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Synopsis. The conjugate reduction of a,B-unsaturated
ketones has been effected with amphiphilic reaction system
consisting of methylaluminum bis(2,6-di-¢-butyl-4-alkyl-
phenoxide) and certain complex aluminum hydride reagent.

Conjugate reduction of e,B-unsaturated carbonyl
compounds is an important synthetic operation and a
variety of promising approaches have been developed
for this purpose. Those include (1) catalytic
hydrogenation of various noble metals;? (2) electro-
chemical reductions including dissolving metal reduc-

Table 1.

tions;® (3) biochemical reductions using microbioor-
ganisms;? (4) reduction with several transition-metal
hydride reagents including those produced in situ
from transition-metal compounds and conventional
reducing agents;” and (5) reduction with certain alu-
minum hydride and borohydride type reagents such as
L-Selectride.® Here we wish to disclose a conceptually
new approach to this transformation based on the
amphiphilic reduction, i.e. nucleophilic reduction of
electrophilically activated substrate by combining use
of exceptionally bulky methylaluminum bis(2,6-di-¢-

Conjugate Reduction of a,B8-Unsaturated Ketones?

1,4-Reduction 1,2-Reduction

b)
Entry Substrate Reagent % yield® % yieldo

[o]

1 \@ A 68 0
o

2 7@ A 76 0
[o]

; @ R 0 s

4 8 A 93 2

5 A9d 6 87

6 A 71 15

7 I AD 52 11
[o]

8 /@\ A 45 49
PhMe,Si0 O

9 %\é A 83 0

10  (E)-PhCH=CHC(=0O)CH, A 0 99

11 (E)-PhCH=CHC(=O)Ph A 60 28

12 B 57 12

13 C 51 43

14 D 2 97

15 E 37 61

16 (E)-PhCH=CHC(=0O)(0-Tolyl) A 76 11

17 (E)-PhCH=CHC(=O)(Mesityl) A 84 0

a) Unless otherwise noted, reduction was carried out at —78 °C by adding complex aluminum
hydride reagent (2 equiv) in ether to the carbonyl compound (1 equiv)-MAD (2 equiv) com-
plex in toluene. b) Reagent A: MAD/Li(n-Bu)(i-Bu),AlH; B: MAD/Li(¢-Bu)(:-Bu),AlH; C:
MAD/Li(Me)(i-Bu),AlH; D: MAD/LiAlH,; E: MAT/Li(n-Bu)(i-Bu);AIH. c) Isolated yield.
d) Use of a toluene solution of Li(n-Bu)(i-Bu);AlH. e) Use of a THF solution of Li(n-Bu)(:-
Bu),AlH. f) Each 1 equiv of MAD and Li(n-Bu)(i-Bu),AlH was utilized.
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Scheme 1.

butyl-4-alkylphenoxide) (as Lewis acid) and certain
complex aluminum hydride reagent (as nucleophile)
as illustrated in Scheme 1.7

Reaction of carvone with lithium butyl(diisobutyl)-
aluminum hydride (Li(n-Bu)(:-Bu),AlH) was reported
to give 1,2-reduction product solely.®) However, initial
complexation of carvone with methylaluminum
bis(2,6-di-¢-butyl-4-methylphenoxide) (abbreviated to
MAD) in toluene and subsequent treatment with Li(n-
Bu)(i-Bu);AlH in ether at —78 °C resulted in total re-
versal of selectivity, producing 1,4-reduction product
almost exclusively in 93% yield. The initial hydride
transfer from Li(n-Bu)(i-Bu),AlH to MAD followed by
reduction of the resulting bulky hydride with the
enone seems to be unlikely, since treatment of carvone
with a pre-mixture of MAD and Li(n-Bu)(i-Bu),AlH at
—78°C gave result (88% of 1,2 adduct and 8% of 1,4
adduct) close to that in the sole addition of Li(n-Bu)(:-
Bu),AlH. Some other examples are listed in Table 1,
which revealed the following characteristic features.
The a,B-unsaturated ketone possessing the sterically
less demanding carbonyl moiety, even when combined
with MAD, is readily susceptible toward the 1,2-
hydride attack (Entries 3 and 10). The similar ten-
dency was observed in the conjugate addition of RLi to
the enone in the presence of MAD,™ although the
present conjugate reduction exhibited better 1,4-
selectivity. Among various nucleophilic aluminum
hydride reagents examined, Li(n-Bu)(:-Bu);AIH would
be most suitable in view of selectivity (Entries 11—14)
and the ready availability.¥ The choice of solvents
profoundly affects the selectivity. For example, in the
MAD-mediated reduction of carvone, ether as solvent
was found to be satisfactory, but use of toluene resulted
in the predominant 1,2-reduction (Entry 5). Methyl-
aluminum bis(2,4,6-tri-t-butylphenoxide) (MAT) low-
ered 1,4 selectivity (Entry 15).

Experimental

The IR spectra were determined on a Hitachi 260-10 spec-
trometer. The 'TH NMR spectra were recorded on a JNM-
PMX 60 spectrometer, using TMS (tetramethylsilane) as an
internal standard. Splitting patterns are indicated as s, sin-
glet; d, doublet; m, multiplet; br, broad. The microanalyses
were performed at the Institute of Applied Organic Chemis-
try, Faculty of Engineering, Nagoya University. Analytical
gas-liquid phase chromatography (GLC) was performed on
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Gasukuro Kogyo Model 370 instruments with a flame-
ionization detector and a capillary column of PEG-HT
(0.25X25,000 mm) using nitrogen as carrier gas. Ether and
tetrahydrofuran (THF) were distilled from benzophenone
ketyl. Toluene was dried over sodium metal. Dichloro-
methane (CH,Cl,) was stored over 4-A Molecular Sieves. All
experiments were carried out under an argon atmosphere.
Purification of the product was carried out by column chro-
matography on silica gel Fuji-Davison BW-300.

Preparation of a,B-Unsaturated Ketones. 6-Methyl-2-
cyclohexen-1-one and 4-t-butyl-2-cyclohexen-1-one were
prepared by selenenylation-selenoxide elimination sequence
according to Reich’s method.? 5,5-Dimethyl-2-cyclohexen-1-
one was prepared by reduction of enol ether of 5,5-dimethyl-
1,3-cyclohexanedione with LiAlH; and subsequent acid
hydrolysis. 5-(1-Dimethylphenylsiloxy-1-methylethyl)-2-
cyclopenten-1-one was derived from aldol reaction of 2-
cyclopenten-1-one lithium enolate (generated with LDA)
with acetone followed by silylation with Me,PhSiCl and
NEt;. 1-(2-Methylphenyl)-3-phenyl-2-propen-1-one and 3-
phenyl-1-(2,4,6-trimethylphenyl)-2-propen-1-one were pre-
pared by aldol condensation according to the literature
procedure.1®

General Procedure. To a solution of 2,6-di-t-butyl-4-
methylphenol (441 mg, 2 mmol) in toluene (5 ml) was added
a 2 mol cm™3 hexane solution of Me3Al (0.5 ml, 1 mmol) and
the resulting colorless solution was stirred at room tempera-
ture for 1 h. After cooling to —78 °C, enone (0.5 mmol) was
added at —78 °C, and after 5 min, Li(R)(:-Bu),AlH (1 mmol)
in ether (2 ml) (prepared in another flask from DIBAH and
RLi (R =n-Bu, t-Bu, and Me) at 0°C for 10 min) was trans-
ferred to the enone-MAD complex by cannula. The mixture
was stirred at —78°C for 15 min, poured into 10% HCI,
extracted with ether, and dried over Na;SO,. Evaporation of
solvents and purification of the residue by column chroma-
tography on silica gel (ether/hexane as eluant) gave the satu-
rated ketone and/or the unsaturated alcohol depending on
the enone substrates, hydride reagents, and reaction
conditions.

2-Methylcyclohexanone: IR (neat) 2940, 2870, 1715, 1450
cm™1; 'H NMR (CCly) =0.97 (d, J=7 Hz, 3H), 1.03—2.70 (m,
9H).

3,3-Dimethylcyclohexanone: IR (neat) 2950, 2875, 1705,
1450 cm™!; 'THNMR (CCl,) 6=0.96 (s, 6H), 1.17—2.40 (m,
6H), 2.05 (s, 2H).

4-t-Butyl-2-cyclohexen-1-ol: IR (neat) 3325, 3010, 2950,
2850, 1645, 1060, 735 cm™!; 'H NMR (CCl,) 6=0.87 (s, 9H),
1.01—2.20 (m, 5H), 3.16 (br s, 1H), 3.78—4.25 (m, 1H), 4.60
(s, 2H).

5-Isopropenyl-2-methylcyclohexanone: IR (neat) 3100,
2925, 2850, 1720, 1640, 1450, 890 cm~!; 'THNMR (CCly)
6=0.92—2.85 (m, 11H), 0.97 (d, J=6 Hz, trans CHCHy}), 1.02
(d, J=6 Hz, cis CHCH3), 1.75 (s, 3H, CH3-C=C), 4.70 (s, 2H).
GLC analysis showed the cis/trans ratio to be 14:86. tr
(trans)=14.2 min, ¢g (cis)=15.2 min at 90 °C.

5-Isopropenyl-2-methyl-2-cyclohexen-1-0l: Bp 90—95°C
(Kugelrohr bath temp, 5 Torr (1 Torr=133.322 Pa)); IR (neat)
3325, 3090, 2925, 1650, 1450, 1040, 895, 815 cm™!; 'THNMR
(CCly) 6=1.13—2.60 (m, 8H), 1.70 (s, 3H, CH;-C=C), 2.94
(br s, 1H), 3.70—4.30 (m, 1H), 4.65 (s, 2H), 5.36 (br s, 1H).
Anal. (CIOHIGO) C, H.

3,5-Dimethylcyclohexanone: IR (neat) 2965, 2885, 1720,
1455 cm™1; 'TH NMR (CCl,) 6=0.66-2.50 (m, 8H), 1.03 (br d,
6H). GLC analysis indicated the cis/trans ratio to be 1:99.
tr (trans)=8.6 min, tr (cis)=9.7 min at 70 °C.

3,5-Dimethyl-2-cyclohexen-1-0l: IR (neat) 3360, 2930,
1675, 1455, 1380, 1035 cm™!; 'THNMR (CCly) 6=0.50—2.73
(m, 9H), 1.67 (s, 3H), 4.03 (br s, 1H), 5.16—5.73 (m, 1H).

2-(1-Dimethylphenylsiloxy-1-methylethyl)cyclopentanone:
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IR (neat) 2970, 1715, 1635, 1445, 1415, 1370, 1265, 1190, 1005,
815 cm™!; 'H NMR (CCly) 6=0.28 (s, 6H), 1.25 (s, 6H), 1.48—
2.41 (m, 7H), 6.98—7.61 (m, 5H). This product was spectros-
copically identical with authentic sample which was pre-
pared by aldol reaction of cyclopentanone lithium enolate
(generated with LDA) with acetone followed by silylation
with Me,PhSiCl and NEt;.

(E)-4-Phenyl-3-buten-2-ol: IR (neat) 3325, 3020, 2975,
1650, 1490, 1455, 1060, 965, 745, 690 cm™!; 'H NMR (CCly)
6=1.27 (d, J=6 Hz, 3H), 3.53 (s, 1H), 4.33 (quintet, J=6 Hz,
1H), 5.86—6.66 (m, 2H), 7.13 (s, 5H).

1,3-Diphenyl-1-propanone: IR (neat) 3040, 2945, 1690,
1595, 1580, 1490, 1450, 1205, 750, 690 cm™!; 'H NMR (CCl,)
6=2.54—3.55 (m, 4H), 6.83—8.04 (m, 5H), 7.11 (s, 5H).

(E)-1,3-Diphenyl-2-propen-1-ol: Bp 200—205°C (Bath
temp, 7 Torr); IR (neat) 3350, 3035, 2870, 1600, 1580, 1495,
1450, 1070, 1030, 965, 745, 695 cm™!; 'TH NMR (CCl,) 6=3.12
(br s, 1H), 5.11 (d, J=6 Hz, 1H), 5.87—6.68 (m, 2H), 6.94—
7.72 (m, lOH) Anal. (ClsH“O) C, H.

1-(2-Methylphenyl)-3-phenyl-1-propanone: Bp 170—175
°C (Bath temp, 4 Torr); IR (neat) 3060, 3025, 2930, 1685,
1600, 1575, 1490, 1450, 745, 695 cm™1; TH NMR (CCl,) 6=2.34
(d, J=7 Hz, 3H), 2.70—3.53 (m, 4H), 6.53—8.06 (m, 4H), 7.12
(s, 5H). Anal. (C;H,60) C, H.

(E)-1-(2-Methylphenyl)-3-phenyl-2-propen-1-o0l: IR (neat)
3325, 3030, 2935, 2870, 1600, 1585, 1495, 1460, 1450, 1075,
1015, 970, 755, 695 cm™1; 'TH NMR (CCl,) 6=2.16 (s, 3H), 3.73
(br s, 1H), 5.25 (m, 1H), 5.86—6.70 (m, 2H), 6.83—7.60 (m,
9H).

3-Phenyl-1-(2,4,6-trimethylphenyl)-1-propanone: Bp 185—
190 °C (Bath temp., 4 Torr); IR (neat) 3045, 2935, 1705, 1615,
1500, 1455, 1235, 855, 755, 700 cm™!; 'H NMR (CCl,) 6=2.03
(s, 6H), 2.20 (s, 3H), 2.90 (s, 4H), 6.63 (s, 2H), 7.08 (s, 5SH).
Anal (C;gHj,0) C, H.
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