SYNTHESIS OF A BRANCHED D-MANNOPENTAOSIDE AND A BRANCHED D-MANNOHEXAOSIDE: MODELS OF THE OUTER CHAIN OF THE GLYCAN OF SOYBEAN AGGLUTININ*

TOMOYA OGAWA** AND KIKUO SASAJIMA***

The Institute of Physical and Chemical Research, Wako-shi, Saitama, 351 (Japan) (Received December 26th, 1980; accepted for publication, February 12th, 1981)

ABSTRACT

Synthetic routes are described to the D-mannopentaoside methyl $3-O-(3,6-di-O-\alpha-D-mannopyranosyl-\alpha-D-mannopyranosyl)-6-O-(\alpha-D-mannopyranosyl-\alpha-D-mannopyranosyl)-<math>\alpha$ -D-mannopyranosyl)- α -D-mannopyr

INTRODUCTION

In 1964, Lis *et al.*² reported the isolation of a glycopeptide from soybean agglutinin as the first example of the presence of glycoprotein in higher plants, and in 1978, Lis and Sharon³ proposed, from chemical and enzymic results, that the structure of the carbohydrate unit of this glycopeptide is 1. Two structural features of 1 are to be noted; first, 1 shares the common, inner-core pentasaccharide structure having the high-D-mannose type of glycan chain 2, isolated from such glycopeptide⁵, and human IgM myeloma glycopeptide⁶, and second, the outer chain of 1 shows an isomeric branching pattern comparable to that of 2.

In order to develop a versatile and practical, synthetic route to the glycan chain 1, the model structures 3 and 4 were chosen as the primary targets for our synthetic studies, and we now describe their synthesis, employing three known monosaccharide synthons 5 (refs. 7,8), 6 (ref. 1), and 7 (ref. 8).

^{*}Synthetic Studies on Cell-surface Glycans, Part 5. For Part 4, see ref. 1.

^{**}To whom enquiries should be addressed.

^{***}Present address: Sumitomo Chemical Co., Ltd., Fine Chemicals Division, Osaka Works, 3-1-98, Kasugade, Naka, Konohana-ku, Osaka, Japan.

RESULTS AND DISCUSSION

Synthesis of protected D-mannobioside 20 and D-mannotrioside 25 as key intermediates

We first describe the synthetic sequence which led from the starting diol 5 to

compound 20. In order to introduce a D-mannopyranosyl group at O-3, diol 5 was first converted into the 6-trityl ether (9), the 6-tert $BuMe_2Si$ ether (10) and the 6-benzoate (11) in the usual way, and each of these compounds was submitted to glycosylation with the D-mannosyl donor 6 according to the Hanessian-Banoub procedure⁹.

On glycosylation of trityl ether 9 with 2.6 molar equivalents of 6, the protected D-mannobiosides 16 and 17 and the protected D-mannotrioside 23 were isolated, in 16.2, 25.0, and 43.6% yield, respectively. Glycosylation of the 6-*tert*-butyldimethyl-silyl ether 10 with 1.9 molar equivalents of 6 led to the isolation of the protected D-mannobiosides 18 and 17 and the protected D-mannotrioside 23 in 3.4, 39.8, and 40.9% yield, respectively. Accordingly, both the trityl and the *tert*-butyldimethylsilyl group are labile under these glycosylation conditions, giving rise to a large proportion of the (undesired) D-mannotrioside derivative 23.

However, the benzoate group in 11 proved to be stable. Glycosylation of benzoate 11 with 1.7 molar equivalents of 6, and chromatography of the products, afforded protected p-mannobioside 19 in 67.7% yield. The ¹H-n.m.r. spectrum of 19 showed two singlets, for the two newly introduced, acetyl groups, at δ 1.94 and 2.01, and the ¹³C-n.m.r. spectrum of 19 showed signals for two anomeric carbon atoms. at δ 98.4 (C-1a) and 99.6 (C-1b), with ${}^{1}J_{CH} \sim 170$ Hz, in agreement with the empirical rule of Bock et al.¹⁰ for the *α*-D-anomeric configuration. Compound 19 was deacylated to triol 20, and hydrogenolysis of 20 gave the free D-mannobioside 21, whose ¹H- and ¹³C-n.m.r. data were in good agreement with the assigned structure. Two doublets, with J 2 Hz, for anomeric protons were observed in the 1 H-n.m.r. spectrum of 21 (in D₂O at 60°) at δ 4.74 (H-la) and 5.12 (H-lb), and two signals for anomeric carbon atoms were detected in the ¹³C-n.m.r. spectrum (D₂O) at δ 101.0 (¹J_{CH} 170.9 Hz, C-1a) and 102.6 (¹J_{CH} 171.9 Hz, C-1b). The (1→3) nature of the interglycosidic linkage in 21 was also supported by the presence of the deshielded signal due to the glycosidation shift¹¹ for C-3a, at δ 78.5 in the ¹³C-n.m.r. spectrum. Synthesis of 21 by a different route was reported by Lee and Wood¹².

Thus, a practical synthesis of the key intermediate 20 (for the synthesis of D-mannopentaoside 3) could be achieved in 47% overall yield from the dibenzyl ether 5, and its structure was unequivocally determined by the synthetic sequence and the n.m.r. data.

We now describe a synthetic sequence for another key intermediate, namely, 25, by the sequential introduction, by use of the glycosyl donors 7 and 6, of glycosyl groups at O-6 and O-3 of the glycosyl acceptor 5.

Selective glycosylation at O-6 of 5 was achieved by employing 1.1 molar equivalents of 7, to give a 55.1% yield of protected D-mannobioside 13 and a 4.5% yield of D-mannotrioside derivative 22, along with a 14.8% recovery of 5. The assignment of structure 13 was supported by the ¹H-n.m.r. data, which showed the presence of a singlet for one acetyl group at δ 2.13, indicating the introduction of only one mannosyl group (derived from 7) into 5, and also by the ¹³C-n.m.r. data, which disclosed two signals for two anomeric carbon atoms having the α -D configuration,

at δ 97.6 (¹J_{CH} 172 Hz, C-1a) and 97.9 (¹J_{CH} 173.5 Hz, C-1b), as well as a deshielded signal, due to a glycosidation shift for C-6a, at δ 66.5. Compound 13 was deacetylated to diol 14, which was hydrogenolyzed over 10% Pd-C to give free mannobioside 15, identical with an authentic sample¹.

The suitably protected mannobioside 13 was glycosylated with two molar equivalents of the glycosyl donor 6, and the usual processing and chromatographic purification afforded an 83.6% yield of 24. The structure of 24 was confirmed by its

 $R^{1} = R^{5} = A_{C}, R^{2} = R^{3} = R^{4} = R^{6} = B_{R}$ $R^{1} = R^{2} = R^{5} = B_{R}, R^{3} = R^{4} = R^{6} = A_{C}$ $R^{1} = R^{6} = A_{C}, R^{2} = R^{3} = R^{4} = R^{5} = B_{R}$ $R^{1} = R^{6} = H, R^{2} = R^{3} = R^{4} = R^{5} = B_{R}$ $R^{1} = R^{2} = R^{3} = R^{4} = R^{5} = R^{6} = H$

¹H-n.m.r. spectrum, which showed singlets for three acetyl groups, at δ 1.92, 1.97, and 2.11. The ¹³C-n.m.r. spectrum also supported the structure, as it revealed three signals, with ${}^{1}J_{CH} \sim 170$ Hz, for anomeric carbon atoms having the α -D configuration, at δ 98.2 (C-1a), 98.3 (C-1b), and 99.5 (C-1c). Zemplén deacetylation of 24 gave the desired, key intermediate 25 (for the synthesis of the target molecule 4) in 40% overall yield from 5. Hydrogenolysis of 25 gave rise to the free mannotrioside 26, identical with an authentic sample⁸.

Having unambiguously synthesized two key intermediates, further elongation of the glycan chain on the glycosyl acceptors 20 and 25 was next studied.

Synthesis of branched D-mannopentaoside 3 and D-mannohexaoside 4

Simultaneous introduction of three D-mannosyl groups onto the glycosyl acceptor 20 was successfully achieved by employing 5.0 molar equivalents of glycosyl donor 7 under Hanessian-Banoub conditions. A 76.1% yield of the protected D-mannopentaoside 27 was isolated after chromatography on a column of silica gel. The ¹H-n.m.r. spectrum of 27 revealed the presence of three acetyl groups as two singlets, at δ 2.04 (3 H) and 2.12 (6 H), that originated from three molecules of glycosyl donor 7. The ¹³C-n.m.r. spectrum of 27 showed four signals, with ¹J_{CH} ~170 Hz, at δ 97.9 (C-1a and C-1b), 98.2 (C-1d), 99.0 (C-1c), and 99.6 (C-1e), confirming the α -D configuration at all of the anomeric centers. Zemplén deacetylation of 27, to 28, and hydrogenolysis of 28 over 10% Pd-C in aq. EtOH, afforded the target D-mannopentaoside (3) as an amorphous powder. The structure of 3 was deduced from the synthetic sequence, and was supported by the following ¹H-and ¹³C-n.m.r. data: five doublets, with J 2 Hz, for five anomeric protons, at δ 4.70 (H-1a), 4.85 (H-1b), 4.89 (H-1d), 5.03 (H-1e), and 5.10 (H-1c); four signals, with

 ${}^{1}J_{CH} \sim 170$ Hz, for five anomeric carbon atoms having the α -D configuration, at δ 99.9 (C-1b), 100.1 (C-1d), 101.3 (C-1a), and 102.8 (C-1c and C-1e); and two deshielded signals due to the glycosidation shift, for C-3a and C-3c, at δ 78.5 and 79.0.

Synthesis of the other target molecule, 4, could be achieved similarly. Glycosylation of the key intermediate 25 with five molar equivalents of the glycosyl donor 7 afforded a 60.0% yield of the protected D-mannohexaoside 29. The ¹³C-n.m.r. spectrum of 29 showed the presence of four signals, with ¹ $J_{CH} \sim 170$ Hz, for six anomeric carbon atoms having the α -D configuration, at δ 98.0 (C-1a), 98.2 (C-1e), 99.0 (C-1b and C-1c), and 99.5 (C-1d and C-1f). Zemplén deacetylation of 29 to 30, and hydrogenolysis of 30, gave the target D-mannohexaoside 4 as an amorphous material. The structure of 4 was assignable from the synthetic sequence, and was confirmed by its ¹H- and ¹³C-n.m.r. data: the ¹H-n.m.r. spectrum (D₂O at 60°) showed 5 doublets, with $J \sim 2$ Hz, for six anomeric protons, at δ 4.70 (H-1a), 4.86 (H-1e), 5.00 (H-1d), 5.04 (H-1f), and 5.09 (H-1b and H-1c); the ¹³C-n.m.r. spectrum (D₂O) showed 4 signals, with ¹ $J_{CH} \sim 170$ Hz, for 6 anomeric carbon atoms having the α -D configuration, at δ 98.2 (C-1b), 99.9 (C-1e), 101.3 (C-1a), and 102.7 (C-1c, C-1d, and C-1f), and three deshielded signals, due to the glycosidation shift, for C-3a, C-3c, and C-2b at δ 78.6, 78.9, and 79.1.

In conclusion, regio- and stereo-controlled, synthetic sequences to the branched D-mannopentaoside 3 and D-mannohexaoside 4, which are models of the outer chain of the glycan unit of soybean agglutinin, were developed by employing regioselectively protected D-mannobioside 20 and D-mannobioside 25 as key intermediates.

EXPERIMENTAL

General. — Melting points were determined with a Yanagimoto micro meltingpoint apparatus and are uncorrected. Optical rotations were determined with a Perkin-Elmer Model 141 polarimeter for solutions in CHCl₃ at 25°, unless otherwise noted. I.r. spectra were recorded with an EPI-G2 Hitachi Spectrophotometer, for KBr discs for the crystalline samples, and neat films for the liquid samples. ¹H-N.m.r. spectra were recorded with a Varian HA-100 n.m.r. spectrometer, using tetramethylsilane as the internal standard. ¹³C-N.m.r. spectra were recorded with a JNM-FX 100FT NMR spectrometer operated at 25.05 MHz. The values of δ_c and δ_H are expressed in p.p.m. downward from the internal standard, for solutions in CDCl₃, unless otherwise noted. Column chromatography was performed on columns of Silica Gel Merck (70–230 mesh; E. Merck, Darmstadt, Germany). Thin-layer chromatography was performed on plates pre-coated with a layer (thickness, 0.25 mm) of Silica Gel 60 F₂₅₄ (E. Merck, Darmstadt, Germany).

Methyl 2,4-di-O-benzyl-6-O-trityl- α -D-mannopyranoside (9). — To a solution of 5 (759 mg, 2 mmol) in pyridine (5 mL) was added chlorotriphenylmethane (777 mg). The mixture was stirred for 2 days at 20°, and diluted with CH₂Cl₂. The usual processing, and chromatography on SiO₂ (120 g) with 100:10:1 toluene-EtOAc-

Et₃N gave 9 as a foam (1.068 g, 85.3%); R_F 0.64 in 3:1 toluene-EtOAc; δ_H 3.40 (s, 3 H, OMe). Compound 9 was unstable at 20°, and was slowly converted into 5. When a solution of 9 in CDCl₃ was kept for 4 h at 20° in a n.m.r. tube, 30% of 9 was converted back into 5. Accordingly, freshly prepared 9 was used directly for the next step.

Methyl 2,4-di-O-benzyl-6-O-(tert-butyldimethylsilyl)- α -D-mannopyranoside (10). — A mixture of 5 (751 mg, 2 mmol), imidazole (340 mg, 5 mmol), and tert BuMe₂SiCl (365 mg, 2.4 mmol) in HCONMe₂ (3 mL) was stirred for 2 h at 0–5°, and then kept for 2 days at 4°. The solvent was evaporated off *in vacuo*, and the residue was chromatographed on SiO₂ (100 g) with 3:1 toluene–EtOAc, to give 10 as a syrup (745 mg, 76.3%); $[\alpha]_D$ +20.0° (c 0.525); R_F 0.65 in 3:1 toluene–EtOAc; δ_H : 0.89 (s, 9 H, tBu), 2.12 (bs, 1 H, OH), 3.31 (s, 3 H, OMe), and 4.73 (d, 1 H, J 2 Hz, H-1); δ_C : 18.3 (CMe₃), 26.0 (C-Me₃), 54.5 (OMe), 62.6 (C-6), 71.7 (C-3), 72.2 (C-5), 72.7 (O-2-CH₂Ph), 74.7 (O-4-CH₂Ph), 76.5 (C-4), 78.6 (C-2), and 97.7 (¹J_{CH} 167.7 Hz, C-1).

Anal. Calc. for C₂₇H₄₀O₆Si: C, 66.36; H, 8.25. Found: C, 66.21; H, 8.25.

Methyl 6-O-benzoyl-2,4-di-O-benzyl- α -D-mannopyranoside (11). — To a solution of 5 (5.62 g, 15 mmol) in pyridine (150 mL) was added BzCl (3.2 g, 22.8 mmol) at 0°. After the mixture had been stirred for 16 h at 20°, t.l.c. examination showed the presence of a monobenzoate as the major product, as well as a small proportion of starting material (5) and a trace of a dibenzoate. More BzCl (1 g, 7.2 mmol) was added, and the mixture was stirred for 16 h at 20°. The excess of BzCl was decomposed by adding H₂O (1 mL), and evaporation *in vacuo* gave a residue which was partitioned between EtOAc and cold water. The organic layer was successively washed with water, aq. NaHCO₃, and saturated saline, dried (MgSO₄), and evaporated *in vacuo*, to afford an oily product which was chromatographed on SiO₂ (300 g) with 11:1 toluene–EtOAc, affording 11 (6.33 g, 87.5%); $[\alpha]_D$ +30.9° (*c* 0.615); R_F 0.52 in 3:1 toluene–EtOAc; δ_H : 3.36 (s, 3 H, OMe), 4.06 (dd, 1 H, $J_{2,3}$ 3, $J_{3,4}$ 9 Hz, H-3), and 4.82 (d, 1 H, $J_{1,2}$ 2 Hz, H-1); δ_C : 54.9 (OMe), 63.8 (C-6), 69.3 (C-5), 71.9 (C-3), 72.8 (O-2-CH₂Ph), 74.9 (O-4-CH₂Ph), 76.2 (C-4), 78.4 (C-2), and 97.7 (¹J_{CH} 169.1 Hz, C-1).

Anal. Calc. for C₂₈H₃₀O₇: C, 70.28; H, 6.32. Found: C, 70.44; H, 6.29.

From the less polar fraction, dibenzoate 12 (0.960 g, 11.0%), R_F 0.78 in 3:1 toluene-EtOAc, was isolated, and identified with an authentic sample⁸.

Methyl 6-O-(2-O-acetyl-3,4,6-tri-O-benzyl- α -D-mannopyranosyl)-2,4-di-O-benzyl- α -D-mannopyranoside (13). — To a mixture of 5 (1.845 g, 4.93 mmol) and AgSO₃CF₃ (2.06 g, 8 mmol), dried *in vacuo* for 4 h, were added, with stirring, Me₂NCONMe₂ (2.5 mL, 20 mmol), CH₂Cl₂ (8 mL), and half of a solution of 7 [prepared from 8 (2.80 g, 5.5 mmol) in CH₂Cl₂ (5 ml)] under argon at -10 to -15°. After stirring for 6.5 h at 20°, the rest of the solution of 7 was added at -10 to -15°; the mixture was stirred for a further 16 h at 20°, diluted with CH₂Cl₂ (50 mL), and filtered through a bed of Celite. The filtrate was washed with aq. NaHCO₃, dried (MgSO₄), and evaporated, to give an oil (6.55 g) which was chromatographed on SiO₂ (500 g) with 5:1 toluene–EtOAc, affording methyl 3,6-di-O-(2-O-acetyl-3,4,6-tri-O-benzyl- α -D-mannopyranosyl)-2,4-di-O-benzyl- α -D-mannopyranoside (22) (296.8 mg, 4.5%), $[\alpha]_D$ +46.1° (c 0.49); R_F 0.58 in 3:1 toluene–EtOAc.

Anal. Calc. for C₇₉H₈₆O₁₈: C, 71.69; H, 6.55. Found: C, 71.59; H, 6.54.

Compound 22 was identified with an authentic sample⁸ by comparing ¹³Cand ¹H-n.m.r. data. Further elution with 3:1 toluene-EtOAc afforded 13 (2.307 g, 55.1%), $[\alpha]_D + 48.3^{\circ}$ (c 0.90), $R_F 0.49$ in 3:1 toluene-EtOAc; δ_H : 2.13 (s, 3 H, Ac), 3.26 (s, 3 H, OMe), and 5.44 (bt, 1 H, $J \sim 2$ Hz, H-2b); δ_C : 21.1 (COCH₃), 54.7 (OMe), 66.5 (C-6a), 97.6 (¹J_{CH} 172 Hz, C-1a), and 97.9 (¹J_{CH} 173.5 Hz, C-1b). Anal. Calc. for C₅₀H₅₆O₁₂: C, 70.73; H, 6.65. Found: C, 70.25; H, 6.61.

Further elution with the same solvent afforded 2-O-acetyl-3,4,6-tri-O-benzyl- α -D-mannopyranose (618.6 mg, 22.8% from 8), a hydrolysis product of 7, $[\alpha]_{\rm D}$ +16.7° (c 0.825); $R_{\rm F}$ 0.34 in 3:1 toluene–EtOAc; $\delta_{\rm H}$ 2.14 (s, 3 H, Ac); $\delta_{\rm C}$ 21.2 (OCOMe), 69.2 (C-2), 69.3 (C-6), 71.0 (C-5), 71.7 (O-3-CH₂Ph), 73.4 (O-6-CH₂Ph), 74.6 (C-4), 75.0 (O-4-CH₂Ph), 77.0 (C-3), and 92.3 (¹J_{CH} 170.5 Hz, C-1).

Anal Calc. for C29H32O7: C, 70.71; H, 6.55. Found: C, 70.78; H, 6.62.

The same compound was also obtained, in 85% yield, by treating 8 with aq. AcOH. Finally, a product (272 mg, 14.8%) of R_F 0.23 in 3:1 toluene-EtOAc was eluted, and was identified as the starting alcohol 5.

Methyl 2,4-di-O-benzyl-6-O-(3,4,6-tri-O-benzyl- α -D-mannopyranosyl)- α -D-mannopyranoside (14). — Compound 13 (210 mg, 0.25 mmol) was deacetylated in the usual way with NaOMe-MeOH-THF. Purification of the product by chromatography on SiO₂ (20 g) with 15:1 CH₂Cl₂-Me₂CO afforded 14 (161.6 mg, 80.0%), $[\alpha]_D$ +68.9° (c 0.19); R_F 0.50 in 10:1 CH₂Cl₂-Me₂CO; δ_H : 3.27 (s, 3 H, OMe) and 5.03 (d, 1 H, J 2 Hz, H-1b); δ_C : 54.8 (OMe), 66.2 (C-6a), 97.6 (¹J_{CH} 166.2 Hz, C-1a), and 99.5 (¹J_{CH} 170.6 Hz, C-1b).

Anal. Calc. for C₄₈H₅₄O₁₁: C, 75.56; H, 7.13. Found: C, 75.53; H, 6.74.

Methyl 6-O- α -D-mannopyranosyl- α -D-mannopyranoside (15). — Compound 14 (58.6 mg) was hydrogenolyzed in EtOH-THF over 10% Pd-C in the usual way, to afford 15 (30.1 mg), R_F 0.42 in 2:1:1 BuOH-EtOH-H₂O, which was identified with an authentic sample¹ by comparing the ¹H-n.m.r. data.

Methyl 2,4-di-O-benzyl-3-O-(3,6-di-O-acetyl-2,4-di-O-benzyl- α -D-mannopyranosyl)-6-O-trityl- α -D-mannopyranoside (16). — To a mixture of 9 (217 mg, 0.35 mmol) and AgSO₃CF₃ (355 mg, 1.38 mmol), dried *in vacuo* for 10 h, were added Me₂-NCONMe₂ (0.22 mL, 1.8 mmol), CH₂Cl₂ (3 mL), and half of a solution of 6 (425 mg, 0.91 mmol) in CH₂Cl₂ (3 mL), successively at -5 to -10° under argon with stirring. Then, the mixture was stirred for 4 h at 20°, the remaining solution of 6 in CH₂Cl₂ was added at -10 to -15° , and the mixture was stirred for a further 16 h at 20°. The usual processing, and chromatography on SiO₂ (150 g) afforded the following products. (a) A fraction eluted by 120:2:1 CHCl₃-Me₂CO-Et₃N, R_F 0.88 in 40:1 CH₂Cl₂-Me₂CO, was re-chromatographed on SiO₂ (80 g) with 100:10:1 toluene-EtOAc-Et₃N, to give 16 (59 mg, 16.2%), R_F 0.32 in 10:1 toluene-EtOAc; δ_H 1.94: (s, 3 H, OAc), 2.05 (s, 3 H, OAc), 3.38 (s, 3 H, OMe), and 6.85-7.55 (m, 35 H,

aromatic H). (b) A fraction containing more-polar products, $R_F 0.59$ and 0.26 in 40:1 CH₂Cl₂-Me₂CO, was then eluted by 120:2:1 CHCl₃-Me₂CO-Et₃N. (c) An oily mixture (328 mg) obtained from this fraction was rechromatographed over SiO₂ (80 g) with 3:1 toluene-EtOAc, to give 23 (187.4 mg, 43.6%), $R_F 0.59$, and 17 (69.9 mg, 25.0%), $R_F 0.26$. Compounds 23 and 17 were identified by comparison of ¹³C- and ¹H-n.m.r. data with those of authentic samples¹.

Methyl 2,4-di-O-benzyl-6-O-(tert-butyldimethylsilyl)-3-O-(3,6-di-O-acetyl-2,4di-O-benzyl- α -D-mannopyranosyl)- α -D-mannopyranoside (18). — To a mixture of 10 (255 mg, 0.52 mmol) and AgSO₃CF₃ (396 mg, 1.54 mmol), dried in vacuo for 16 h, were added, under argon, Me₂NCONMe₂ (0.25 mL, 2 mmol), CH₂Cl₂ (3 mL), and half of a solution of **6** (460 mg, 0.99 mmol), successively, at — 10 to —15°. Then, the mixture was stirred for 3 h at 20°, the remaining solution of **6** in CH₂Cl₂ was added at —10 to —15°, and the mixture was stirred for a further 4 days at 20°. The usual processing afforded an oily product (904 mg) which was chromatographed on SiO₂ (200 g) with 40:2:1 toluene-THF-Et₃N, to give the following products. Compound 18 (16.3 mg, 3.4%), R_F 0.42 in 10:1 toluene-THF, δ_H : 0.94 (s, 9 H, CMe₃), 1.94 (s, 3 H, Ac), 2.00 (s, 3 H, Ac), and 3.27 (s, 3 H, OMe); compound 23 (261 mg, 40.9%), R_F 0.27; and compound 17 (165.6 mg, 39.8%), R_F 0.13. 23 and 17 were identified with authentic samples¹ by comparison of ¹H- and ¹³C-n.m.r. data.

Methyl 6-O-benzoyl-2,4-di-O-benzyl-3-O-(3,6-di-O-acetyl-2,4-di-O-benzyl- α -D-mannopyranosyl)- α -D-mannopyranoside (19). — To a mixture of 11 (957 mg, 2.0 mmol) and AgSO₃CF₃ (1.35 g, 5 mmol), dried in vacuo for 3 h at 20°, were successively added Me₂NCONMe₂ (1.2 mL, 10 mmol), CH₂Cl₂ (8 mL), and two-thirds of a solution of 6 (1.537 g, 3.38 mmol) in CH₂Cl₂ (6 mL) at -10 to -15°, with stirring, under argon. Then, the mixture was stirred for 6 h at 20°, the rest of the solution of 6 in CH₂Cl₂ was added at -10 to -15°, and the mixture was stirred for a further 16 h at 20°. The usual processing, and chromatography on SiO₂ (300 g), with 25:1 toluene-THF, afforded 19 (1.226 g, 67.7%), $[\alpha]_D$ +29.1° (c 0.615); R_F 0.14 in 20:1 toluene-THF; δ_H : 1.94 (s, 3 H, Ac), 2.01 (s, 3 H, Ac), 3.34 (s, 3 H, OMe), 5.19 (d, 1 H, J 2 Hz, H-1b), and 7.94-8.07 (m, 2 H, benzoyl); δ_C : 54.8 (OMe), 77.4 (C-3a), 98.4 (¹J_{CH} 172 Hz, C-1a), and 99.6 (¹J_{CH} 172.1 Hz, C-1b).

Anal. Calc. for C₅₂H₅₆O₁₄: C, 69.01; H, 6.24. Found: C, 68.68; H, 6.28.

Methyl 2,4-di-O-benzyl-3-O-(2,4-di-O-benzyl- α -D-mannopyranosyl)- α -D-mannopyranoside (20). — A solution of 19 (560 mg, 619 μ mol) in MeOH (20 mL) and 2m NaOMe-MeOH (0.2 mL) was stirred for 16 h at 20°. Neutralization of the base with Amberlist 15 (H⁺) resin, and the usual processing, gave crude 20 (499 mg) which was chromatographed on SiO₂ (30 g) with 8:1 CH₂Cl₂-Me₂CO, to afford 20 (351.3 mg, 79.1%), [α]_D + 30.8° (c 0.315); R_F 0.22 in 10:1 CH₂Cl₂-Me₂CO; δ_H : 3.28 (s, 3 H, OMe), 5.22 (bd, 1 H, H-1b); δ_C : 54.8 (OMe), 72.4 (2 O-2-CH₂Ph), 74.6 and 74.7 (2 O-4-CH₂Ph), 77.6 (C-3a), 98.9 (¹J_{CH} 170.6 Hz, C-1a), and 99.2 (¹J_{CH} 170.6 Hz, C-1b).

Anal. Calc. for $C_{41}H_{48}O_{11}$: C, 68.10; H, 6.75. Found: C, 67.79; H, 6.72. Methyl 3-O- α -D-mannopyranosyl- α -D-mannopyranoside (21). — A mixture of **20** (50 mg, 69 μ mol) and 10% Pd–C (40 mg) in EtOH (5 mL) was stirred under H₂ for 3 h at 45° and then for 16 h at 25°. The usual processing gave **21** (21.8 mg, 87.2%) as an amorphous powder, $[\alpha]_D$ +94.8° (*c* 0.31, H₂O); R_F 0.50 in 2:1:1 1-BuOH–EtOH–H₂O); δ_H (D₂O, 60°): 3.42 (s, 3 H, OMe), 4.74 (d, 1 H, 2 Hz, H-1a), 5.12 (d, 1 H, J 2 Hz, H-1b); δ_C (D₂O, 60°): 78.5 (C-3a), 101.0 (¹J_{CH} 170.9 Hz, C-1a), 102.6 (¹J_{CH} 171.9 Hz, C-1b).

Anal. Calc. for $C_{13}H_{24}O_{11} \cdot 0.5 H_2O$: C, 42.74; H, 6.90. Found: C, 42.70; H, 6.81.

Methyl 6-O-(2-O-acetyl-3,4,6-tri-O-benzyl- α -D-mannopyranosyl)-2,4-di-O-benzyl-3-O-(3,6-di-O-acetyl-2,4-di-O-benzyl- α -D-mannopyranosyl)- α -D-mannopyranoside (24). — To a mixture of 13 (850 mg, 1.00 mmol) and AgSO₃CF₃ (780 mg, 3.0 mmol), dried *in vacuo* for 24 h at 20°, were successively added CH₂Cl₂ (5 mL), Me₂NCONMe₂ (0.85 mL, 7.1 mmol), and half of a solution of 6 (950 mg, ~2.0 mmol) in CH₂Cl₂ (5 mL) at -10 to -15°, with stirring, under argon. After stirring for 4 h at 20°, the remaining solution of 6 in CH₂Cl₂ was added at -10 to -15°, and the mixture was stirred for a further 5 h at 20° under argon. The usual processing gave a crude oil (2.32 g) which was chromatographed on SiO₂ (360 g) with 11:1 toluene-THF, to give 24 (1.066 g, 83.6%), $[\alpha]_D + 41.3°$ (c 0.56); R_F 0.64 in 10:1 toluene-THF and 0.21 in 3:1 toluene-EtOAc; δ_H : 1.92 (s, 3 H, Ac), 1.97 (s, 3 H, Ac), 2.11 (s, 3 H, Ac), 3.24 (s, 3 H, OMe), 4.91 (d, 1 H, J 2 Hz) and 5.16 (d, 1 H, J 2 Hz, two anomeric protons), 5.30 (id, 1 H, H-3c), and 5.43 (bt, 1 H, H-2b); δ_C : 98.2 and 98.3 (¹J_{CH} ~170 Hz, C-1a and C-1b), 99.5 (¹J_{CH} 172.1 Hz, C-1c), and 54.6 (OMe).

Methyl 2,4-di-O-benzyl-3-O-(2,4-di-O-benzyl- α -D-mannopyranosyl)-6-O-(3,4,6tri-O-benzyl- α -D-mannopyranosyl)- α -D-mannopyranoside (25). — A solution of 24 (950 mg, 745 μ mol) in MeOH (25 mL), THF (10 mL), and 2M NaOMe in MeOH (0.5 mL) was stirred for 16 h at 20°. The usual processing afforded crude 25 (835 mg), which was chromatographed on SiO₂ (50 g) with 15:1 CH₂Cl₂-Me₂CO, to give 25 (736.8 mg, 86.1%); $[\alpha]_D$ +49.8° (c 0.255); R_F 0.13 in 20:1 CH₂Cl₂-Me₂CO; δ_H : 3.27 (s, 3 H, OMe), 5.05 (bd, 1 H, H-1b), and 5.20 (bd, 1 H, H-1c); δ_C : 54.8 (OMe), 98.2 (¹J_{CH} 167.7 Hz, C-1a), 99.3 (¹J_{CH} 169.1 Hz, C-1c), and 99.7 (¹J_{CH} 170.6 Hz, C-1b).

Anal. Calc. for C₆₈H₇₆O₁₆: C, 71.06; H, 6.67. Found: C, 70.93; H, 6.68.

Methyl 3,6-di-O- α -D-mannopyranosyl- α -D-mannopyranoside (26). — A mixture of 25 (55.5 mg) and 10% Pd–C (30 mg) in EtOH (10 mL) and H₂O (1 mL) was stirred under H₂ for 3 h at 50° and then for 16 h at 25°. The usual processing gave 26 as an amorphous powder (16.4 mg, 65.9%), $[\alpha]_D$ +93.6° (c 0.14, H₂O); R_F 0.37 in 2:1:1 1-BuOH–EtOH–H₂O; δ_H : 3.42 (s, 3 H, OMe), 4.73 (d, 1 H, J 2 Hz, H-1a), 4.92 (d, 1 H, J 2 Hz, H-1b), and 5.12 (d, 1 H, J 2 Hz, H-1c). Compound 26 was identified with an authentic sample⁸ (prepared by a different route) through comparison of their ¹H-n.m.r. data.

Methyl 6-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-2,4-di-O-benzyl-3-O-[3,6-di-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-2,4-di-O-benzyl-α-D-mannopyranosyl]-α-D-mannopyranoside (27). — A mixture of 20 (435 mg, 607 μ mol) and AgSO₃CF₃ (1.18 g, 4.59 mmol), dried *in vacuo* for 5 h at 20°, was dissolved by adding CH₂Cl₂ (4 mL) and Me₂NCONMe₂ (0.75 mL, 5.08 mmol) under argon. To this solution was added half of a solution of 7 [prepared⁸ from 8 (1.55 g, 3.06 mmol) in CH₂Cl₂ (5 ml)] at -10 to -15° with stirring, under argon. Then, the mixture was stirred for 3 h at 20°, the rest of the solution of 7 in CH₂Cl₂ was added at -10 to -15°, and the mixture was stirred for a further 16 h at 20°. The usual processing afforded an oily product (2.417 g) which was chromatographed on SiO₂ (200 g) with 11:1 toluene-THF, to give crude 27 (1.315 g). The crude 27 was rechromatographed on SiO₂ (150 g) with 40:1 CH₂Cl₂-Me₂CO, to give pure 27 (988.8 mg, 76.1%), $[\alpha]_D$ +57.1° (c 0.385); R_F 0.26 in 10:1 toluene-THF; δ_{H} : 2.04 (s, 3 H, Ac), 2.12 (s, 6 H, 2 Ac), 3.17 (s, 3 H, OMe), 5.20 (bs, 2 H, 2 anomeric H), and 5.37-5.50 (bm, 3 H, H-2b,2d,2e); δ_C : 54.5 (OMe), 97.9 (¹J_{CH} 170.6 Hz, C-1a,1b), 98.2 (¹J_{CH} ~ 170 Hz, C-1d), 99.0 (¹J_{CH} 169.7 Hz, C-1c), and 99.6 (¹J_{CH} 169.1 Hz, C-1e).

Anal. Calc. for C₁₂₈H₁₃₈O₂₉: C, 71.82; H, 6.50. Found: C, 71.88; H, 6.34.

Methyl 2,4-di-O-benzyl-3-O-[2,4-di-O-benzyl-3,6-di-O-(3,4,6-tri-O-benzyl- α -D-mannopyranosyl)- α -D-mannopyranosyl]-6-O-(3,4,6-tri-O-benzyl- α -D-mannopyranosyl)- α -D-mannopyranosyl]-6-O-(3,4,6-tri-O-benzyl- α -D-mannopyranosyl)- α -D-mannopyranoside (28). — A solution of 27 (855.8 mg, 0.40 mmol) in MeOH (25 mL)–THF (10 mL)–2M NaOMe in MeOH (0.1 mL) was stirred for 16 h at room temperature. The usual processing afforded an oily product (797 mg) which was chromatographed on SiO₂ (80 g) with 20:1 CH₂Cl₂–Me₂CO, to give pure 28 (684.5 mg, 84.2%), [α]_D +61.9° (c 0.27); R_F 0.29 in 20:1 CH₂Cl₂–Me₂CO; δ_H : 3.20 (s, 3 H, OMe), 5.00 (bs, 1 H, anomeric H), and 5.20 (bs, 1 H, anomeric H); δ_C : 54.6 (OMe), 98.0 (¹J_{CH} 166.0 Hz, C-1a), 99.2 (¹J_{CH} ~ 169.9 Hz, C-1c), 99.6 (¹J_{CH} 169.9 Hz, C-1b), 99.8 (¹J_{CH} 169.9 Hz, C-1d), and 101.4 (¹J_{CH} 168.9 Hz, C-1e).

Anal. Calc. for C₁₂₂H₁₃₂O₂₆: C, 72.10; H, 6.65. Found: C, 72.09; H, 6.60.

Methyl 3-O-(3,6-di-O-α-D-mannopyranosyl-α-D-mannopyranosyl)-6-O-α-D-mannopyranosyl-α-D-mannopyranoside (3). — A mixture of **28** (309 mg, 0.15 mmol) and 10% Pd-C (200 mg) in EtOH (30 mL)-H₂O (4 mL) was stirred under H₂ for 6.5 h at 50°. The usual processing afforded 3 as an amorphous material (114.5 mg, 87.7%), $[\alpha]_D$ +98.3° (c 0.40, H₂O); R_F 0.13 in 2:1:1 1-BuOH-EtOH-H₂O; δ_H (D₂O, 60°): 4.70 (d, 1 H, J 1.7 Hz, H-1a), 4.85 (bs, 1 H, H-1b), 4.89 (bs, 1 H, H-1d), 5.03 (d, 1 H, J 1.7 Hz, H-1e), and 5.10 (d, 1 H, J 1.7 Hz, H-1e); δ_C (D₂O): 55.3 (OMe), 78.5 and 79.0 (C-3a,3c), 99.9 (¹J_{CH} 168.9 Hz, C-1b), 100.1 (¹J_{CH} 168.9 Hz, C-1d), 101.3 (¹J_{CH} 169.9 Hz, C-1a), and 102.8 (¹J_{CH} 171.9 Hz, C-1c,1e).

Anal. Calc. for $C_{31}H_{54}O_{26} \cdot 1.5 H_2O$: C, 42.81; H, 6.61. Found: C, 42.91; H, 6.63.

Methyl 6-O-[2-O-2-O-acetyl-3,4,6-tri-O-benzyl- α -D-mannopyranosyl)-3,4,6-tri-O-benzyl- α -D-mannopyranosyl]-2,4-di-O-benzyl-3-O-[3,6-di-O-(2-O-acetyl-3,4,6-tri-O-benzyl- α -D-mannopyranosyl]-2,4-di-O-benzyl- α -D-mannopyranosyl]- α -D-mannopyranoside (29). — A mixture of 25 (574 mg, 0.50 mmol) and AgSO₃CF₃ (970 mg, 3.77 mmol), dried in vacuo for 5 h at 20°, was dissolved by adding CH₂Cl₂ (6 mL) and Me₂NCONMe₂ (1.0 mL, 8.35 mmol) under argon. To this solution was added half of a solution of 7 [prepared from 8 (1.27 g, 2.5 mmol) in CH₂Cl₂ (6 mL)] at -10 to -15° with stirring, under argon. Then, the mixture was stirred for 3 h at 20°, the rest of the solution of 7 in CH₂Cl₂ was added at -10 to -15°, and the mixture was stirred for a further 2 days. The usual processing gave an oily product (2.657 g) which was chromatographed on SiO₂ (220 g) with 10:1 toluene-THF, to afford **29** (771.3 mg, 60.0%), $[\alpha]_D$ +31.0° (c 0.49); R_F 0.27 in 10:1 toluene-THF; δ_H : 3.20 (s, 3 H, OMe); δ_C : 54.4 (OMe), 98.0 (${}^{1}J_{CH}$ 170.6 Hz, C-1a), 98.2 (${}^{1}J_{CH}$ 170.6 Hz, C-1e), 99.0 (${}^{1}J_{CH}$ 173.5 Hz, C-1b,1c), and 99.5 (${}^{1}J_{CH}$ 170.6 Hz, C-1d,1f).

Anal. Calc. for C₁₅₅H₁₆₆O₃₄: C, 72.35; H, 6.50. Found: C, 71.95; H, 6.64. Methyl 2,4-di-O-benzyl-3-O-[2,4-di-O-benzyl-3,6-di-O-(3,4,6-tri-O-benzyl-α-Dmannopyranosyl)-α-D-mannopyranosyl]-6-O-[3,4,6-tri-O-benzyl-2-O-(3,4,6-tri-O-benzyl-α-D-mannopyranosyl]-α-D-mannopyranosyl]-α-D-mannopyranoside (30). — A solution of 29 (560.8 mg, 0.22 mmol) in MeOH (25 mL)-THF (10 mL)-2M NaOMe in MeOH (0.1 mL) was stirred for 16 h at 20°. The usual processing afforded an oily product (526 mg) which was chromatographed on SiO₂ (60 g) with 30:1 CH₂Cl₂-THF, to give 30 (441 mg, 82.1%), $[α]_D$ +59.6° (c 0.28); R_F 0.31 in 30:1 CH₂Cl₂-THF; δ_H : 3.17 (s, 3 H, OMe), 4.99 5.11, 5.19, and 5.24 (bs, 1 H, anomeric protons); δ_C : 55.5 (OMe), 98.0 (¹J_{CH} 164.7 Hz, C-1a), 99.1 (¹J_{CH} 169.1 Hz, C-1b,1c), 99.8 (¹J_{CH} 170.6 Hz, C-1e), 101.1 (¹J_{CH} 172.1 Hz, C-1d), and 101.3 (¹J_{CH} 172.1 Hz, C-1f). Anal. Calc. for C₁₄₉H₁₆₀O₃₁: C, 73.14; H, 6.59. Found: C, 72.45; H, 6.67.

Methyl 3-O-(3,6-di-O-α-D-mannopyranosyl-α-D-mannopyranosyl)-6-O-(2-O-α-D-mannopyranosyl-α-D-mannopyranosyl)-α-D-mannopyranoside (4). — A mixture of 30 (341 mg, 138 µmol) and 10% Pd-C (400 mg) in EtOH (30 mL)-H₂O (6 mL) was stirred under H₂ for 16 h at 20° and then for 3 h at 50°. The usual processing gave 4 as an amorphous material (136 mg, 95.8%), $[\alpha]_D$ +102.1° (c 0.28, H₂O); R_F 0.13 in 2:1:1 1-BuOH-EtOH-H₂O; δ_H (D₂O, 60°): 4.70 (d, 1 H, J 2 Hz, H-1a), 4.86 (d, 1 H, J 2 Hz, H-1e), 5.00 (d, 1 H, J 2 Hz, H-1d), 5.04 (d, 1 H, J 2 Hz, H-1f), and 5.09 (bs, 2 H, H-1b,1c); δ_C (D₂O): 55.3 (OMe), 78.6, 78.9, and 79.1 (C-3a,3c,2b), 98.2 ($^1J_{CH}$ 171.9 Hz, C-1b), 99.9 ($^1J_{CH}$ 170.9 Hz, C-1e), 101.3 ($^1J_{CH}$ 169.9 Hz, C-1a), and 102.7 ($^1J_{CH}$ 169.9 Hz, C-1c,1d,1f).

Anal. Calc. for $C_{37}H_{64}O_{31} \cdot 1.5 H_2O$: C, 43.06; H, 6.55. Found: C, 43.02; H, 6.56.

ACKNOWLEDGMENTS

We thank Dr. J. Uzawa and Mrs. T. Chijimatsu for recording and measuring the n.m.r. spectra, and Dr. H. Homma and his staff for the elemental analyses. We also thank Emeritus Scientist Prof. M. Matsui for his encouragement, and Miss A. Sone for technical assistance.

REFERENCES

- 1 T. OGAWA AND K. SASAJIMA, Tetrahedron, in press.
- 2 H. LIS, N. SHARON, AND E. KATCHALSKI, Biochim. Biophys. Acta, 83 (1964) 376-378.
- 3 H. LIS AND N. SHARON, J. Biol. Chem., 253 (1978) 3468-3476; N. SHARON AND H. LIS, Biochem. Rev., 7 (1979) 783-799.

- 4 S. ITO, K. YAMASHITA, R. G. SPIRO, AND A. KOBATA, J. Biochem. (Tokyo), 81 (1977) 1621-1631.
- 5 E. LI AND S. KORNFELD, J. Biol. Chem., 254 (1979) 1600-1605.
- 6 A. CHAPMAN AND R. KORNFELD, J. Biol. Chem., 254 (1979) 816-828.
- 7 T. OGAWA AND M. MATSUI, Carbohydr. Res., 62 (1978) C1-C4.
- 8 T. OGAWA, K. KATANO, K. SASAJIMA, AND M. MATSUI, Tetrahedron, in press; T. OGAWA, K. KATANO, AND M. MATSUI, Carbohydr. Res., 64 (1978) C3-C9.
- 9 S. HANESSIAN AND J. BANOUB, Carbohydr. Res., 53 (1977) c13-c16; ACS Symp. Ser., 39 (1976) 36-63.
- 10 K. BOCK, I. LUNDT, AND C. PEDERSEN, Tetrahedron Lett., (1973) 1037–1040; K. BOCK AND C. PEDERSEN, J. Chem. Soc., Perkin Trans. 2, (1974) 293–297; Acta Chem. Scand. Ser. B, 29 (1975) 258–264.
- L. RADICS, M. KAITAR-PEREDY, S. CORSANO, AND L. STANDOLI, *Tetrahedron Lett.*, (1975) 4287–4290; K. TORI, T. HIRATA, O. KOSHITANI, AND T. SUGA, *ibid.*, (1976) 1311–1314; K. YAMASAKI, H. KOHDA, T. KOBAYASHI, R. KASAI, AND O. TANAKA, *ibid.*, (1976) 1005–1008; K. TORI, S. SEO, Y. YOSHIMURA, M. NAKAMURA, Y. TOMITA, AND H. ISHII, *ibid.*, (1976) 4167–4170.
- 12 E. E. LEE AND J. O. WOOD, Carbohydr. Res., 75 (1979) 322-324.