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Preliminary communication

Synthesis of trans-fused perhydrofuropyrans and related a-methylene
Iactones: bicyclic ring-systems present in the ezomycins, the octosyl acids,
and certain antitumor terpenoids*®
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The ezomycins are a group of structurally related antifungal agents pro-
duced by a strain of Streptomyces* . Their chemical degradation has produced novel, bi-
cyclic anhydro-octose uronic acid nucleosides? that are closely related to the octosyl
acids®, isolated from a fermentation broth of a polyoxin-producing micro-organism® .
The structures of representative members, ezomycin. A, (ref. 2) and octosyl acid A
(ref. 3), are shown in Scheme 1**. Related compounds, such as ezomycin B, (ref.2),are
known that formally belong to the C-nucleoside category.

Clearly, the most unusual feature in these structures is the presence of a trans-
tused, bicyclic (perhydrofuropyran) ring-system that can be considered to be part of a
3,7-anhydro-octose. Tentative structures proposed for herbicidin A and B also comprise a
fused tetrahydrofuran ring as part of a tricyclic structure of as-yet-undetermined
absolute configuration®. We now describe the synthesis of a 1,4:3,7-dianhydro-octitol,
representing the frans-fused, bicyclic, carbon skeleton present in the ezomycins Ay, A,,
etc., and in the octosyl acids. In terms of functional manipulations related to the target
compounds (see Scheme 1), the D-galacto structure was considered to be the most
suitable.

Scheme 2 shows the sequence of reactions that led to the dianhydro-octitol.
The readily available orthoester derivative 1, prepared according to the procedure of
Ogawa and Matsui®, was deacetylated and benzylated (NaH, PhCH,Br, HCONMe, , 0”),
the product (2) was treated with aq. acetic acid in oxolane (THF), and the product was
acetylated, to give a2 mixture of anomeric diacetates 3 (58% overall yield). The 8 anomer
of 3 was isolated in crystalline form, m.p. 74—75° (hexane—EtOAc)3.

*Presented, in part, at the 10th International Symposium on the Chemistry of Carbohydrates,
Sydney, Australia, July 7—11, 1980.

TPost-doctoral associate.
**The conformations depicted in Schemes I—-3 represent idealized situations and are intended to
provide a certain perspective.

§Crystalline compounds gave correct microanalyses. Rotations were recorded for solutions in chloro-
form, unless stated otherwise.
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Scheme 1

Treatment of 3 in dichloromethane with a saturated solution of hydrogen
bromide in glacial acetic acid during 30 min at 0° gave the bromide 4, which was used,
as such, in a critical, stereocontrolled, C-glycosylation reaction”’. Treatment of 4 with
freshly prepared vinylmagnesium bromide in dry THF, under N, at ~78° and then for
1 h at Q°, gave, after chromatographic separation, the C-vinyl derivative 5 (85%, syrup);
[alp +7°. The 1,2-trans configuration was established by n.m.r. studies on 5 and the cor
responding, syrupy acetate. Epoxidation of the double bond in 5 with m-chloroperoxy-
benzoic acid in dichloromethane during 18 h at 25° gave epoxide 6 as the major
product (75%) as a syrup; [a]p +4.6°; M? 518 for the corresponding acetate derivative.
Treatment of 6 (117 mg, 245 umol) in dichloromethane (12 mL) with camphorsulfonic
acid (12 mg) for 18 h under reflux led to the desired, bicyclic derivative 7 (61%); [a]p
+1.67%; M- 518 for the acetate derivative. Finally, debenzylation (H,, Pd/C, MeOH) gave
the dianhydro-octitol 8 as a syrup, [a]p +4.48° (MeOH).

Concerning the stereochemistry of epoxidation of 5, it may clearly be seen
from molecular models that a hydroxyl-assisted process® could, a priori, lead to either
of two possible epoxides, particularly as the system is of the homoallylic type and the
alkenic side-chain can adopt one of two extreme orientations. The apparently exclusive
formation of 6 may be rationalized on the basis of a more-favored transition-state, com-
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pared to the alternative one®. Chemical support for this hypothesis was secured as fol-
lows. Oxidation of 7 with pyridinium chlorochromate!® for 4 h gave the corresponding
ketone (a syrup) which, on reduction with sodium borohydride, gave a single, new com-
pound, epimeric at C-2¥. The sense of chirality at C-2* is, therefore, related to that
found in the ezomycins and the octosyl acids.

*Numbering at the five-membered ring. Study of molecular models revealed a more-favored attack of
the reducing agent from the observed “g”-side.
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In another study, aimed at the synthesis of bicyclic, terpenoid-like structures
from carbohydrates!!, the C-allyl derivative 9, prepared essentially as described for 5
(81%), was oxidized (0sOg4, NalOy, aq. fers-BuOH, 3 d at 25°; quant. yield) to the
aldehyde 10, which existed almost exclusively in the aldehydo form (i.r. and n.m.r.
evidence). Treatment of 10 with 3% methanolic hydrogen chloride for 30 min at 25°
gave the corresponding dimethyl acetal (~95%); [a]p + 20.78°. Alternatively, oxidative
cleavage!? of 9 (KMnO,, NalO,, aq. acetone), followed by esterification with diazo-
methane, gave the methyl ester derivative 11 (50%), [a]p +25.86°. Treatment of 11
with a catalytic amount of TsOH (benzene, reflux, 2 h) afforded the lactone 12 (98%);
[a]p +43.65°; M- 474. Debenzylation of 12 (H., Pd/C, EtOAc) gave lactone 13, in es-
sentially quantitative yield, as a syrup; Agﬂ;“x 1775 cm™!. Introduction of the
a-methylene functionality was achieved by treatment of the enolate derived from 12
(LDA, THF, -78°) with the Eschenmoser salt!®> (Me,N"=CH,I") during 45 min at -40°
and then 30 min at 25°, followed by refluxing a solution of the (dimethylamino)methyl
intermediate in an excess of methyl iodide in 1,4-dioxane during 18 h, followed by
elimination (aq. NaHCO;, EtOAc 25°, 10 min) to give the a-methylene lactone deriva-
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tive 14 as a syrup (30% overall yield). Such functionality is present in the structures of
a large number of trans-fused, bicyclic,antitumor agents!*, and formula 14a places some
of the functional and stereochemical features into the more-familiar, terpenoid
perspective.

Finally, it should be noted that the geometric and stereoelectronic requirements
for the formation of bicyclic lactones of the type herein described differ consider-
ably from those involved in the formation of the dianhydro-octitol 7. Intramolecular
opening of epoxides by carbanionic centers'® or hydroxyl groups'® can be subject to
several factors, including collinearity in an SN2 type of attack!®-16  the degree of substi-
tution'®-17 the type of epoxide, and the reaction conditions. Thus, cyclobutane!s-*7
and oxetane'® ring-formation in preference to cyclopentane and oxolane (tetrahydro-
furan) rings, respectively, has been observed under controlled, base-catalyzed conditions.
These observations are also in agreement with the favored 4-exo-tetragonal. rather than
the -5-endo-tetragonal, mode of ring-closure processes!®. The situation, however, is differ-
ent under acid catalysis, as exemplified by the reactions of certain epoxycyclohexanols'®
and carbohydrate epoxides'® which lead to oxolane rings. The formation of 7 under
acid-catalyzed conditions is to be expected, as the highly strained, bicyclic, oxetane
structure, resulting from an alternative mode of intramolecular epoxide opening, would
undergo spontaneous ring-expansion.

A bicyclic, trans-fused structure, derived from the intramolecular cyclization of
a 3-malonyl ester in a furanose derivative, was recently reported® in an attempt to con-
struct the octosyl acid skeleton. Unfortunately, these studies were impeded by the labil-
ity of the intermediate to further modification.
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