

Tetrahedron Letters 39 (1998) 7043-7046

TETRAHEDRON LETTERS

Intramolecularly Competitive Ireland Claisen Rearrangements: Stereoselective Synthesis of Alkylidene Cyclohexenes

Xiaowei Zhang and Matthias C. McIntosh*

Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701

Received 19 June 1998; revised 13 July 1998; accepted 17 July 1998

Abstract: Unsymmetrical bis-allyl silylketene acetals derived from cyclohexenones undergo regio- and stereoselective Ireland Claisen rearrangements to afford alkylidene cyclohexenes in good yield. © 1998 Elsevier Science Ltd. All rights reserved.

In the context of several total syntheses, we needed to develop a concise and stereoselective synthesis of alkylidene cyclohexenes 1 (eq 1). We considered the possibility that the Claisen rearrangement of bis-allyl silylketene acetals 2 derived from bis-allylic esters 3 might proceed regio- and stereoselectively to afford the desired alkylidene cyclohexenes.^{1.4} Esters 3 are generally accessible in one or two steps via 1,2-addition of a vinyl metal nucleophile to cyclohexenones 4 followed by acylation with the appropriate acyl transfer reagent.²

Several selectivity issues arise in considering the Claisen rearrangement of cyclic bis-allyl silylketene acetals 2. Both exocyclic and endocyclic rearrangements are possible (eq 2). Claisen rearrangements of structurally similar allyl silylketene acetals or allyl vinyl ethers involving either endocyclic¹ or exocyclic⁵ alkenes occur readily where no internal competition exists.⁶ Furthermore, the desired exo Claisen rearrangement could afford diastereomeric mixtures of rearrangement products which possess opposite stereochemistry at the newly formed chiral centers and opposite alkene geometry.

email: mcintosh@comp.uark.edu

0040-4039/98/\$ - see front matter © 1998 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(98)01525-1

In our initial investigations, we chose to probe only the endo/exo selectivity of the Claisen rearrangement and the stereoselectivity of alkene formation. For this reason, substrates bearing identical substituents at C_1 and C_6 were employed (eq 3). Esters 5a,b were prepared in one step in good yield via vinyl MgBr addition to the corresponding cyclohexenone, followed by in situ acylation with isobutyric anhydride. Sequential treatment of esters 5a,b with two equivalents each of potassium bis(trimethylsilyl)amide (KHMDS) and triisopropylsilyltrifluoromethane sulfonate (TIPSOTf) in ether at -78°C, followed by warming of the reaction mixture to rt, yielded exclusively the exo Claisen rearrangement products 7a,b as 2.5:1 and 3:1 mixtures of Z/E stereoisomers, respectively.⁷ For ease of purification, the silyl esters were hydrolyzed to carboxylic acids 8a,b with no change in the isomeric ratio and with overall yields of 60% and 69%, respectively, from esters 5a,b.

We expected that introduction of a substituent on the endo double bond proximal to C_4 of the allyl silylketene acetal would reverse the stereoselectivity of the rearrangement (vide infra).^{2,5b} In the event, treatment of ester 9² as described above afforded exclusively E-diene 12 (eq 4).^{7,8}

(a) KHMDS, TIPSOTf, ether, -78°C to rt; (b) K2CO3, THF/MeOH/H2O, 1N HCi

Similarly, rearrangement of ester 11a (prepared in one step from (R)-carvone) afforded only E-diene 14a (eq 5).^{7,9} We then examined the issue of chirality transfer using propionate ester 11b. To our satisfaction, rearrangement of ester 11b as described above afforded E-diene 14b with >10:1 de based on ¹H-NMR analysis of the crude reaction mixture.¹⁰ The latter rearrangement is particularly noteworthy in that the stereochemistry of the isopropenyl group is ultimately responsible for 1,6-asymmetric induction in the two-step conversion of (R)-carvone to diene 13b.

(a) KHMDS, TIPSOTf, ether, -78°C to rt; (b) K2CO3, THF/MeOH/H2O, 1N HCI

The exo Claisen rearrangement pathway is presumably preferred because either chair or boat transition states **iii** or **iv** for the endo pathway would have developing 1,3-diaxial and/or eclipsing interactions which are not present in exo transition states **i** or **ii** (Scheme).¹ The E/Z stereoselectivity of the newly formed alkene is likely due to higher 1,3-diaxial strain in transition state **i** leading to the Z-alkene for silylketene acetals 10 and 12 (R = Br or CH₃). Applications of the exo-selective Ireland Claisen rearrangement to the synthesis of natural products will be reported in due course.

Acknowledgments

Support for this work was provided in part by the American Chemical Society Petroleum Research Fund (32150-G1). The X-ray crystal structure of the (S)- α -methylbenzylamide of diene **14b** was solved by Tosha Barclay and Wally Cordes, University of Arkansas. Thanks to Harriet A. Lindsay, University of Arkansas, for confirmation of selected results, and to Raymond L. Funk, Pennsylvania State University, for helpful discussions.

References and Footnotes

(1) For reviews of the Claisen rearrangement, see: Wipf, P. in *Comprehensive Organic Synthesis*; Trost, B. M., Ed.; Pergamon: New York, 1991; Vol. 5, pp 827-873; Ziegler, F. E. *Chem. Rev.* **1988**, 88, 1423; Pereira, S.; Srebnik, M. *Aldrichimica Acta* **1993**, 26, 17 and references cited therein.

(2) Spino, C.; Liu, G.; Tu, N.; Girard, S. J. Org. Chem. 1994, 59, 5596.

(3) For intramolecularly competitive Claisen rearrangements of bis-allyl vinyl ethers in acyclic systems, see: Cresson, P.; Bancel, S. C. R. Acad. Sc., Ser. C. 1968, 266, 409; Parker, K. A.; Farmar, J. G. J. Org. Chem. 1986, 51, 4023; Nonoshita, K.; Banno, H.; Maruoka, K.; Yamamoto, H. J. Am. Chem. Soc. 1990, 112, 316.

(4) For intramolecularly competitive Claisen rearrangements of bis-allyl vinyl ethers derived from 1-cycloalkene carboxaldehydes, see: Bancel, S.; Cresson, P. C. R. Acad. Sc., Ser. C. 1969, 268, 1535; Hudlicky, T.; Kwart, L. D.; Tiedje, M. H.; Ranu, B. C.; Short, R. P.; Frazier, J. O.; Rigby, H. L. Synthesis 1986, 716; Tanis, S.; McMills, M. C.; Scahill, T. A.; Kloosterman, D. A. Tetrahedron Lett. 1990, 31, 1977.

(5) (a) Cresson, P. Bull. Soc. Chim. Fr. **1964**, 2618; *ibid*, 2629; Marbet, R.; Saucy, G. Helv. Chim. Acta **1967**, 50, 218; (b) Chillous, S. E.; Hart, D. J.; Hutchinson, D. K. J. Org. Chem. **1982**, 47, 5420.

(6) For intramolecularly competitive anionic oxy-Cope rearrangements, see: Paquette, L. A.; Guevel, R.; Sauer, D. R. *Tetrahedron Lett.* **1992**, *33*, 923; Still, W. C.; Murata, S.; Revial, G.; Yoshihara, K. J. Am. Chem. Soc. **1983**, *105*, 625 and references cited therein.

(7) All new compounds have been characterized by ¹H-NMR, ¹³C-NMR, HRMS and IR. Alkene geometries were determined by NOE experiments and/or X-ray crystallography (ref 10).

(8) For some alternative approaches to stereoselective preparation of alkylidene cycloalkenes, see: Larock, R. C.;
He, Y.; Leong, W. W.; Han, X.; Refvik, M. D.; Zenner, J. M. J. Org. Chem. 1998, 63, 2154; Chamakh, A.;
Amri, H. Tetrahedron Lett. 1998, 39, 375; Ahmar, M.; Antras, F.; Cazes, B. Tetrahedron Lett. 1998, 39, 4417;
Murakami, M., Itami, K.; Ito, Y. J. Am. Chem. Soc. 1997, 119, 716; Terakado, M.; Miyazawa, M.;
Yamamoto, K. Synlett 1994, 134; Nuss, J. M.; Rennels, R. A., Levine, B.H. J. Am. Chem. Soc. 1993, 115,
6991; Brown, S.; Clarkson, S.; Grigg, R.; Sridharan, V. Tetrahedron Lett. 1993, 34, 157; Trost, B. M.;
Dumas, J. Tetrahedron Lett. 1993, 34, 19; Owczarczyk, Z.; Lamaty, F.; Vawter, E. J.; Negishi, E.-i. J. Am. Chem. Soc. 1992, 114, 10091; Reich, H. J.; Eisenhart, E. K.; Whipple, W. L.; Kelly, M. J. J. Am. Chem. Soc. 1988, 110, 6432; Okamura, W. H.; Peter, R.; Reischl, W. J. Am. Chem. Soc. 1985, 107, 1034;
Paquette, L. A.; Yan, T.-H.; Wells, G. J. J. Org. Chem. 1984, 49, 3610. See also ref 2.

(9) Data for compound 14a: ¹H NMR (270 MHz, CDCl₃): δ 5.6 (s, 1H), 5.4 (t, J = 7.7 Hz, 1H), 4.7 (s, 2 H), 2.7 (d, J = 14.2 Hz, 1H), 2.45 (dd, J = 7.7 Hz, 14.4 Hz, 1H), 2.35 (dd, J = 7.7 Hz, 14.4 Hz, 1H), 1.8-2.2 (m, 4H), 1.78 (s, 3H), 1.74 (s, 3H), 1.20 (s, 6H); ¹³C NMR (67.5 MHz, CDCl₃): δ 184.8, 149.6, 138.6, 133.1, 126.2, 118.8, 109.1, 43.0, 41.8, 37.9, 31.4, 31.2, 24.8, 24.6, 20.8, 19.9; HRMS calc'd for C₁₆H₂₄O₂ 248.1776; found 248.1784.

(10) The structure of diene **14b** was determined unambiguously by X-ray crystallography of the corresponding (S)- α -methylbenzamide.