Nucleic acid related compounds. 37. Convenient and high-yield syntheses of N-[(2-hydroxyethoxy)methyl] heterocycles as "acyclic nucleoside" analogues¹

MORRIS J. ROBINS AND PETER W. HATFIELD²

Department of Chemistry, The University of Alberta, Edmonton, Alta., Canada T6G 2G2

Received July 13, 1981

MORRIS J. ROBINS and PETER W. HATFIELD. Can. J. Chem. 60, 547 (1982).

Treatment of 1,3-dioxolane with acetyl bromide gave (2-acetoxyethoxy)methyl bromide (2*a*) in 88% yield. A number of pyrimidines and three chloropurines were trimethylsilylated and coupled with 2a. The respective N-1 and N-9 alkylated products (obtained in 79–89% yields) were deacetylated to give N-[(2-hydroxyethoxy)methyl] heterocycles. The 6-amino or 6-chloro substituent of the 2-amino-6-substituted-purine derivatives was hydrolyzed smoothly with adenosine deaminase to give 9-[(2-hydroxyethoxy)methyl]guanine (acycloguanosine), the potent antiviral agent.

MORRIS J. ROBINS et PETER W. HATFIELD. Can. J. Chem. 60, 547 (1982).

Le dioxolanne-1,3 réagit avec le bromure d'acétyle en donnant le bromure de (acétoxy-2 éthoxy)méthyle (2a) avec un rendement de 88%. On a couplé ce produit 2a avec un certain nombre de pyrimidines et trois chloropurines sur lesquelles on a fixé un groupement triméthylsilyle. Les produits alkyles respectivement N-1 et N-9 (obtenus avec des rendements allant de 79 à 89%), soumis à une désacétylation conduisent à des héterocycles substitués par des groupes N-[(hydroxy-2 éthoxy)méthyle]. On a hydrolysé, dans des conditions douces en utilisant la désaminase d'adénosine, les substituants amino-6 ou chloro-6 des dérivés de l'amino-2 purine substitué en position 6 pour obtenir la [(hydroxy-2 éthoxy)méthyl]-9 guanine (acylguanosine), un agent antiviral puissant.

[Traduit par le journal]

A surge of interest in the application of nucleosides and acyclic nucleoside analogues as antiviral agents is underway. The well known 5-iodo-2'deoxyuridine has been in clinical use for over a decade and 5-trifluoromethyl-2'-deoxyuridine has been employed. Approval of 9-(β-D-arabinofuranosyl)adenine (araA) for treatment of human herpes encephalitis has been given. Potent antiviral activity has been reported for 1-(β -D-ribofuranosyl)-1,2,-4-triazole-3-carboxamide (ribavirin), (E)-5-(2bromovinyl)-2'-deoxyuridine, and 1-(2-fluoro-2deoxy-β-D-arabinofuranosyl)-5-iodocytosine (FI-AC) (2). Schaeffer and co-workers had prepared 9-(hydroxyalkyl)adenine derivatives as putative inhibitors of adenosine deaminase and found that 9-[(2-hydroxyethoxy)methyl]adenine was a substrate of the enzyme (3). They later reported the synthesis and potent antiviral activity of the acycloguanosine analogue, 9-[(2-hydroxyethoxy)methyl]guanine (4). This agent has been carried into clinical trials (5). Other types of "acyclic nucleoside" analogues have been reported by De Clercq and Holý (6), Barrio and co-workers (7), Ogilvie and Gillen (8), McCormick and McElhinney (9), and ourselves (10).

Schaeffer employed alkylation of 6-chloropurine with (2-benzyloxyethoxy)methyl chloride to give the *N*-9 product in 44% yield. Ammonolysis and hydrogenolytic debenzylation gave 9-[(2-hydroxyethoxy)methyl]adenine (3). A similar sequence using 2,6-dichloropurine and (2-benzoyloxyethoxy)methyl chloride (41% yield) gave acycloguanosine (4). Barrio and co-workers studied reactions of chloro- and methylthio-substituted purines with (2-trimethylsilyloxyethoxy)methyl iodide (7*a*). Alkylations proceeded in 50–80% yields at -63° C with this reagent (7*a*,*c*). Two very recent abstracts noted work on related pyrimidine acyclonucleosides (11, 12).³

We have developed methods for the convenient and high-yield syntheses of N-[(2-hydroxyethoxy)methyl] heterocycles. Acetolysis of 1,3-dioxolane (1) (see Scheme 1) gave (2-acetoxyethoxy)methyl acetate (2c) as reported (13). However, treatment of trimethylsilylated pyrimidines with 2c in the presence of tin(IV) chloride according to the glycosylation procedure of Vorbrüggen (14) gave ~ 50% yields of N-1 products. Similar results have been noted recently (12). We repeated the cleavage

$$\begin{array}{c} \bigcirc \\ \bigcirc \\ \bigcirc \\ O \end{array}^{0} + CH_{3}COX \longrightarrow CH_{3}COOCH_{2}CH_{2}OCH_{2}X \\ 1 \\ 2a \quad X = Br \\ b \quad X = Cl \\ c \quad X = OCOCH_{3} \\ \end{array}$$

³Note added in proof: publications by these authors (19, 20) have appeared since submission of the present work.

0008-4042/82/050547-07\$01.00/0

©1982 National Research Council of Canada/Conseil national de recherches du Canada

¹For the previous paper in this series see ref. 1.

²Alberta Heritage Foundation for Medical Research Graduate Studentship Awardee 1980 to present.

SCHEME 2

of 1 with trimethylsilyl iodide at -78° C (7*a*). However, this preparation was sensitive to moisture and temperature. The failure to isolate an alkylating agent (7*b*) necessitated repetitious *in situ* generation, and attempted use of this preparation with the sodium salt of adenine was not successful. Treatment of 1 with acetyl chloride in the presence of sulfuric acid gave (2-acetoxyethoxy)methyl chloride (2*b*) contaminated with a tenacious byproduct. Coupling yields using this preparation were depressed.

Treatment of 1 with neat acetyl bromide gave pure (2-acetoxyethoxy)methyl bromide (2a) in 88% yield as a readily distilled colorless oil. Storage of 2a in a refrigerator for several months with frequent use resulted in no apparent decomposition. Trimethylsilylation of a series of uracils (3a-h) (see Scheme 2), whose nucleosides are of biological interest (2), and *in situ* coupling with 2a in dry acetonitrile proceeded without difficulty. The same procedure was applied successfully to cytosine (6a) and 3-deazauracil (4-hydroxy-2-pyridinone) (7a) (see Fig. 1). The N-1 derivatives (4a-h, 6b, 7b) were obtained regiospecifically in yields of 79-88% after recrystallization.

Analogous trimethylsilylation of 6-chloro- (8a), 2,6-dichloro- (9a), and 2-amino-6-chloropurine (10a) and treatment with 2a in the presence of mercury(II) cyanide resulted in N-9 coupling to give 8b, 9b, and 10b (83–89% conversions). Use of this silylation/mercuric cyanide procedure (15) enhanced yields and effectively eliminated the N-7 isomers normally found in alkylations of purine sodium salts (7c). However, this method did not

give high yields with adenine (11a). Alkylation of the adenine anion with 2a in purified DMF gave 75% of 9-[(2-acetoxyethoxy)methyl]adenine (11b). The coupling results and characterization data are summarized in Table 1 and spectral data in Table 2. Deacetylation of these compounds with methanolic ammonia or sodium methoxide occurred readily. Data for the deprotected acyclonucleosides (5a-h, 6c, 7c, 10c, 11c) are summarized in Tables 3 and 4.

High-temperature ammonolysis of the 2-chloro group was required previously to prepare acycloguanosine (4, 7c). Analogous ammonolysis of 9b at 150°C gave 2,6-diamino-9-[(2-hydroxyethoxy)methyl]purine (12) (see Scheme 3). Adenosine

deaminase was known to effect hydrolytic deamination and dechlorination at C-6 of related purine nucleosides (16) and 6-amino-9-[(2-hydroxyethoxy)methyl]purine (11c) (3). Treatment of 12 with this enzyme effected clean conversion to 9-[(2-hydroxyethoxy)methyl]guanine (13). A route to this antiviral drug then was developed that employed convenient ambient temperature and pressure conditions. Mild deprotection of 10b followed by enzymatic dechlorination of 10c gave

TABLE 1. Synthetic and characterization data for preparation of acetylated products

acycloguanosine (13) in 76% yield overall for the 3-step sequence $(10a \rightarrow 10b \rightarrow 10c \rightarrow 13)$.

This study has provided convenient procedures for the high-yield syntheses of N-[(2-hydroxyethoxy)methyl] heterocycles. The facile preparation of (2-acetoxyethoxy)methyl bromide from 1,3dioxolane provided a stable alkylating bromomethyl ether. Coupling of a number of silvlated bases with this agent proceeded smoothly. Adenosine deaminase effected hydrolytic deamination or dechlorination at C-6 of the purine acyclonucleosides to give a mild synthetic route to the antiviral guanine compound (17).

Experimental

General Melting points were determined on a Reichert microstage block and are uncorrected. Ultraviolet (uv) spectra were recorded on a Cary 15 spectrophotometer. The high-field nmr laboratory of this department obtained ¹H spectra on Varian 100, Bruker WH-200, and WH-400 spectrometers. The ¹³C nmr spectra were measured at 22.6 MHz with proton decoupling on a Bruker HFX-90 instrument. Tetramethylsilane was used as internal standard for all nmr data. The mass spectra (ms) laboratory of this department measured EI spectra on an AEI MS-50 instrument with coupled computer analysis at 70 eV using direct probe sample introduction. Compounds that failed to give a molecular ion peak were examined by chemical ionization (ammonia gas) with an AEI MS-12 instrument at 70 eV. Elemental analyses were determined by the microanalytical laboratory of this department.

Evaporations were effected at room temperature with a Buchler rotary evaporator equipped with a Dewar "Dry-Ice" condenser under water tap or mechanical oil pump vacuum. Reagent grade acetonitrile and N,N-dimethylformamide (DMF) were refluxed with and then distilled from P_2O_5 into oven-dried flasks. Adenosine deaminase (adenosine aminohydrolase, E. C. 3.5.4.4) was purchased from Sigma Chemical Co. (crude, Type II). Silica gel for column chromatography was J. T. Baker 5-3405 and thin-layer chromatography was performed on small glass plates coated with E. Merck silica gel PF-254 for tlc using solvent systems (A) 10% MeOH in CHCl₃ or (B) EtOAc/n-PrOH/H₂O (4:1:2) upper phase.

Solvent systems for recrystallization were: A, chloroform with diffusion of diethyl ether; B, methanol with diffusion of ether; C, 2-propanol with diffusion of ether; D, dichloromethane with diffusion of ether; E, methanol; F, methanol-water; G, 95% ethanol; H, acetone with diffusion of n-pentane; I, 2propanol; J, ethanol-water. "Diffusion crystallization" is described in ref. 18.

(2-Acetoxyethoxy)methyl bromide (2a)

Freshly distilled acetyl bromide (13.0 g, 106 mmol) was stirred magnetically with cooling in an ice bath while 7.4g (100 mmol) of 1,3-dioxolane (1) was added slowly. A rapid exothermic reaction occurred giving quantitative conversion to 2a (as judged by ¹H nmr). Vacuum distillation of this material gave 17.4g (88%) of 2a, bp 58-60°C/0.1 Torr; ¹H nmr (CDCl₃) δ: 2.10 (s, 3, COCH₃), 3.88 (A₂B₂m, 2, AcOCH₂CH₂), 4.27 (A₂B₂m, 2, AcOC- H_2 CH₂), 5.72 (s, 2, OCH₂Br); ¹³C nmr (CDCl₃) δ : 20.80 (CH₃CO), 62.14 (AcOCH₂CH₂), 69.22 (AcOCH₂CH₂), 75.60 (OCH₂Br), 170.69 (CH₃CO); ms (CI) m/z: 214, 216 (M^+ + 18 [⁷⁹Br, ⁸¹Br]). Anal. calcd. for C₅H₉BrO₃: C 30.48, H 4.60, Br 40.55; found: C 30.55, H 4.59, Br 40.72.

									-	Produc	it					
Startin	g material				Yie	PI	Malting		Ca	lculat	ed		Found		Molecu	lar ion
Compound	X	mg	Method ^a	Compound	gm	%	point °C	Solvent ^a	с	Н	z	C	H	z	Calculated	Found
3a	Н	168	A	4a	181	79	77-78	A	47.38	5.30	12.28	47.10	5.39	12.16	228.0742	228.0747
q	CH3	189	A	q	203	84	123-125	A	49.59	5.83	11.57	49.32	5.72	11.57	242.0903	242.0903
C	ц	195	A	с	207	84	148-149	A	43.91	4.50	11.38	43.68	4.63	11.20	246.0652	246.0652
q	C	220	A	q	228	87	119-120	A	41.16	4.22	10.67	41.10	4.06	10.66	262.0357^{b}	262.0359^{b}
в	Br	287	A	в	264	86	131-132	A	35.20	3.61	9.12	35.04	3.66	8.99		$324^{c,d}$
£	I	357	Α	£	280	62	121-123	A	30.53	3.13	7.91	30.53	3.18	7.60	353.9713	353.9727
00	NO_2	236	A	00	236	86	134-135	в	39.57	4.06	15.38	39.31	4.03	15.22		291^{d}
Ч	≫Br	326	A	Ч	289	87	109-110	A	39.66	3.93	8.41	39.53	4.02	8.31		$350^{c,d}$
Qa		167	A	99	193	85	184-186	в	47.58	5.77	18.49	47.43	5.71	18.42	227.0907	227.0907
7 a		122	A	q_L	200	88	123-124	с С	52.87	5.77	6.17	52.87	5.76	6.15	227.0794	227.0795
8a		170	В	8 b	224	83	76-96	D	44.38	4.10	20.70	44.02	4.04	20.78		$271^{b.d}$
9a		208	в	q_6	270	88	76-96	A	39.37	3.30	18.36	39.18	3.44	18.22	304.0130^{b}	304.0124^{b}
10a		187	В	10b	239	84	132-133	A	42.04	4.23	24.52	41.81	4.21	24.56	285.0628^{b}	285.0633^{b}
11a		149	C	11b	188	75	156-158	A	47.81	5.22	27.88	47.51	5.05	28.01	251.1019	251.1020
^a See the Experi ^b For ions contai ^c For ions contai ^d Chemical ionizi	nental for cour ning ³⁵ Cl. ning ⁷⁹ Br. ation (NH ₃) mo	ling metl lecular ic	hods A–C and m plus ammon	recrystallization s ium (M^+ + 18). N	olvent s lo M ⁺ w	iystem as obs	is A-D. ierved at 70 e	V EI.								

			Ultravi	olet data				¹ H n	ımr data	
0		0.1 N	/ HCl	0.1 N	NaOH		δ ppm f	rom Me₄Si inter	rnal in Me ₂ SC	$D-d_6$ solution ^{<i>a</i>}
Com- pound	Х	max nm (ε)	min nm (ε)	max nm (ɛ)	min nm (ε)	CH ₃ COO ^b	AcOCH ₂ CH ₂ ^c	AcOCH ₂ CH ₂ ^c	OCH2-Baseb	Base
4 <i>a</i> ^{<i>a</i>}	Н	259(9800)	228(2300)	259(6800)	243(5700)	2.07	3.81	4.23	5.21	5.80 (d, $J = 8$ Hz, H-5), 7.33 (H-6)
b	CH3	264(9600)	233(2500)	265(7000)	246(4800)	2.01	3.70	4.11	5.08	1.78 (s, CH ₃), 7.56 (s, H-6)
С	F	266(8600)	232(2000)	265(6200)	248(5000)	1.98	3.74	4.13	5.04	8.10 (d, J = 6.6 Hz, H-6)
d	Cl	274(8700)	238(1500)	271(5900)	249(3600)	2.01	3.73	4.11	5.11	8.20 (s, H-6)
е	Br	277(8600)	241(1100)	274(5900)	250(3300)	2.00	3.73	4.10	5.10	8.26 (s, H-6)
f	I	285(7000)	246(2000)	276(5000)	252(3300)	1.99	3.70	4.09	5.08	8.25 (s, H-6)
g	NO_2	296(9900) 234(8000)	257(3200)	323(13 000)	264(2700)	1.99	3.79	4.11	5.27	9.29 (s, H-6)
h	∕≫Br	289(11 300) 249(16 400)	270(8900) 214(8300)	280(9800) ^d 251(16 500)	230(14000)	1.99	3.72	4.10	5.12	$\begin{array}{c} H \\ 6.85 (d, J = 13.5 \text{Hz}, & H \\ 7.28 (d, & H \\ H \\ \end{array} Br), 8.00 (s, H - 6) \\ H \end{array}$
6 b		275(12000)	240(1600)	266(7700)	249(6200)	1.98	3.66	4.06	5.06	5.68 (d, <i>J</i> = 7.5 Hz, H-5), 7.15 (br, NH ₂), 7.58 (d, H-6)
7 b		280(4600)	247(700)	256(6800)	232(3700)	2.00	3.66	4.08	5.21	5.59 (d, <i>J</i> = 2.4 Hz, H-3), 5.90 (dd, H-5), 7.54 (d, <i>J</i> = 7.6 Hz, H-6)
8 b		263(9100) 250(6300) ^d	222(2100)	263(8800) 250(6300)	230(3300)	1.91	3.76	4.06	5.74	8.84, 8.86 (s, s, H-2, H-8)
9 b		273(9400) 250(4800) ^d	228(2400)	274(8900) $250(4800)^d$	233(2800)	2.03	3.80	4.20	5.68	8.27 (s, H-8)
10 b ^a		309(7800) 246(6900)	262(700) 232(5000)	309(7800) 246(6900)	262(700) 232(5000)	2.03	3.75	4.18	5.52	5.28 (br, NH ₂), 7.92 (s, H-8)
11 b		256(16 600)	225(2400)	260(16 900)	227(3300)	1.92	3.72	4.06	5.56	7.23 (br, NH ₂), 8.16 (s, H-2), 8.26 (s, H-8)

TABLE 2. Ultraviolet and ¹H nmr spectral data for acetylated products

^{a1}H nmr spectra of 4a and 10b were determined in CDCl₃. ^bSinglet. ^cA₂B₂ multiplet. ^dShoulder.

ROBINS AND HATFIELD

preparation of deprotected acyclonucleosides

for

data

TABLE 3. Synthetic and characterization

Coupling Method A

1-[(2-Acetoxyethoxy)methyl]uracil (4a)

To a suspension of 168 mg (1.5 mmol) of uracil (3a) in 5 mL of hexamethyldisilazane was added a drop of chlorotrimethylsilane and the stirred mixture was heated at reflux with exclusion of moisture until a clear solution was obtained. Excess silylating reagent was removed in vacuo with protection against moisture. The residual clear oil was dissolved in 15 mL of dry acetonitrile and cooled to 0°C. A solution of 197 mg (1 mmol) of (2-acetoxyethoxy)methyl bromide (2a) in 5 mL of dry acetonitrile was added slowly with stirring. The solution was allowed to stir for 2h while warming to room temperature at which time tlc(A) indicated complete reaction. Volatile materials were evaporated in vacuo. The resulting yellow oil was chromatographed on a column (3 cm diameter) of 20 g of silica gel using 2% MeOH/ CHCl₃ for elution. Fractions containing 4a were combined and evaporated. The residue was crystallized from CHCl₃ with diffusion of Et₂O to give 181 mg (79%) of pure 4a with the physical and analytical data recorded in Tables 1 and 2.

This procedure was used to couple 1.5 mmol samples of 3b-hand 6a, and 1.1 mmol of 7a with 1 mmol of 2a to give 4b-h, 6b, and 7b as indicated in Tables 1 and 2. In the case of $3f \rightarrow 4f$, rigorous removal of the coupling by-product Me₃SiBr was necessary in order to avoid deiodination of 4f to given contaminating 4a during processing and recrystallization.

Coupling Method B

9-[(2-Acetoxyethoxy)methyl]-2-amino-6-chloropurine (10b) A stirred mixture of 187 mg (1.1 mmol) of 2-amino-6chloropurine (10a), 45 mg of (NH₄)₂SO₄, and 5 mL of hexamethyldisilazane was heated at reflux for 3 h with exclusion of moisture. Volatile materials were evaporated in vacuo with protection against moisture. The residue was stirred with 15 mL of dry benzene and 344 mg of Hg(CN)₂ was added. This mixture was stirred at reflux under a dry nitrogen atmosphere for 30 min. A solution of 197 mg (1 mmol) of (2-acetoxyethoxy)methyl bromide (2a) in 5 mL of benzene was added and reflux was continued for 2 h. The mixture was cooled, 150 mL of CHCl₃ was added, and the organic phase was washed with 30 mL of saturated NaHCO₃/H₂O followed by 30 mL of 1 M KI/H₂O. The organic solution was dried over Na2SO4, filtered, and evaporated to give 239 mg (84%) of an oil that was homogeneous by tlc(A). This product was crystallized from CHCl₃ with diffusion of Et_2O to give pure 10b with the physical and analytical data given in Tables 1 and 2.

This procedure was used to couple 1.1 mmol samples of 8a and 9a to give 8b and 9b as indicated in Tables 1 and 2.

Coupling Method C

9-[(2-Acetoxyethoxy)methyl]adenine (11b)

To a stirred solution of 149 mg (1.1 mmol) of adenine (11*a*) in 25 mL of dry (and *amine-free*) DMF was added 29 mg (1.2 mmol) of NaH. After evolution of hydrogen had ceased, the mixture was cooled to -63° C and a solution of 197 mg (1 mmol) of (2-acetoxyethoxy)methyl bromide (2*a*) in 5 mL of DMF was added slowly. The stirred mixture was allowed to warm slowly to room temperature over a period of 2 h, 0.5 mL of 1 *M* NaHCO₃/H₂O was added, and volatile materials were evaporated *in vacuo*. The residue was chromatographed on a column (30 g) of silica gel using 5% MeOH/CHCl₃ for elution. Appropriate fractions were combined and evaporated to give 188 mg (75%) of an oily product. This material was crystallized from CHCl₃ with diffusion of Et₂O to give pure 11*b* with physical and analytical data as indicated in Tables 1 and 2.

									ц	roduc	÷					
Startin	g material				Yiel	р	Melting		Ca	lculat	pa		Found		Molecu	ılar ion
Compound	x	gm	Method ^a	Compound	mg	%	point °C	Solvent ^a	c	Η	z	ပ	Н	z	Calculated	Found
40	H	228	A	5a	169	91	147-148	н	45.17	5.41	15.05	44.93	5.33	15.06	186.0641	186.0640
<i>q</i>	CH3	4000	В	<i>q</i>	3077	93	150.5-152	ы	48.00	6.04	13.99	48.00	5.95	13.95	200.0797	200.0801
c	ц	1476	B	c	1175	8	154-156	ц	41.19	4.44	13.72	41.12	4.56	13.63	204.0546	204.0541
q	D D	200	V	q	164	86	167-168	IJ	38.11	4.11	12.70	37.88	3.96	12.42	220.0251^{b}	220.0248^{b}
в	Br	307	V	ь	206	78	152-153	ט	31.72	3.42	10.57	31.91	3.52	10.46	263.9746^{c}	263.9746^{c}
£	I	708	в	f	576	92	175-176	Α	26.94	2.91	8.98	27.02	3.00	8.84	311.9607	311.9612
00	NO_2	180	В	00	140	92	173-175	в	36.38	3.92	18.18	36.24	3.88	18.21	231.0491	231.0487
h	∕~Br	500	A	Ч	398	91	130-133	Н	37.14	3.81	9.62	37.04	3.87	9.51		308c.d
6 b		2905	в	6c°	2220	4	170-171	с С	45.41	5.99	22.69	45.37	6.10	22.66	185.0800	185.0803
4L		250	В	7c	169	83	137-139	J	51.90	5.99	7.56	51.80	6.00	7.53	185.0688	185.0689
10b		226	A	10c	168	87	204-205	Ι	39.44	4.14	28.74	39.25	4.12	28.54	243.0523^{b}	243.0520^{b}
11b		830	в	$11c^{f}$	648	4	204-206	Э	45.93	5.30	33.48	45.69	5.29	33.24	209.0913	209.0910
10 <i>c</i>		110	6	13	88	87	265–266	ŗ	42.67	4.92	31.10	42.45	4.93	30.95	225.0862	225.0863
^a See the Exper ^b For ions conta ^c For ions conta ^c Chemical ioni ^c See ref. 7c for ^c See refs. 3, 7c ^c See the Exper ^e See the Exper	imental for de uning ³⁵ Cl. uning ⁷⁹ Br. zation (NH ₃)- zation (NH ₃)- tor ror synthes pror synthes imental.	sprotectio molecular is and da hesis and	n methods A : ton plus amm ta. I data.	and B and recrystanonium $(M^+ + 18)$.	allization No M ⁺	solver was of	nt systems A–J oserved at 70 e ¹	V EI.								

551

			Ultravio	olet data				'H nn	nr data
		0.1 N	/ HCl	0.1 N	NaOH	δι	ppm fro	om Me₄Si inter	nal in Me_2SO-d_6 solution
Compound	Х	max nm (ε)	min nm (ε)	max nm (ε)	min nm (ε)	OCH ₂ CH ₂ O ^a	OH ^b	OCH ₂ -Base ^a	Base
5a ^a	Н	259(9700)	229(2500)	260(6700)	243(5400)	3.48	4.64	5.08	5.60 (d, J = 8 Hz, H-5), 7.67 (d, H-6)
b	CH3	265(9000)	234(2200)	264(6500)	245(4400)	3.50	4.65	5.06	1.78 (s, CH ₃), 7.55 (s, H-6)
с	F	266(8200)	232(1800)	265(6100)	248(4700)	3.48	4.61	5.05	8.10 (d, $J = 6.6$ Hz, H-6)
d	Cl	274(8500)	238(1500)	272(5800)	249(3500)	3.50	4.62	5.08	8.16 (s, H-6)
е	Br	276(8600)	241(1700)	274(5700)	251(3300)	3.51	4.65	5.10	8.25 (s, H-6)
f	Ι	286(7100)	245(2000)	277(5000)	251(3100)	3.50	4.65	5.08	8.20 (s, H-6)
g	NO_2	297(9900) 232(7700)	257(3100) 209(4800)	323(13 300)	263(2800)	3.58 ^c	5.70 ^d	5.28	9.30 (s, H-6)
h	∕≫Br	290(10 300) 249(14 900)	270(7900) 213(6600)	280(8900) ^e 253(15 300)	230(12500)	3.50	4.60	5.10	$\begin{array}{c} H \\ 6.83 (d, J = 14 \text{Hz}, H \\ (d, H \\ H \\ H \\ H \\ \end{array} Br), 7.97 (s, H-6) \\ H \\ \end{array}$
6 <i>c</i>		276(12000)	240(1700)	267(7900)	250(6400)	3.46	4.60	5.06	5.72 (d, <i>J</i> = 7.5 Hz, H-5), 7.2 (br, NH ₂), 7.60 (d, H-6)
7 c		280(4600)	247(800)	256(6900)	232(3700)	3.46	4.55	5.18	5.56 (d, J = 2.5 Hz, H-3), 5.87 (dd, H-5), 7.52 (d, J = 7.5 Hz, H-6)
10 <i>c</i>		307(7600) 246(7200)	264(1000) 232(5300)	307(7600) 246(7200)	265(1100) 232(5400)	3.50	4.66	5.47	6.99 (br, NH ₂), 8.28 (s, H-8)
11 <i>c</i>		256(14 200)	225(2300)	259(14 500)	227(3200)	3.50	4.65	5.56	7.24 (br, NH ₂), 8.17 (s, H-2), 8.26 (s, H-8)
13		271(8800) ^e 252(13000)	224(2800)	260(11 400)	229(4700)	3.34 ^c	4.56	5.34	6.49 (br, NH ₂), 7.81 (s, H-8)

TABLE 4. Ultraviolet and ¹H nmr spectral data for deprotected acyclonucleosides

^aSinglet. ^bBroad singlet. ^cMultiplet. ^dTriplet. ^eShoulder.

552

Deprotection Method A

2-Amino-6-chloro-9-[(2-hydroxyethoxy)methyl]purine (10c) A 226 mg (0.79 mmol) sample of 10b was added to 40 mL of MeOH saturated with NH₃ at -10° C. The flask was stoppered tightly and the solution was stirred for 5 h at room temperature. Thin-layer chromatography(A) indicated that complete deprotection of 10b had occurred. Volatile materials were evaporated and the resulting solid was recrystallized from 2-propanol to give 168 mg (87%) of pure 10c with physical and analytical data as indicated in Tables 3 and 4.

Deprotection Method B

5-Fluoro-1-[(2-hydroxyethoxy)methyl]uracil (5c)

To 60 mL of dry MeOH was added 0.23 g (10 mmol) of sodium metal. After hydrogen evolution was complete, 1.476 g (6 mmol) of 4c was added and stirring was continued for 2 h at room temperature. Thin-layer chromatography(A) indicated that complete deprotection of 4c had occurred. Amberlite IR-120 (H⁺) resin was added until the solution was neutral to moist pH paper. The mixture was filtered, the resin washed with MeOH, and the combined filtrate evaporated. The colorless residual powder was recrystallized from MeOH-H₂O to give 1.175 g (96%) of pure 5c with physical and analytical data as indicated in Tables 3 and 4.

9-[(2-Hydroxyethoxy)methyl]guanine (acycloguanosine) (13) (4, 7c)

A. From 2-amino-6-chloro-9-[(2-hydroxyethoxy)methyl]purine (10c)

To a solution of 110 mg (0.45 mmol) of 10c in 25 mL of aqueous phosphate buffer (0.05 M, pH 7.5) was added 30 mg of adenosine deaminase. The reaction mixture was stirred magnetically at room temperature and monitored by tlc(B) until complete hydrolytic dechlorination had occurred. The crude product could be obtained directly by crystallization from the concentrated reaction mixture. However, a convenient purification procedure employed adsorption of the product from the aqueous medium on a carbon column (18), washing the column with water, and elution of 13 with 35% CH₃CN/H₂O. Evaporation of the appropriately pooled fractions, recrystallization of the solid from EtOH-H₂O, and thorough drying of the product *in vacuo* over P₂O₅ gave 88 mg (87%) of pure 13 with physical and analytical data as indicated in Tables 3 and 4.

B. From 9-[(2-acetoxyethoxy)methyl]-2,6-dichloropurine (9b)

A solution of 510 mg (1.67 mmol) of 9b in 15 mL of liquid ammonia was sealed in a Parr steel bomb and heated at 150°C for 3 days. After cooling, the bomb was vented and tlc(B) indicated complete conversion to the 2,6-diamino product (12) (none of the 6-amino-2-chloropurine analogue was detected). The residue was purified on a column of silica gel using 10% MeOH/CHCl₃ for elution to give 350 mg (93%) of oily 12. This material was treated with adenosine deaminase as described above (A. $10c \rightarrow$ 13) to give 312 mg (89%) of pure 13.

C. Overall from 2-amino-6-chloropurine (10a)

A 187 mg (1.1 mmol) sample of 10a was coupled with 197 mg (1 mmol) of 2a as described under Coupling Method B. The oily 10b obtained was treated by Deprotection Method A to give a crude solid, 10c, that was subjected directly to adenosine deaminase as described above (A. $10c \rightarrow 13$). The resulting carbon column-purified product was recrystallized and dried to give 172 mg (76% overall from 2a) of pure 13.

Acknowledgements

We thank the National Cancer Institute of Canada, the Natural Sciences and Engineering Research Council of Canada (A5890), and The University of Alberta for generous financial support.

- 1. M. J. ROBINS, F. HANSSKE, and S. E. BERNIER. Can. J. Chem. 59, 3360 (1981).
- (a) R. W. SIDWELL and J. T. WITKOWSKI. In Burger's medicinal chemistry. 4th ed. Part II. Edited by M. E. Wolff. John Wiley & Sons, New York. 1979. pp. 543-593; (b) E. DE CLERCQ. Arch. Int. Physiol. Biochim. 87, 353 (1979); (c) W. H. PRUSOFF and P. H. FISHER. In Nucleoside analogues: chemistry, biology, and medical applications. Edited by R. T. Walker, E. De Clercq, and F. Eckstein. NATO Advanced Study Institute Series. Vol. 26A. Plenum Press, New York. 1979. pp. 281-318; (d) J. C. DRACH. In Annual Reports in Medicinal Chemistry. Vol. 15. Edited by H.-J. Hess. Academic Press, New York. 1980. pp. 149-161.
- 3. H. J. SCHAEFFER, S. GURWARS, R. VINCE, and S. BITT-NER. J. Med. Chem. 14, 367 (1971).
- 4. H. J. SCHAEFFER, L. BEAUCHAMP, P. DE MIRANDA, G. B. ELION, D. J. BAUER, and P. COLLINS. Nature, 272, 583 (1978).
- 5. J. M. GOLDMAN, P. M. CHIPPING, G. AGNARSDOTTIR, and D. BRIGDEN. Lancet, 1, 820 (1979).
- 6. E. DE CLERCQ and A. HOLÝ. J. Med. Chem. 22, 510(1979).
- (a) G. E. KEYSER, J. D. BRYANT, and J. R. BARRIO. Tetrahedron Lett. 3263 (1979); (b) J. D. BRYANT, G. E. KEYSER, and J. R. BARRIO. J. Org. Chem. 44, 3733 (1979); (c) J. R. BARRIO, J. D. BRYANT, and G. E. KEYSER. J. Med. Chem. 23, 572 (1980).
- 8. K. K. OGILVIE and M. F. GILLEN. Tetrahedron Lett. 327 (1980).
- 9. J. E. MCCORMICK and R. S. MCELHINNEY. J. Chem. Res. (S), 12 (1981).
- M. J. ROBINS. In Nucleosides, nucleotides, and their biological applications. Edited by J.-L. Barascut and J.-L. Imbach. INSERM Colloque 1978. Vol. 81. INSERM, Paris. 1979. pp. 13–35.
- 11. J. L. KELLEY, J. E. KELSEY, W. R. HALL, M. P. KROCH-MAL, and H. J. SCHAEFFER. Abstracts of Papers, 181st National Meeting of the American Chemical Society, Atlanta, Mar.-Apr. 1981. MEDI 33.
- A. ROSOWSKY and S.-H. KIM. Abstracts of Papers, 181st National Meeting of the American Chemical Society, Atlanta, Mar.-Apr. 1981. MEDI 34.
- 13. M. SENKUS. J. Am. Chem. Soc. 68, 734 (1946).
- 14. U. NIEDBALLA and H. VORBRÜGGEN. J. Org. Chem. 39, 3654 (1974).
- 15. W. W. LEE, A. P. MARTINEZ, L. GOODMAN, and D. W. HENRY. J. Org. Chem. **37**, 2923 (1972).
- (a) O. P. CHILSON and J. R. FISHER. Arch. Biochem. Biophys. 102, 77 (1963); (b) H.-P. BAER, G. I. DRUMMOND, and E. L. DUNCAN. Mol. Pharmacol. 2, 67 (1966).
- (a) H. J. SCHAEFFER. German Patent No. 2,539.963, 1976; Chem. Abstr. 84, 180300p (1976); (b) G. B. ELION, P. A. FURMAN, J. A. FYFE, P. DE MIRANDA, L. BEAUCHAMP, and H. J. SCHAEFFER. Proc. Natl. Acad. Sci. U.S.A. 74, 5716 (1977); (c) J. A. FYFE, P. M. KELLER, P. A. FURMAN, R. L. MILLER, and G. B. ELION. J. Biol. Chem. 253, 8721 (1978).
- 18. M. J. ROBINS, R. MENGEL, R. A. JONES, and Y. FOURON. J. Am. Chem. Soc. 98, 8204 (1976).
- J. L. KELLEY, J. E. KELSEY, W. R. HALL, M. P. KROCH-MAL, and H. J. SCHAEFFER. J. Med. Chem. 24, 753 (1981).
- 20. A. Rosowsky, S.-H. KIM, and M. WICK. J. Med. Chem. 24, 1177 (1981).

www.nrcresearchpress.com by FORDHAM UNIVERSITY on 01/10/13 For personal use only.

can. J. Chem. Downloaded from