SYNTHESIS OF A BRANCHED D-MANNOPENTAOSIDE AND A BRANCHED D-MANNOHEXAOSIDE: MODELS OF THE INNER CORE OF CELL-WALL GLYCOPROTEINS OF Saccharomyces cerevisiae* TOMOYA OGAWA** AND KIKUO SASAJIMA*** The Institute of Physical and Chemical Research, Wako-shi, Saitama, 351 (Japan) (Received December 26th, 1980; accepted for publication, February 12th, 1981) #### **ABSTRACT** Synthetic routes are discussed to the branched D-mannopentaoside methyl $6 \cdot O \cdot (2,6 \cdot \text{di} \cdot O - \alpha - \text{D-mannopyranosyl} \text{D-mannopyranosy$ ## INTRODUCTION In 1974, Nakajima and Ballou² proposed that 1 is the inner-core structure of the D-mannan chain of Saccharomyces cerevisiae cell-wall glycoprotein, from the results of use of mnn 2 mutant that makes, predominantly, an unbranched D-mannan outer chain attached to the inner core 1. ^{*}Synthetic Studies on Cell-surface Glycans, Part 7. For Part 6, see ref. 1. ^{**}To whom enquiries should be addressed. ^{***}Present address: Sumitomo Chemical Co., Ltd., Fine Chemicals Division, Osaka Works, 3-1-98, Kasugade, Naka, Konohana-ku, Osaka, Japan. The proposed structure 1 may be regarded as being constructed from two blocks, A and B (indicated by the dotted lines in 1). As the first step in experiments directed towards the reconstruction of such glycans as 1, we chose for our synthetic targets two D-manno-oligosaccharides, 2 and 3, which respectively correspond to block A and B, and we have now developed an efficient, synthetic sequence for both molecules. The D-manno-oligosaccharides 2 and 3 may be retrosynthesized into three monosaccharide synthons already described, namely, one glycosyl acceptor^{3,9} 4 and two glycosyl donors 5 (ref. 1: prepared⁴ from 8) and 6 (prepared⁵ from 7). $$\alpha$$ Man 1 α #### RESULTS AND DISCUSSION # Synthesis of the key intermediates 10 and 14 The partially benzylated D-mannobioside 10 was synthesized via selective glycosylation of the primary OH group of diol 4 with 1.25 molar equivalents of the glycosyl donor 5 according to the Hanessian-Banoub procedure⁶, which led to the isolation of the protected D-mannobioside 9 in 40% yield. The ¹H-n.m.r. spectrum of 9 showed two singlets for two acetyl groups, at δ 1.98 and 2.13, and a deshielded triplet for H-2b at δ 5.44 (J 2 Hz). In the ¹³C-n.m.r. spectrum were observed signals with ¹J_{CH} ~170 Hz, for two anomeric carbon atoms (C-1a and C-1b) having the α -D configuration, at δ 97.6 and 97.8, in agreement with the empirical rule of Bock and Pedersen⁷. Zemplén deacetylation of 9 gave a 92.3% yield of 10, which is suitable for further glycosylation. Catalytic hydrogenolysis of 10 over 10% Pd-C in aq. EtOH afforded an amorphous, free D-mannobioside 11, which was identical with an authentic sample⁸, thus establishing the $(1\rightarrow6)$ nature of the interglycosidic linkage in 10. Another key intermediate, namely, 14, could readily be derived from the protected D-mannobioside 9. Glycosylation⁶ of 9 with 2 molar equivalents of glycosyl donor 6 led to the isolation of the protected D-mannotrioside 13 in 82.2% yield. The structure of 13 was confirmed as follows. The ¹H-n.m.r. spectrum showed three singlets, for three acetyl groups, at δ 1.97, 2.06, and 2.13, and the ¹³C-n.m.r. spectrum contained two signals, with ¹ $J_{CH} \sim 170$ Hz, for three anomeric carbon atoms having the α -D configuration, at δ 97.8 and 98.0 for C-la and C-lb, and at δ 99.5 for C-lc. Zemplén deacetylation of 13 gave rise to the partially benzylated D-mannotrioside 14 in 87.2% yield; its ¹³C-n.m.r. spectrum contained three signals, with ¹ $J_{CH} \sim 170$ Hz, at δ 98.5 (C-la), 99.6 (C-lb), and 101.5 (C-lc). The structure of 14 was further confirmed by its conversion into free D-mannotrioside 15, which was identical with an authentic sample 9. The two key intermediates, 10 and 14, having been prepared unambiguously, further glycosylation toward the target molecules 2 and 3 was next examined. $$R^{1}O$$ $R^{2}O$ R Synthesis of the branched D-mannopentaoside 2 and D-mannohexaoside 3 Glycosylation⁶ of triol 10 with 5.8 molar equivalents of glycosyl donor 6 gave rise to the protected mannopentaoside 16 in 74.8% yield. The structure of 16 was confirmed by the 1 H- and 13 C-n.m.r. data, which showed three singlets, for three acetyl groups, at δ 2.07, 2.09, and 2.14, and four signals, with $^{1}J_{CH} \sim 170$ Hz, for five anomeric carbon atoms having the α -D configuration, at δ 97.2 (C-1d), 97.9 (C-1a), $$R^{2}O$$ $R^{2}O$ R^{2 98.8 (C-1b), and 99.4 (C-1c and C-1e). Zemplén deacetylation of 16 to 17, and catalytic hydrogenolysis of 17, led to isolation of the free D-mannopentaoside 2. The structure of 2 was deduced from the synthetic sequence that used the regiospecifically benzylated D-mannobioside 10 as the key intermediate, and was confirmed by the 1 H- and 13 C-n.m.r. data. The 1 H-n.m.r. spectrum contained four doublets, with J 2 Hz, for five anomeric protons, at δ 4.70 (H-1a), 4.89 (H-1d), 5.01 (H-1e), and 5.08 (H-1b and H-1c), and the 13 C-n.m.r. spectrum showed four signals, with 1 J_{CH} \sim 170 Hz, for five anomeric carbon atoms having the α -D configuration, at δ 98.2 (C-1b), 99.7 (C-1d), 101.3 (C-1a), and 102.7 (C-1c and C-1e), and two deshielded signals, due to the glycosidation shift 10 , at δ 65.9 (for C-6a and C-6b) and δ 79.0 (for C-2b and C-3a), confirming both the stereochemistry of the glycosylation and the regiochemistry of the chain branching. The key intermediate 14 could be transformed into the target D-mannan 3 in a similar way. Thus, glycosylation of triol 14 with 5.6 molar equivalents of glycosyl donor 6 afforded an 85.9% yield of protected mannohexaoside 18, the 13 C-n.m.r. spectrum of which contained six signals, with $^{1}J_{CH} \sim 170$ Hz, for six anomeric carbon atoms having the α -D configuration, at δ 97.5 (C-1d), 97.9 (C-1a), 99.0 (C-1b), 99.4 (C-1f), 99.6 (C-1e), and 100.9 (C-1c). Zemplén deacetylation of 18 to 19, and catalytic hydrogenolysis of 19, gave rise to the target molecule, the free D-mannohexaoside 3, as an amorphous powder. The structure of 3 was deduced from the synthetic sequence, and was confirmed by the following 1 H- and 13 C-n.m.r. data. The 1 H-n.m.r. spectrum showed six doublets, with J 2 Hz, for six anomeric protons, $$R^{2}O = R^{2}O + R$$ at δ 4.70 (H-1a), 4.90 (H-1d), 5.01 (H-1f), 5.03 (H-1e), 5.08 (H-1b), and 5.28 (H-1c). The 13 C-n.m.r. data revealed five signals, with $^{1}J_{CH} \sim 170$ Hz, for six anomeric carbon atoms having the α -D configuration, at δ 98.2 (C-1b), 99.7 (C-1d), 101.2 (C-1c), 101.3 (C-1a), and 102.6 (C-1e and C-1f), and four deshielded signals, due to the glycosidation shift¹⁰, at δ 65.6 and 65.9 (for C-6a and C-6b), and δ 78.6 (2 C) and 79.1 (1 C) (for C-2b, C-2c, and C-3a). In conclusion, the branched D-mannopentaoside 2 and D-mannohexaoside 3 were synthesized by unambiguous routes employing the partially benzylated D-mannobioside 10 and D-mannotrioside 14 as key intermediates. It may be noted that the partially benzylated D-mannopentaoside 17 and D-mannohexaoside 19 may constitute important glycosyl acceptors for the synthesis of higher D-manno-oligo-saccharide chains. ## **EXPERIMENTAL** General. — Melting points were determined with a Yanagimoto micro meltingpoint apparatus and are uncorrected. Optical rotations were determined with a Perkin-Elmer Model 141 polarimeter, for solutions in CHCl₃ at 25°, unless otherwise noted. Column chromatography was performed on columns of Silica Gel Merck (70–230 mesh; E. Merck, Darmstadt, Germany). Thin-layer chromatography (t.l.c.) was performed on precoated plates (layer thickness, 0.25 mm) of Silica Gel 60 F_{254} (E. Merck, Darmstadt, Germany). I.r. spectra were recorded with an EPI-G2 Hitachi Spectrophotometer. using KBr pellets for the crystalline samples, and neat films for the liquid samples. ¹H-N.m.r. spectra were recorded with a Varian HA-100 n.m.r. spectrometer, using tetramethylsilane as the internal standard. ¹³C-N.m.r. spectra were recorded with a JNM-FX 100FT n.m.r. spectrometer operated at 25.05 MHz. The values of δ_C and δ_H are expressed in p.p.m. downwards from the internal standard, for solutions in CDCl₃, unless otherwise noted. Methyl 2,4-di-O-benzyl-6-O-(2,6-di-O-acetyl-3,4-di-O-benzyl-α-D-mannopyranosyl)-α-D-mannopyranoside (9). — A mixture of 4 (1.873 g, 5.0 mmol) and AgSO₃CF₃ (2.4 g, 9.3 mmol) was dried in vacuo for 3 h at 20°. To this mixture were added Me₂NCONMe₂ (2.6 mL, 21.7 mmol), CH₂Cl₂ (8 mL), and half of a solution of 5 [3.09 g: prepared⁴ from 8 (3.05 g, 6.25 mmol)] in CH₂Cl₂ (7 mL) at -10 to -15° with stirring, under argon. After the mixture had been stirred for 3 h at 20°, the rest of the solution of 5 in CH₂Cl₂ was added, and the mixture was stirred for 4 days at 20° under argon, diluted with CH₂Cl₂ (50 mL), and filtered through Celite. The filtrate was washed with aq. NaHCO₃, dried (MgSO₄), and evaporated in vacuo, to afford an oily residue (6.27 g) which was chromatographed on SiO₂ (500 g) with 40:1 CH₂Cl₂-Me₂CO, to give 9 (1.628 g, 39.8%)*, [α]_D +49.0° (c 0.30); R_F 0.41 in 20:1 CH₂Cl₂-Me₂CO; δ_H : 1.98 (s, 3 H, OAc), 2.13 (s, 3 H, OAc), 3.27 (s, 3 H, OMe), 5.44 (bt, 1 H, J 2 Hz, H-2b); δ_C : 20.8 (Ac), 21.0 (Ac), 54.7 (OMe), 66.0 (C-6a), 71.3 (O-3-CH₂Ph), 72.9 (O-2-CH₂Ph), 74.6 and 75.1 (2 O-4-CH₂Ph), and 97.6 and 97.8 ($^{1}J_{CH}$ 170.6 Hz, C-1a, 1b). Anal. Calc. for C₄₅H₅₂O₁₃: C, 67.48; H, 6.55. Found: C, 66.25; H, 6.41. Methyl 2,4-di-O-benzyl-6-O-(3,4-di-O-benzyl-α-D-mannopyranosyl)-α-D-mannopyranoside (10). — A solution of 9 (694 mg, 0.87 mmol) in MeOH (20 mL) and 2M NaOMe-MeOH (0.2 mL) was stirred for 16 h at 20°, and then made neutral with Amberlist 15 (H⁺) resin. The resin was filtered off through Celite, and the filtrate was evaporated in vacuo, to give an amorphous residue (627 mg) which was chromatographed on SiO₂ (50 mg) with 15:1 CH₂Cl₂-Me₂CO, to give 10 (619.5 mg, 92.3%), $[\alpha]_D$ +58.8° (c 0.40); R_F 0.11 in 20:1 CH₂Cl₂-Me₂CO; δ_H : 3.26 (s, 3 H, OMe), 4.92 (d, 1 H, J 2 Hz, H-1a), and 5.00 (d, 1 H, J 2 Hz, H-1b); δ_C : 54.8 (OMe), 66.2 (C-6a), 71.6 (O-3-CH₂Ph), 72.9 (O-2-CH₂Ph), 74.6 and 75.0 (2 O-4-CH₂Ph), 97.7 (${}^1J_{CH}$ 166.2 Hz, C-1a), and 99.4 (${}^1J_{CH}$ 169.1 Hz, C-1b). Anal. Calc. for C₄₁H₄₈O₁₁ · H₂O: C, 67.01; H, 6.96. Found: C, 67.05; H, 6.65. Methyl 6-O-α-D-mannopyranosyl-α-D-mannopyranoside (11). — A mixture of 10 (56 mg, 76 μmol) and 10% Pd-C (50 mg) in EtOH (10 mL) and H₂O (1 mL) was stirred under H₂ for 4 h at 45-50°, filtered through Celite, and evaporated in ^{*}An appreciable amount of product 9 seemed to be adsorbed on the silica-gel column in this particular case, for as-yet-unknown reasons. vacuo, to afford 11 (26.9 mg, 96.2%) as an amorphous, hygroscopic powder whose ¹H- and ¹³C-n.m.r. data were identical with those of an authentic sample⁸. Methyl 3-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-2,4-di-O-benzyl-6-O-(2,6-di-O-acetyl-3,4-di-O-benzyl-α-D-mannopyranosyl)-α-D-mannopyranoside (13). — To a mixture of 9 (800 mg, 0.98 mmol) and AgSO₃CF₃ (790 mg, 3.07 mmol), dried in vacuo for 3 h, were added CH₂Cl₂ (5 mL), Me₂NCONMe₂ (0.85 mL, 7.1 mmol), and half of a solution of 6 [1.07 g; prepared⁵ from 7 (1.02 g, 2.0 mmol)] in CH₂Cl₂ (5 mL) at -10 to -15° with stirring, under argon. After stirring for 3.5 h at 20°, the rest of the solution of 6 in CH₂Cl₂ was added at -10 to -15°, and the mixture was stirred for 16 h at 20°. The usual processing gave an oily residue (2.34 g) which was chromatographed on SiO₂ (200 g) with 3:1 toluene-EtOAc, to afford 13 (1.014 g, 82.2%), [α]_D +43.2° (c 0.53); R_F 0.34 in 3:1 toluene-EtOAc; δ_H : 1.97, 2.06, and 2.13 (3 s, 9 H, 3 Ac), 3.21 (OMe), 4.81, 4.91, and 5.17 (3 bs, 3 H, 3 H-1), 5.46 (bt, 2 H, $J \sim$ 2 Hz, H-2b, 2c): δ_C : 20.8 and 21.0 (2 OAc), 54.8 (OMe), 63.3 (C-6b), 66.5 (C-6a), 69.2 (C-6c), 71.3 and 71.8 (2 O-3-CH₂Ph), 72.3 (O-2-CH₂Ph), 73.4 (O-6-CH₂Ph), 75.0 (3 O-4-CH₂Ph), 77.3 (C-3a), 97.8 and 98.0 ($^1J_{CH}$ 172 Hz, C-1a, 1b), and 99.5 ($^1J_{CH}$ 172.0 Hz, C-1c). Anal. Calc. for $C_{74}H_{82}O_{19} \cdot H_2O$: C, 68.71; H, 6.54. Found: C, 68.64; H, 6.52. Methyl 2,4-di-O-benzyl-6-O-(3,4-di-O-benzyl-α-D-mannopyranosyl)-3-O-(3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-α-D-mannopyranoside (14). — A solution of 13 (885.5 mg, 685 μmol) in MeOH (25 mL)-THF (10 mL) and 2M NaOMe-MeOH (0.3 mL) was stirred for 16 h at 20°. The usual processing gave a residue (763 mg) which was chromatographed on SiO₂ (75 g) with 10:1 CH₂Cl₂-Me₂CO, to afford 14 (702 mg, 87.2%), $[\alpha]_D$ +45.2° (c 0.29); R_F 0.16 in 10:1 CH₂Cl₂-Me₂CO: δ_H : 3.23 (s, 3 H, OMe), 5.03 (bs, 1 H, H-1b), and 5.22 (bs, 1 H, H-1c); δ_C : 54.8 (OMe), 61.8 (C-6b), 66.1 (C-6a), 69.3 (C-6c), 71.8 and 72.0 (2 O-3-CH₂Ph), 72.3 (O-2-CH₂Ph), 73.5 (O-6-CH₂Ph), 74.9 (3 O-4-CH₂Ph), 77.6 (C-3a), 98.5 ($^1J_{CH}$ 170.6 Hz, C-1b), and 101.5 ($^1J_{CH}$ 172.1 Hz, C-1c). Anal. Calc. for $C_{68}H_{76}O_{16} \cdot 1.5 H_2O$: C, 69.43; H, 6.77. Found: C, 69.31; H, 6.57. Methyl 3,6-di-O- α -D-mannopyranosyl- α -D-mannopyranoside (15). — A mixture of 14 (54 mg, 46 μ mol) and 10% Pd-C (40 mg) in EtOH (10 mL) and H₂O (1 mL) was stirred under H₂ for 4.5 h at 50°. The usual processing afforded amorphous, powdery 15 (24 mg, quantitative), $[\alpha]_D$ +83.9° (c 0.18, H₂O); R_F 0.37 in 2:1:1 1-BuOH-EtOH-H₂O. The ¹H-n.m.r. data (in D₂O at 60°) were identical with those of an authentic sample⁹. Methyl 3-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-2,4-di-O-benzyl-6-O-[2,6-di-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-3,4-di-O-benzyl-α-D-mannopyranosyl]-α-D-mannopyranoside (16). — Triol 10 was co-evaporated several times with dry CH_2Cl_2 , and dried in vacuo for 16 h. A mixture of 10 (490 mg, 0.68 mmol) and $AgSO_3CF_3$ (1.52 g, 5.9 mmol) was dried in vacuo for 4 h at 20°. To this mixture were added CH_2Cl_2 (5 mL), $Me_2NCONMe_2$ (1.0 mL, 8.3 mmol), and half of a solution of 6 [2.096 g, prepared from 7 (2.00 g, 3.95 mmol)] in CH_2Cl_2 (6 mL) at -10 to -15° with stirring, under argon. After the mixture had been stirred for 4 h at 20°, the rest of the solution of 6 in CH₂Cl₂ was added, and the mixture was stirred for 1 day. The usual processing gave an oily product (3.07 8g) which was chromatographed on SiO₂ (250 g) with 11:1 toluene–THF, to give a fraction (1.7 g) containing 16 as the major product. Re-chromatography of this fraction on SiO₂ (300 g) with 19:1 toluene–THF gave 16 (1.095 g, 74.8%), $[\alpha]_D$ +40.3° (c 0.35); R_F 0.37 in 10:1 toluene–THF; δ_H : 2.07, 2.09, and 2.14 (3 s, 9 H, 3 OAc), and 3.18 (s, 3 H, OMe); δ_C : 21.0 (3 OAc), 54.6 (OMe), 97.2 ($^1J_{CH}$ 172.1 Hz, C-1d), 97.9 ($^1J_{CH}$ 167.7 Hz, C-1a), 98.8 ($^1J_{CH}$ 172.1 Hz, C-1b), and 99.4 ($^1J_{CH}$ 172.1 Hz, C-1c, 1e). Anal. Calc. for $C_{128}H_{138}O_{29}$: C, 71.82; H, 6.50. Found: C, 71.76; H, 6.51. Methyl 2,4-di-O-benzyl-6-O[3,4-di-O-benzyl-2,6-di-O-(3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-α-D-mannopyranosyl]-3-O-(3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-α-D-mannopyranosyl]-3-O-(3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-α-D-mannopyranoside (17). — A solution of 16 (972 mg, 0.45 mmol) in MeOH (25 mL)— THF (10 mL) and 2M NaOMe-MeOH (0.2 mL) was stirred for 16 h at 20°. The usual processing gave crude 17 (945 mg) containing traces of impurities. Chromatography on SiO₂ (90 g) with 30:1 CH₂Cl₂-THF afforded pure 17 (715.5 mg, 78.3%), $[\alpha]_D$ +60.0° (c 0.13); R_F 0.21 in 30:1 CH₂Cl₂-THF; δ_H : 3.17 (s, 3 H, OMe), 5.18 (bs, 1 H, H-1), and 5.04 (bs, 2 H, 2 H-1); δ_C : 54.6 (OMe), 98.2 ($^1J_{CH}$ 166.2 Hz, C-1a), 98.8 ($^1J_{CH}$ 172.1 Hz, C-1b), 99.6 ($^1J_{CH}$ 172.1 Hz, C-1d), and 101.3 ($^1J_{CH}$ 169.1 Hz, C-1c, 1e). Anal. Calc. for C₁₂₂H₁₃₂O₂₆: C, 72.74; H, 6.61. Found: C, 72.70; H, 6.75. Methyl 6-O-(2,6-di-O-α-D-mannopyranosyl-α-D-mannopyranosyl)-3-O-α-D-mannopyranosyl-α-D-mannopyranosyl-α-D-mannopyranosyl-α-D-mannopyranoside (2). — A mixture of 17 (364.5 mg, 0.18 mmol) and 10% Pd–C (200 mg) in EtOH (30 mL) and H₂O (6 mL) was stirred under H₂ for 8 h at 50°. The usual processing gave 2 (152 mg, 98.1%) as an amorphous powder, $[\alpha]_D + 91.7^\circ$ (c 0.42, H₂O); R_F 0.18 in 2:1:1 l-BuOH–EtOH–H₂O; δ_H (D₂O at 60°): 3.40 (s, 3 H, OMe), 4.70 (d, 1 H, J 2 Hz, H-1a), 4.89 (d, 1 H, J 2 Hz, H-1d), 5.01 (d, 1 H, J 2 Hz, H-1e), and 5.08 (d, 2 H, J 2 Hz, H-1b, 1c); δ_C (D₂O): 55.2 (OMe), 65.4 and 65.9 (C-6a, 6b), 79.0 (C-2b, 3a), 98.2 ($^1J_{CH}$ 171.9 Hz, C-1b), 99.7 ($^1J_{CH}$ 171.9 Hz, C-1d), 101.3 ($^1J_{CH}$ 169.9 Hz, C-1a), and 102.7 ($^1J_{CH}$ 171.9 Hz, C-1c, 1e). Anal. Calc. for C₃₁H₅₄O₂₆ · H₂O: C, 43.25; H, 6.56. Found: C, 43.27; H, 6.70. Methyl 3-O-[2-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-3,4,6-tri-O-benzyl-α-D-mannopyranosyl]-2,4-di-O-benzyl-6-O-[2,6-di-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl]-3,4-di-O-benzyl-α-D-mannopyranosyl]-α-D-mannopyranosyl]-α-D-mannopyranosyl]-α-D-mannopyranoside (18). — Triol 14 was coevaporated several times with CH₂Cl₂, and dried in vacuo for 16 h at 20°. A mixture of this dried 14 (590 mg, 0.5 mmol) and AgSO₃CF₃ (1.1 g, 4.3 mmol) was dried in vacuo for 3 h at 20°. To this mixture were added CH₂Cl₂ (5 mL), Me₂NCONMe₂ (0.65 mL, 5.4 mmol), and half of a solution of 6 [1.55 g, prepared from 7 (1.43 g, 2.8 mmol)] in CH₂Cl₂ (5 mL) at -10 to -15° with stirring, under argon. After stirring the mixture for 18 h at 20°, the remaining solution of 6 in CH₂Cl₂ was added at -10 to -15°, and the mixture was stirred for 19 h at 20° under argon. The usual processing gave an oily product (2.388 g) which was chromatographed on SiO₂ (200 g) with 19:1 toluene–THF, to give **18** (1.110 g, 85.9%), [α]_D +41.6° (c 0.56); R_F 0.38 in 10:1 toluene–THF; δ_H : 2.03 (s, 3 H, OAc), 2.09 (s, 6 H, 2 OAc), and 3.14 (s, 3 H, OMe); δ_C : 21.1 (3 OAc, 54.7 (OMe), 97.5 ($^1J_{CH}$ 172.1 Hz, C-1d), 97.9 ($^1J_{CH}$ 172.1 Hz, C-1a), 99.0 ($^1J_{CH}$ ~170 Hz, C-1b), 99.4 ($^1J_{CH}$ ~170 Hz, C-1f), 99.6 ($^1J_{CH}$ ~170 Hz, C-1e), and 100.9 ($^1J_{CH}$ 173.5 Hz, C-1c). Anal. Calc. for C₁₅₅H₁₆₆O₃₄: C, 72.35; H, 6.50. Found: C, 71.97; H, 6.55. Methyl 2,4-di-O-benzyl-6-O-[3,4-di-O-benzyl-2,6-di-O-(3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-α-D-mannopyranosyl]-3-O-[3,4,6-tri-O-benzyl-2-O-(3,4,6-tri-O-benzyl-α-D-mannopyranosyl]-α-D-mannopyranosyl]-α-D-mannopyranoside (19). — A solution of 18 (957 mg, 0.37 mmol) in MeOH (45 mL)-THF (15 mL) and 2M NaOMe–MeOH (0.2 mL) was stirred for 16 h at 20°. The usual processing, and chromatography on SiO₂ (80 g) with 20:1 CH₂Cl₂–Me₂CO afforded 19 (695 mg, 75.8%), [α]_D +56.7° (c 0.275); R_F 0.24 in 20:1 CH₂Cl₂–Me₂CO: δ_H : 3.16 (s, 3 H, OMe), 5.04 (4 H-1), and 5.24 (H-1); δ_C : 54.5 (OMe), 97.7 ($^1J_{CH}$ 167.0 Hz, C-1a), 98.5 ($^1J_{CH}$ 170.9 Hz, C-1b), 99.4 ($^1J_{CH}$ 170.9 Hz, C-1d), 100.8 ($^1J_{CH}$ 171.9 Hz, C-1c, 1f), and 101.2 ($^1J_{CH}$ 168.9 Hz, C-1e). Anal. Calc. for $C_{149}H_{160}O_{31} \cdot H_2O$: C, 72.60; H, 6.63. Found: C. 72.63; H, 6.59. Methyl 6-O-(2,6-di-O-mannopyranosyl-α-D-mannopyranosyl)-3-O-(2-O-α-D-mannopyranosyl-α-D-mannopyranosyl)-α-D-mannopyranosyl)-α-D-mannopyranosyl)-α-D-mannopyranoside (3). — A mixture of 19 (300 mg, 0.12 mmol) and 10% Pd–C (200 mg) in EtOH (30 mL) and H₂O (4 mL) was stirred under H₂ for 7.5 h at 50°. The usual processing afforded 3 (130.7 mg, quantitative) as an amorphous material, $[\alpha]_D$ +79.4° (c 0.53, H₂O); R_F 0.14 in 2:1:1 l-BuOH–EtOH–H₂O; δ_H (D₂O, 60°): 3.38 (s. 3 H, OMe), 4.70 (d, 1 H, J 2 Hz, H-1a), 4.90 (d, 1 H, J 2 Hz, H-1d), 5.01 (d, 1 H, J 2 Hz, H-1f), 5.03 (d, 1 H, J 2 Hz, H-1e), 5.08 (d, 1 H, J 2 Hz, H-1b), and 5.28 (d, 1 H, J 2 Hz, H-1c): δ_C (D₂O): 55.2 (OMe), 65.6 and 65.9 (C-6a, 6b), 78.6 and 79.1 (2:1, C-2b, 2c, 3a), 98.2 ($^1J_{CH}$ 171.9 Hz, C-1b), 99.7 ($^1J_{CH}$ 170.9 Hz, C-1d), 101.2 ($^1J_{CH}$ 172.9 Hz, C-1c), 101.3 ($^1J_{CH}$ 172.9 Hz, C-1a), and 102.6 ($^1J_{CH}$ 170.9 Hz, C-1e, 1f). Anal. Calc. for C₃₇H₆₄O₃₁ · 3 H₂O: C, 41.96; H, 6.66. Found: C, 42.02: H, 6.38. ### **ACKNOWLEDGMENTS** We thank Dr. J. Uzawa and Mrs. T. Chijimatsu for recording and measuring the n.m.r. spectra, and Dr. H. Homma and his staff for the elemental analyses. We also thank Emeritus Scientist Prof. M. Matsui for his encouragement, and Miss A. Sone for technical assistance. ## REFERENCES - 1 T. OGAWA AND K. SASAJIMA, Carbohydr. Res., 93 (1981) 67-81. - 2 T. NAKAJIMA AND C. E. BALLOU, J. Biol. Chem., 249 (1974) 7685-7694. - 3 T. OGAWA AND M. MATSUI, Carbohydr. Res., 62 (1978) CI-C4. - 4 M. M. PONPIPOM, Carbohydr. Res., 59 (1977) 311-317. - 5 T. OGAWA, K. KATANO, AND M. MATSUI, Carbohydr. Res., 64 (1978) c3-c9. - 6 S. Hanessian and J. Banoub, Carbohydr. Res., 53 (1977) c13-c16; ACS Symp. Ser., 39 (1976) 36-63. - 7 K. Bock, I. Lundt, and C. Pedersen, Tetrahedron Lett., (1973) 1037-1040; K. Bock and C. Pedersen, J. Chem. Soc., Perkin Trans. 2, (1974) 293-297; Acta Chem. Scand. Ser. B, 29 (1975) 258-264. - 8 T. OGAWA AND K. SASAJIMA, Tetrahedron, in press. - 9 T. OGAWA, K. KATANO, K. SASAJIMA, AND M. MATSUI, Tetrahedron, in press. - L. Radics, M. Kajtar-Peredy, S. Corsano, and L. Standoli, *Tetrahedron Lett.*, (1975) 4287–4290; K. Tori, T. Hirata, O. Koshitani, and T. Suga, *ibid.*, (1976) 1311–1314; K. Yamasaki, H. Kohda, T. Kobayashi, R. Kasai, and O. Tanaka, *ibid.*, (1976) 1005–1008; K. Tori, S. Seo, Y. Yoshimura, M. Nakamura, Y. Tomita, and H. Ishii, *ibid.*, (1976) 4167–4170.