^1 = Bu^{\dagger}$

BrCRMeCO2CRMeCONHR1 (5)

R = H or Me, R1 = CH2Ph

the conjugate base of a different amide might also react with an α-halogeno-amide to produce an oxazolidinone. Accordingly, we treated representative amides and a thioamide with sodium hydride in anhydrous tetrahydrofuran at room temperature followed, after hydrogen evolution had ceased, by α-bromo-N-benzylisobutyramide (2a) or, in one case, α -bromo-N-t-butylisobutyramide (2b). 2-Substituted 2-amino-oxazolidin-4-ones (6a-e) and the thiazolidin-4-one (7) were obtained (Table). The heterocycles (6) were transformed into the ester derivatives (8)

upon mild acid hydrolysis. The hydrolytic behaviour of (7) is still under investigation.

R¹

$$R^2$$
 $N \longrightarrow CO$
 R^2
 Me_2
 Me_2
 $R^2CO_2CMe_2CONHR^1$
 $R^1 \longrightarrow N \longrightarrow CO$
 R^2
 NR^3
 Me
 R^3
 Me
 R^3
 R^3

We suggest that, in the present reaction, the oxygen (or sulphur) end of the amide conjugate anion is alkylated by the sp³ carbon of the α-bromo-amide, and the nitrogen of the conjugate base of the postulated intermediate (9) thus formed adds nucleophilically to the C=N bond.

Spiro-oxazolidinones were considered to arise through a similar mechanism in reactions of the 2-methylcyclohexane-1,3-dione anion with α -halogeno-acetanilides or -propionanilides.2 Talaty et al. have described the formation of pyrrolinones in the reaction of alkynyl-lithium reagents with α -halogeno-amides or α -lactams, stressing the possibility of obtaining heterocycles bearing bulky aliphatic substituents.3

Our results indicate that some α -halogeno-amides, either capable [e.g. (2b)] or incapable [e.g. (2a)] of producing stabilized α -lactams, afford heterocyclic derivatives. Studies on the scope and limitations of the reactions of α-halogeno-amides with anions, as well as with neutral reagents, will be reported elsewhere.

(Received, 9th December 1980; Com. 1315.)

- ¹G. Zanotti, F. Filira, A. Del Pra, G. Cavicchioni, A. C. Veronese, and F. D'Angeli, J. Chem. Soc., Perkin Trans. 1, 1980, 2249.
- A. Subbaraj, C. Ananthanarayanan, and V. T. Ramakrishnan, Synth Commun., 1977, 7, 433.
- ³ E. R. Talaty, A. R. Clague, M. O. Agho, M. N. Deshpande, P. M. Courtney, D. H. Burger, and E. F. Roberts, J. Chem. Soc., Chem. Commun., 1980, 889.

⁴ I. Lengyel and J. C. Sheehan, Angew. Chem., Int. Ed. Engl., 1968, 7, 25.