

Journal of Fluorine Chemistry 92 (1998) 85-87

The addition of F113 and CFCl₂CF₂CFCl₂ to alkenes promoted by sodium dithionite

Fan-Hong Wu¹, Wei-Yuan Huang*

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Received 14 April 1998; accepted 14 July 1998

Abstract

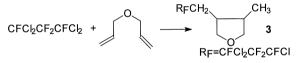
The addition of F113 and $CFCl_2CF_2CFCl_2$ to alkenes promoted by sodium dithionite occurs to give the corresponding fluoroalkylation products in moderate yields. \bigcirc 1998 Elsevier Science S.A. All rights reserved.

Keywords: F113; CFCl2CF2CFCl2; Sodium dithionite; Fluoroalkylation

1. Introduction

Polyfluoroalkylation initiated by sulfinatodehalogenation reagents, such as sodium dithionite, Rongalite, sodium bisulfite was studied in our laboratory in recent years [1,2]. Polyfluoroalkyl halides containing groups, such as CF_2I , CF_2Br , CCl_3 , could undergo the polyfluoroalkylation reaction in the presence of the sulfinato-dehalogenation reagents [3–7]. Due to the high chemical stability of F113, there have been only a few reports on its reaction [8,9]. Herein we wish to present the addition reaction of F113 and $CFCl_2CF_2CFCl_2$ with alkenes initiated by sodium dithionite.

In aqueous acetonitrile solution, F113 reacted with alkenes and 1-hexyne at $40-50^{\circ}$ C for 12 h to give the corresponding polyfluoro-alkylation products in moderate yields. For example,


 $CF_2CICFCl_2 + CH_2 = CH(CH_2)_3CH_3 \rightarrow CF_2CICFCl(CH_2)_5CH_3$

$$CF_{2}ClCFCl_{2} + CH \equiv C(CH_{2})_{3}CH_{3} \rightarrow CF_{2}ClCFClCH = CH(CH_{2})_{3}CH_{3}$$

$$2(E/Z)$$

Under similar conditions, CFCl₂CF₂CFCl₂ reacted with diallyl ether to give the corresponding addition-cyclization

product, a tetrahydrofuran derivative **3** as the major product. Further results are summarized in Table 1.

The reaction was considered to proceed through polyfluoroalkyl radical intermediate. Only the hydropolyfluoroalkylation product was formed apparently due to the high bond energy of carbon–chlorine bond. Thus

 $\begin{array}{rcl} CF_2ClCFCl_2+SO_2^{\scriptscriptstyle\bullet} & \rightarrow & CF_2ClCFCl^{\bullet}+SO_2+Cl^-\\ CF_2ClCFCl^{\bullet}+CH_2=CHR & \rightarrow & CF_2ClCFClCH_2CHR^{\bullet}\\ & \stackrel{H\,abstraction}{\rightarrow} & CF_2ClCFClCH_2CH_2R \end{array}$

2. Experimental

All boiling and melting points were uncorrected. IR spectra were recorded on IR-440 spectrometer using film or potassium bromide pellet. ¹⁹F NMR spectra were recorded on a Varian EM-360L (56.4 MHz) or FX-90Q (84.6 MHz) spectrometers in carbon tetrachloride, CDCl₃ or d₆-acetone using TFA as external standard. Chemical

^{*}Corresponding author. Tel.: +86-21-64163300; fax: +86-21-64166128; e-mail: wyhuang@pub.sioc.ac.cn

¹Present address: Department of Organic Chemistry, Institute of Fundamental Education, East China University of Science and Technology, Shanghai 200237, China.

Table 1 The adducts of F113, CFCl₂CF₂CFCl₂ with alkenes

Entry	Halide	Alkene	Adduct	Yield(%)
1	CF ₂ C1CFC1 ₂	C4H9CH=CH2	CF ₂ C1CFC1C ₆ H ₁₃ 1	56
2	CF ₂ C1CFC1 ₂	CH≡CC₄H9	$CF_2C1CFC1CH=CHC_4H_9$ 2 (E/Z)	50
3	CFC1 ₂ CF ₂ CFC1 ₂	Diallyl ether	R _F CH ₂ CH ₃	49
4	$CFC1_2CF_2CFC1_2$	C ₆ H ₁₃ CH=CH ₂	$R_F C_8 H_{17}$ 4	46
5	CF ₂ C1CFC1 ₂	\bigcirc		50
6	CFC1 ₂ CF ₂ C1	CH2=CHCH20H	CF ₂ C1CFC1 (CH ₂) ₃ OH	48
			6	
7	CFC1 ₂ CF ₂ C1	Diallyl ether	CICF ₂ CFCICH ₂ CH ₃	55

(R_F=CFC1₂CF₂CFC1)

shifts in ppm were positive for upfield shifts ($\delta_{CFCl_3} = \delta_{TFA} + 76.8$ ppm). ¹H NMR spectra were recorded on an EM-360A (60 MHz) spectrometer in carbon tetrachloride, CDCl₃ or d₆-acetone using TMS as external or internal standard, or obtained on a FX-90Q (90 MHz), Varian XL-200 (200 MHz) or Bruker AC-300 (300 MHz) spectrometers in CDCl₃ or d₆-acetone. MS spectra were obtained on a Finnigan GC-MS-4021 spectrometer and a Finnigan-8430 for high resolution mass spectra (HRMS). Elemental analysis data were obtained by the elemental analysis group of Shanghai Institute of Organic Chemistry. The column chromatography was performed by using silica gel H with petroleum ether and ethyl acetate as the eluent.

3. Typical procedure:

The mixture of F113 (3.75 g, 20 mmol), 1-hexene (0.84 g, 10 mmoL), sodium dithionite (4 g), sodium bicarbonate (2 g), acetonitrile (30 ml) and water (10 ml) was stirred at 40–45°C for 20 h. 60 ml water was added to dissolve the solid. The mixture was extracted by ether. The combined organic layer was washed with saturated aqueous sodium chloride solution, and dried over anhydrous sodium sulfate. After removal of the organic solvent, the

crude product was purified over silica gel to give the adduct 1 in yield of 56% [9].

(1): $\delta_{\rm H}$ (CCl₄): 0.90 (3H, t, CH₃), 2.30(2H, m, CH₂CFCl), 1.30–2.20 (8H, m, other hydrogen atoms) ppm. $\delta_{\rm F}$ (CCl₄): 66.8 (2F, s, CF₂Cl), 118.8 (1F, m, CFCl) ppm.

(2): $\delta_{\rm H}$ (CCl₄): 0.90 (3H, t, CH₃), 1.35 (4H, m, 2×CH₂), 2.30 (2H, m, CH₂), 5.60, 6.40 (2H, m, CH=CH)ppm. $\delta_{\rm F}$ (CCl₄): 66.8 (2F,s, CF₂Cl), 118.4, 121.2 (*E*/Z, 1F, m, CFCl) ppm [9].

(3): $\delta_{\rm H}$ (CDCl₃): 0.90 (3H, t, CH₃), 4.0 (m), 3.50 (m), 1.70–2.90 (m) ppm. $\delta_{\rm F}$ (CCl₄): 65.8 (1F, s, CFcl₂), 109.8 (2F, s, CF₂), 114.8 (1F, m, CFCl) ppm. *m*/*z* (%): 321 (2.34), 320 (1.19), 319 (8.26), 318 (2.32), 317 (11.24), 316 (M⁺, 1.79), 288 (7.82), 286(7.96),99 (6.74), 90 (16.36), 69 (100), 55 (17.99).

(4): $\delta_{\rm H}$ (CCl₄): 0.90 (3H, t, CH₃), 2.30 (2H, m, CH₂CFCl), 1.30–2.20 (12H, m, other hydrogen atoms) ppm. $\delta_{\rm F}$ (CCl₄): 66.8 (1F, s, CFCl₂), 109.8 (2F, s, CF₂), 114.8 (1F, m, CFCl) ppm. *m*/*z* (%): 311 (2.66), 330(M⁺), 287 (7.45), 211 (21.71), 141 (11.14), 111 (15.34), 97 (20.66), 85 (49.48), 71 (65.11), 69 (32.84), 57 (100), 43 (70.05). *Anal.* Calc. for C₁₁H₁₇Cl₃F₄ (MW 331.5) C 39.82 H 5.13 F 22.93. Found: C 40.00 H 5.42 F 23.10

(5): $\delta_{\rm H}$ (CCl₄): 3.50 (1H, m, CHCFCl), 1.20–2.50 (10H, m, other hydrogen atoms) ppm. $\delta_{\rm F}$ (CCl₄): 61.8 (2F, s, CF₂Cl), 116.8 (1F, m, CFCl) ppm [9].

(6): $\delta_{\rm H}$ (CCl₄): 1.90 (2H, m, CH₂), 2.30 (2H, m, CH₂CFCl), 3.55 (2H, t, CH₂OH), 3.90 (1H, s, OH) ppm. δ F (CCl₄): 65.8 (2F, s, CF₂Cl), 119.0 (1F, m, CFCl) ppm [9]. (7): $\delta_{\rm H}$ (CCl₄): 1.33 (3H, m, CH₃), 2.30–3.0 (4H, m), 3.70 (2H, m, CH₂), 4.20 (2H, m, CH₂) ppm. $\delta_{\rm F}$ (CCl₄): 66.6 (2F, s, CF₂Cl), 118.8 (1F, m, CFCl) ppm [9].

References

[1] Fan-Hong Wu, Wei-Yuan Huang, Youji Huaxue 17 (1997) 106.

- [2] Fan-Hong Wu, Bing-Nan Huang, Wei-Yuan Huang, Youji Huaxue 13 (1993) 449.
- [3] Bing-Nan Huang, Wei-Yuan Huang, Chang-Ming Hu, Acta Chim. Sinica 39 (1981) 481.
- [4] W.Y. Huang, B.N. Huang, C.M. Hu, J. Fluor. Chem. 23 (1983) 193.
- [5] Wei-Yuan Huang, Bing-Nan Huang, Jian-Long Chen, Acta Chim. Sinica 44 (1986) 45.
- [6] Wei-Yuan Huang, Bing-Nan Huang, Jian-Long Chen, Acta Chim. Sinica 43 (1985) 1167.
- [7] Fan-Hong Wu, Bing-Nan Huang, Long Lu, Wei-Yuan Huang, J. Fluor. Chem. 80 (1996) 91.
- [8] D.J. Burton, L.T. Kehoe, J. Org. Chem. 35 (1970) 1339.
- [9] C.M. Hu, F.L. Qing, Tetrahedron Lett. 31 (1990) 1307.