
This article was downloaded by: [Moskow State Univ Bibliote] On: 10 November 2013, At: 05:19 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information:

http://www.tandfonline.com/loi/gpss20

A FACILE SYNTHESIS AND SOME NEW REACTIONS OF N-BENZYLCARBOXAMIDES WITH ESSENTIAL AMINO ACIDS

Ragab A. El-sayed ^a

^a Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, CAIRO, Egypt Published online: 24 Sep 2006.

To cite this article: Ragab A. El-sayed (1997) A FACILE SYNTHESIS AND SOME NEW REACTIONS OF N-BENZYLCARBOXAMIDES WITH ESSENTIAL AMINO ACIDS, Phosphorus, Sulfur, and Silicon and the Related Elements, 131:1, 207-213, DOI: <u>10.1080/10426509708031609</u>

To link to this article: http://dx.doi.org/10.1080/10426509708031609

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Phosphorus, Sulfur, and Silicon, 1997, Vol. 131, pp. 207-213 Reprints available directly from the publisher Photocopying permitted by license only

A FACILE SYNTHESIS AND SOME NEW REACTIONS OF N-BENZYLCARBOXAMIDES WITH ESSENTIAL AMINO ACIDS

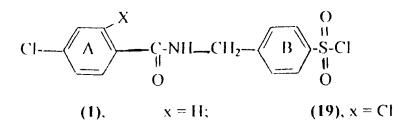
RAGAB A. EL-SAYED

Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, CAIRO, Egypt

(Received 23 April 1997; Revised 24 July 1997; In final form 24 July 1997)

N-Benzyl-p-chloro and N-Benzyl-2,4-dichlorobenzamide react with hlorosulfonic acid to give the corresponding p-sulfonyl chlorides (1,19), which condensed with nucleophiles to give amino acid derivatives (2-7) and (20-25). Some of the corresponding methyl esters (8-11) were prepared. Hydrazinolysis of these methyl esters yielded the hydrazides (12-15). Coupling reactions of some amino acid derivatives with amino acid methyl ester hydrochloride in THF-Et₃N medium using the dicyclohexylcarbodiimide method furnishes the desired dipeptide methyl esters (16-18, 26-28). Some spectral data are briefly discussed.

Keywords: Chlorosulfonation of N-Benzyl-4-Chlorobenzamide; N-Benzyl-2,4-Dichlorobenzamide and Their Reactions with Different Essential Amino Acids


INTRODUCTION

The work reported here is a continuation of our general program on the chemistry and reactivity of aryl sulfonyl derivatives as candidate pesticides, which are found to possess hypoglycemic, antipyretic, analgesic diuretic, bacteriostatic, and other pharmacological activities.

The compounds mentioned were found to have these activities.^[1-4]

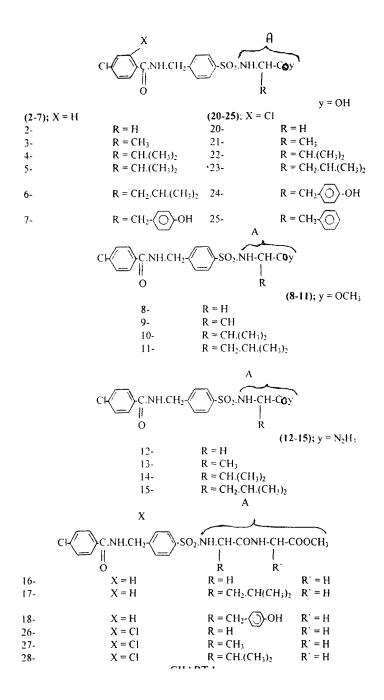
Amides and anilides^[5-6] react smoothly with chlorosulfonic acid to yield the corresponding sulfonyl chlorides. The chlorosulfonation of anilides is facilitated by the electron releasing properties of the amidic nitrogen atom.

In the present work, the reaction of some benzylbenzamides with chlorosulfonic acid was studied. The orientation of sulfonation is governed by the electron releasing effect of the methylene group.

The other aromatic center is deactivated towards electrophilic substitution by the adjacent electron withdrawing carbonyl group. The sulfonyl chlorides (1,19) by condensation with nucleophiles e.g. amino acids residue can be converted into sulfonylamino acid derivatives for biological evaluation as candidate biocides.

DISCUSSION

The NMR spectrum of 3 showed the resonance of the 4-protons of the phenyl ring (A) (δ 7.7) at lower field than the multiplet due to the 4-protons of ring (B) (δ 8.2). The difference arises from the deshielding effects of the chlorine and carbonyl groups on the ring (A) protons. The methylene protons appeared as a doublet (δ 4.6) which was in excellent agreement with the calculated value (δ 4.5) based on the application of Schoolery's Rule.


The mass spectra of N-benzylcarboxamides amino acid derivatives (3, 6, 23) show the fragmentation pattern which was consistent with successive loss of the Ph.CH₂, NH, and CO moieties.

N-Benzyl-p-chlorobenzamide reacts with chlorosulfonic acid (6 equivalent) in boiling chloroform (3h) to afford an excellent yield (84%) of the p-sulfonyl-chloride (1), N-benzyl-2,4-dichloro benzamide was similarly converted into (19); yield (74%).

The sulfonyl chlorides (1, 19) were condensed with different amino acids using the THF-Et₃N method to give the expected sulfonyl derivatives (2-18), (20-25) (chart 1 and Table I).

The two aromatic rings A and B apparently have comparable reactivity towards sulfonation, because the electron releasing effect of the methylene group of the phenyl ring (B) would be relatively weak.

The IR spectra of the sulfonly chlorides (1,19) showed the normal stretching absorption associated with the C=O, NH, and Ar C=C groups and additionally two bands at 1380–1330 and 1180–1130 indicative of the SO₂ group.^[7]

Comp. No.	Α	т.р. °С	Yield %	R _f	Molecular formula	Elemental Analysis Calculated/Found			
						%С	%H	%N	%S
2	Gly	183-185	74	0.83	C ₁₆ H ₁₅ CIN ₂ O ₅ S	50.20	3.92	7.32	8.37
						50.18	3.90	7.30	8.35
3	DL-Ala	205-207	65	0.80	C ₁₇ H ₁₇ CIN ₂ O ₅ S	51.45	4.29	7.06	8.07
						51.43	4.27	7.04	8.05
4	L-Val	213-215	72	0.90	$C_{19}H_{21}CIN_2O_5S$	53.71	4.95	6.60	7.54
						53.70	4.93	6.60	7.50
5	DL-Val	198-200	74	0.88	$C_{19}H_{21}CIN_2O_5S$	53.70	4.95	6.60	7.54
						53.70	4.92	6.58	7.53
6	L-Leu	163-165	65	0.84	C ₂₀ H ₂₃ CIN ₂ O ₅ S	54.73	5.28	6.38	7.30
					- 20,2 - 23, 2 - 3 -	54.73	5.26	6.36	7.29
7	L-Tyr	177-179	70	0.81	$C_{21}H_{21}CIN_2O_5S$	56.50	4.30	5.37	6.55
,	1. 191	1.1. 1.72	10	0.01	02111210112030	56.50	4.28	5.36	6.53
8	Gly-	170-172	57	0.90	C ₁₇ H ₁₇ CIN ₂ O ₅ S	51.45	4.29	7.06	8.07
0	OMe	170-172	57	0.90	C ₁₇ H ₁₇ CH ₂ O ₅ S	51.45	4.23	7.00	0.07
						51.43	4.27	7.04	8.05
9	DL-Ala-	138-140	62	0.85	C ₁₈ H ₁₉ CIN ₂ O ₅ S	52.62	4.63	6.82	7.80
	OMe								
						52.60	4.61	6.80	7.80
10	L-Val-	178-180	65	0.77	C20H23CIN2O5S	54.73	5.25	6.39	7.30
10	OMe	170 100	00	0.77	e <u>10</u> 123en (2030	51115	0.20	0.57	1.00
	onic					54.71	5.23	6.36	7.28
11	L-Leu-	123-125	50	0.79	C ₂₁ H ₂₅ CIN ₂ O ₅ S	55.69	5.52	6.19	7.07
11	OMe	123-123	50	0.79	$C_{21} n_{25} C n_{2} O_{5} $	55.09	5.52	0.19	7.07
						55.67	5.50	6.17	7.05
12	Gly-	160-162	72	0.90	C16H17CIN4O4S	48.42	4.29	14.12	8.07
-	N_2H_3				- 10- 17 - 4 - 4 -				
	2 3					48.40	4.27	14.10	8.05
13	DL-Ala-	122-124	88	0.86	C ₁₇ H ₁₉ CIN ₄ O ₄ S	49.70	4.63	13.64	7.80
15	N_2H_3	122 124	50	0.00	e1/11/ge11/4040	12.10	1.05	10.01	1.00
	- 23					49.70	4.61	13.61	7.80
14	L-Val-	154-156	78	0.94	C ₁₉ H ₂₁ CIN ₄ O ₄ S	52.00	5.25	12.77	7.30
••	N_2H_3	151 150	.0	0.71	019112101114040	52.00	0.20	12.77	7.50
	112113				,	52.00	5.22	12.75	7.26
15	L-Leu-	110-112	81	0.96	C ₂₀ H ₂₅ CIN ₄ O ₄ S	53.04	5.52	12.38	7.07
15	N ₂ H ₃	110-112	01	0.90	C20H25CH4043	55.04	5.52	12.30	7.07
	N ₂ Π ₃					\$2.01	5 50	12.25	7.05
14		100 105	70	0.74		53.01	5.50	12.35	7.05
16	Gly-Gly-	133-135	70	0.76	$C_{19}H_{20}CIN_3O_6S$	50.28	4.41	9.26	7.06
	OMe					60 0 (4 40	0.04	7.05
					~	50.26	4.40	9.24	7.05
17	L-Leu-	120-122	78	0.60	$C_{28}H_{28}CIN_{3}O_{6}S$	59.00	4.92	7.37	5.62
	Gly-								
	OMe								
						59.00	4.90	7.35	5.60
18	L-Tyr-	143-145	65	0.50	C26H26CIN3O7S	55.76	5.65	7.51	5.72
	Gly-								
	OMe								
						55.75	5.64	7.50	5.70
20	Gly	93-95	49	0.83	$C_{16}H_{14}Cl_2N_2O_5S$	46.04	3.36	6.71	7.67
20						46.01	3.33	6.69	7.63
21	L-Ala	7072	41	0.74	$C_{17}H_{16}Cl_2N_2O_5S$	47.33	3.71	6.50	7.42
21	2 / 114	,0 ,2	11	0.74	C17116C12112O50	47.30	3.70	6.42	7.40
							5.10	0.44	7.40

TABLE I Physical data for the N-(4-sulfonylbenzyl)-4-chloro-and, 2,4-dichlorabenzamides (2-18) and (20-28).

TABLE I continued									
Comp. No.	A	т.р. °С	Yield %	R_f	Molecular formula	Elemental Analysis Calculated/Found			
				_		%C	%H	%N	%S
22	L-Val	75–77	39	0.88	$C_{19}H_{20}Cl_2N_2O_5S$	49.67	4.36	6.10	6.97
						49.64	4.33	6.09	6.94
23	L-Leu	72–74	55	0.75	$C_{20}H_{22}Cl_2N_2O_5S$	50.74	4.65	5.92	6.77
						50.11	4.62	5.90	6.73
24	L-Tyr	63-65	53	0.86	$C_{23}H_{20}Cl_2N_2O_6S$	52.77	3.82	5.35	6.12
						52.75	3.80	5.31	6.10
25	L-Phe	80-82	52	0.75	$C_{23}H_{20}Cl_2N_2O_5S$	54.44	3.94	5.52	6.31
						54.41	3.91	5.51	6.30
26	Gly-Gly- OMe	65–67	63	0.66	$C_{19}H_{19}Cl_2N_3O_6S$	46.72	3.89	8.61	6.56
						46.70	3.85	8.60	6.54
27	L-Ala- Gly- OMe	118-120	55	0.89	$C_{20}H_{21}Cl_2N_3O_6S$	47.81	4.18	8.37	6.37
	01111					47.80	4.15	8.35	6.34
28	L-Leu- Gly- OMe	112–124	53	0.91	$C_{23}H_{27}Cl_2N_3O_6S$	50.74	4.96	7.72	5.88
	0					50.74	4.94	7.70	5.85

* Crystallisation solvent: a = Methanol-water (2-11), (16-18), (20-25), b = Ethanol-water (12-15)

All the compounds synthesized (2-28) give IR, NMR, mass spectra consistent with the assigned structure.

EXPERIMENTAL

Melting points were taken on a Griffin melting point apparatus and are uncorrected. Infrared spectra of solid samples were run as KBr disc on a Schimadzu model 440 spectrophotometer. ¹H-NMR spectra were measured in DMSO-d₆ as solvent unless otherwise stated using Fx 90 Q Fourier Transform ¹H-NMR. Mass spectra were obtained using a Schimadzu. GC. M.S.QP 1000 Ex spectrometer using the direct inlet system. TLC analyses were carried out on Merck silica gel plates and developed with n-butanol-acetic acid-water (4:1:1) using iodine, ninhydrin and benzidine as spraying agents.

N-(4-Chlorosulfonylphenyl)-4-chlorobenzamide(1), and N-(4-chlorosulfonylphenyl)-2,4-dichlorobenzamide(19)

The title compounds were prepared according to the procedure described earlier.^[8]

Coupling Reactions: (2-7, 20-25)

General Procedure

To an amino acid (0.1 mol) in a water (25 ml) THF (15 ml) mixture, was added triethylamine (5 ml), followed by protionwise addition of the sulfonyl chlorides (0.11 mol) during 30 min. The temperature of the reaction mixture during the process of addition was kept at 10°C. Stirring continued for 2 h at 20°C. Tetrahydrofuran was removed by concentration of the reaction mixture under reduced pressure, water (30 ml) was added and acidified with 2 M HCL to pH₅. The crude products were filtered and recrystallized. All the products (2–7) and (20–25) were chromatographically homogeneous by iodine and benzidine development cf. Table I. Compd. (2–7) and (20–25).

IR of 3	: ν 3350 cm ⁻¹ (NH), ν 1660 cm ⁻¹ (C = O), ν 1600, 1580 cm ⁻¹ (Ar
	C = C), v1360, 1130 cm ⁻¹ (SO ₂), 760 cm ⁻¹ (C-Cl).
IR of 21	ν 3270 cm ⁻¹ (NH), ν 1640 cm ⁻¹ (CO), ν 1590 cm ⁻¹ , Ar(C=C),
	ν 1350, 1150 cm ⁻¹ (SO ₂).
'H-NMR of 3	:(DMSO-d ₆): δ 1.2(3H, CH- <u>CH₃</u>), 4.2(1H, <u>CH</u>); 4.6(2H, <u>CH₂</u>),
	7.35 (4H; ArH(B)), 7.7 (4H, ArH(A)), 9.2(1H, COOH), MS of 3: m/z
	397 (M ⁺).
¹ H-NMR of 6	:(DMSO-d ₆): δ 4.1(1H, CH), 4.5(2H; CH ₂), 7.7(4H,Ar-H(B)),
	8.2(4H, Ar-H(A)), 9.8(1H, COOH), MS of 6: m/z 439 (M ⁺).
¹ H-NMR of 23	:(DMSO-d ₆): δ 0.9(6H, (CH ₃) ₂)), 4.6(2H, CH ₂); (7.5-8.4) 7H Ar-
	H), 9.8 (1H, COOH, MS of 23: m/z 473 (M^+) .

Synthesis of Sulfonylmino Acid Methyl Esters (8-11) General Procedure

A suspension of coupling reaction products (2,3,4,6) (0.01 mole) in absolute methanol (150 ml) was cooled to -10° C and pure thionyl chloride (1.2 ml) was added dropwise during one hour. The reaction mixture was stirred for an additional 3–4 h at room temperature. Kept overnight when the solvent was removed by vacuum distillation. The residual solid material was recrystallized, (methanolwater). (cf. Table I) (chart 1).

```
IR of 8 :\nu1760, 1720 cm<sup>-1</sup> C = O, 1730 cm<sup>-1</sup> (COOCH<sub>3</sub>).
<sup>1</sup>H-NMR of 9 :(DMSO-d<sub>6</sub>): \delta (7.6–8.4, Ar-H), 3.3(3H, OCH<sub>3</sub>), and disappear of OH protons.
```

Synthesis of Sulfonylmino Acid Hydrazides (12-15) General Procedure

The methyl esters (8-11) (0.01 mol) were dissolved in ethanol (50 ml) and hydrazine hydrate 85% (0.02 mol) was added. The reaction mixture was stirred

BENZYLCARVOXAMIDES

for 3 h at 20°C and left 24 h at room temperature. The crystalline products (12–15) were filtered off, washed with water and recrystallized from (ethanol-water).

The hydrazides (12-15) were shown to be chromoatographically to be homogeneous. (cf. Table I). (chart 1).

 IR of 12
 : ν 3340, 3125 cm⁻¹ (NH) 1640 cm⁻¹ (C=O), 1600, 1550 cm⁻¹ (Ar C=C), 1340, 1180 cm⁻¹ (SO₂), 690 cm⁻¹ (C-Cl).

 ¹H-NMR of 14
 :(DMSO-d_6): δ 9(1H, SO₂NH), 8.1 (1H, NH.CH₂), 8.2–7.5(Ar-H), 5.52 (H, NH), 5.61 (2H, NH₂).

Synthesis of Sulfonyl Dipeptide Methyl Esters (16–18, 26–28) General Procedure

To a solution of amino acid methyl ester hydrochloride (0.016 mol) in THF (100 ml) was added triethylamine (5 ml), the solution was stirred at 20°C for 30 min., and cooled to 0°C, where the sulfonylamino acid (2, 6, 7) and (20, 21, 23) (0.008 mol) in THF (50 ml), and dicyclohexylcarbodiimide DCC (1.62 g) were added to the above mixture. The reaction mixture was stirred for 2 h at 0°C and for another 2 h at room temperature. The precipitated dicyclohexylurea was filtered off, acetic acid (1 ml) was added to the solution and left standing overnight. The precipitated was filtered off and the remaining solution was distilled under vacuum. The remaining solid was recrystallized from (ethanolwater). The products (16-18), (26-28) were to be chromatographically homogeneous.

IR of 16, 26	: ν 3300, 3100 cm ⁻¹ (NH, CONH), 1750 cm ⁻¹ (C=O), 1320
¹ H-NMR of 16, 26	cm ⁻¹ (COOCH ₃). :(DMSO-d ₆): δ 3.7 (3H, OCH ₃), 3.8 (2H, ArCH ₂), 9.4(1H,
	CONH), and other bands supporting the structure of
	dipeptide.

References

- [1] R. A. El-Sayed, J. Serb. Chem. Soc., 56(6), 311, (1991).
- [2] R. A. El-Sayed, N. S. Khalaf, F. A. Kora and Y. A. Abbas, Pak. J. Sci. and Industrial Research, 34(10), 369, (1991).
- [3] R. A. El-Sayed, N. S. Khalaf, F. A. Kora and M. F. Badie, J. Chem. Soc. Pak., 14(1), 49, (1992).
- [4] R. A. El-Sayed, N. S. Khalaf, F. A. Kora and M. H. El-Hakim, Proc. Ind. Nat. Sci. Acad., 58(4), 389–396, (1992).
- [5] R. A. El-Sayed, J. Ind. Chem. Soc., 69, 618, (1992).
- [6] R. A. El-Sayed, N. S. Khalaf, F. A. Kora and M. A. El-Gazzar, J. Serb. Chem. Soc., 59(10), 727-733, (1994).
- [7] L. J. Bellamy, Infra-red Spectra of Complex Molecules, (London, 1966) 2nd. Ed.
- [8] R. J. W. Cremlyn, L. Ellis and A. Pinney, *Phosphorus, Sulfur, and Silicon*, 44, 167-175, (1989).