This article was downloaded by: [Stony Brook University] On: 30 October 2014, At: 21:03 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



# Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lsyc20

# An Advantageous Synthesis of 5,6,7,8-Tetra-Hydrotetrazolo[1,5-a]Pyridines

Stefan Vonhoff<sup>a</sup> & Andrea Vasella<sup>a</sup> <sup>a</sup> Laboratorium für Organische Chemie, ETH-Zentrum, Universitätstrasse 16, CH-8092, Zurich, Switzerland Published online: 17 Sep 2007.

To cite this article: Stefan Vonhoff & Andrea Vasella (1999) An Advantageous Synthesis of 5,6,7,8-Tetra-Hydrotetrazolo[1,5-a]Pyridines, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 29:4, 551-560, DOI: <u>10.1080/00397919908085802</u>

To link to this article: http://dx.doi.org/10.1080/00397919908085802

# PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any

losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

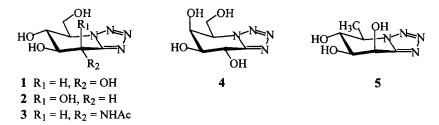
## AN ADVANTAGEOUS SYNTHESIS OF 5,6,7,8-TETRA-HYDROTETRAZOLO[1,5-a]PYRIDINES

by Stefan Vonhoff and Andrea Vasella\*

Laboratorium für Organische Chemie, ETH-Zentrum, Universitätstrasse 16, CH-8092 Zürich, Switzerland

**Abstract**: The one-step synthesis of various *O*-benzyl-protected glyconotetrazoles from the corresponding glyconolactams is reported. The method is superior to the previously employed cycloaddition of azidonitriles as it uses readily available starting materials and leads to higher yields.

Introduction. — We and others have shown that the gluco-tetrazole 1<sup>1</sup>, its manno-, galacto- and rhamno-analogues 2<sup>2,3</sup>, 4<sup>4</sup>, and 5<sup>3</sup>, and the N-acetyl-D-glucosamine-derived tetrazole 3<sup>4</sup> are inhibitors of retaining  $\beta$ -glycosidases with K<sub>1</sub>-values between 0.2 and 200  $\mu$ M (*Figure 1*). These tetrazoles have been designed as neutral transition-state analogues possessing a half-chair conformation.<sup>2</sup> Unlike the corresponding D-glycono-1,5-lactones the tetrazoles are stable towards hydrolysis over a wide range of pH values.

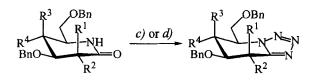

Key step of previous syntheses of the glyconotetrazoles is an efficient intramolecular 1,3-dipolar cycloaddition of a 5-azido-aldononitrile. However, the syntheses are rather long with overall yields ranging between 17 and 42%. Considering the potential application of glycono-tetrazoles we wished to develop

<sup>\*</sup>To whom correspondence should be addressed

Copyright © 1999 by Marcel Dekker, Inc.

a more convenient synthesis from readily available starting materials. One of the classical syntheses of tetrazoles is based on the reaction of an azide with an imidoyl chloride. Imidoyl chlorides are readily prepared by treating the corresponding amides with phosphorus(V) chloride.<sup>5</sup> We now report the high-yielding transformation of glyconolactams into the corresponding tetrazoles using trifluoromethanesulfonic anhydride (Tf<sub>2</sub>O) and sodium azide in acetonitrile.<sup>6</sup>

### Figure 1




**Results and Discussion.** — The required glyconolactams are readily accessible. The gluconolactam **6** has been prepared from 2,3,4,6-tetra-*O*-benzylglucopyranose in 4 steps on a 100 gram scale.<sup>7,8</sup> The D-mannono- $\delta$ -lactam 7<sup>8-10</sup> was obtained by equilibration of the *gluco*-configurated lactam **6** in toluene/piperidine or, more rapidly, in pyridine containing either trifluoroacetic acid (TFA) or pyridinium *p*-toluenesulfonate (PPTS) (*Scheme 1*). This gave a 3:2 mixture (>95%) of the *gluco*- and *manno*-isomers **6** and 7, easily separated by flash chromatography. The same product distribution was obtained from the mannonolactam 7. Alternatively, the mannonolactam 7 was obtained by the Hg(OAc)<sub>2</sub>-assisted epimerising hydrolysis of the *gluco*-configurated thionolactam **8** <sup>11</sup> in aq. THF. This procedure yielded 85% of a 1:1.1 mixture of the glyconolactams **6** and **7**, respectively. Overall the synthesis is less advantageous as it requires the preparation of the thionolactam **8** from the lactam **6**.<sup>11</sup> The galactonolactam  $9^{8,12}$ , the cellobionolactam  $10^{13}$  and the N-acetyl-D-glucosamine-derived lactam  $11^{14}$  were prepared in a similar way as the gluconolactam 6.

Treating the gluconolactam 6 with Tf<sub>2</sub>O and sodium azide in CH<sub>3</sub>CN gave the *gluco*-tetrazole 12<sup>1</sup> in 87% yield (*Scheme 1*).<sup>15,16</sup> Similarly, the *manno*- and the

### Scheme 1

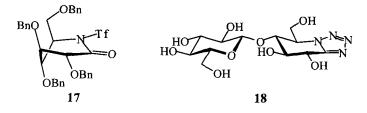
OBn BnO OBn ΝH BnO BnO BnO BnO 0 റ ` OBn 6 7 OBn b) BnO ŊΗ 7 BnO •S



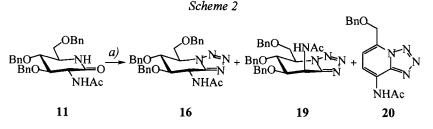
| 6, | 7, | 9- | 1 | 1 |  |
|----|----|----|---|---|--|
|    |    |    |   |   |  |

`OBn

8


12-16

| Lactam | R1  | R <sup>2</sup> | R <sup>3</sup> | R <sup>4</sup>     | Tetrazole       |
|--------|-----|----------------|----------------|--------------------|-----------------|
| 6      | Н   | OBn            | Н              | OBn                | 12 (87%)        |
| 7      | OBn | H              | Н              | OBn                | 13 (77%)        |
| 9      | Н   | OBn            | OBn            | Н                  | 14 (82%)        |
| 10     | Н   | OBn            | Н              | β-D-Glcp2,3,4,6Bn4 | 15 (79%)        |
| 11     | Н   | NHAc_          | Н              | OBn                | <b>16</b> (30%) |


a) Piperidine, toluene, 96 h,  $\Delta$  or Pyridine, PPTS or TFA, 24 h,  $\Delta$ ; 97% of 6/7 3:2. b) Hg(OAc)<sub>2</sub>, THF:H<sub>2</sub>O (95:5), 16 h, 20°; 85% of 6/7 1:1.1. c) (for 6, 7, 9, 10) Tf<sub>2</sub>O, NaN<sub>3</sub>, CH<sub>3</sub>CN, 50-60 mim, -15°. d) (for 11) PCl<sub>5</sub>, TMSN<sub>3</sub>, CH<sub>2</sub>Cl<sub>2</sub>, 24 h, -15°.

galacto-tetrazoles 13<sup>2</sup> and 14<sup>4</sup> were prepared from the glyconolactams 7 and 9 in 77% and 82% yield, respectively. Surprisingly, no reaction was observed when the cellobionolactam 10 was treated with Tf<sub>2</sub>O and NaN<sub>3</sub> in CH<sub>3</sub>CN unless Tf<sub>2</sub>O was added first, and NaN<sub>3</sub> only after 30 min. This difference is best rationalised by assuming a reduced nucleophilicity of the cellobionolactam 10<sup>17</sup> resulting in a slower formation of an imidoyl triflate as obligatory intermediate. The monosaccharide-derived lactams 6, 7, and 9 could conceivably react with Tf<sub>2</sub>O or with *in situ* generated TfN<sub>3</sub>, while 10 would be inert to TfN<sub>3</sub>. No reaction, however, was observed when 6 was treated with TfN<sub>3</sub> in CH<sub>3</sub>CN. The sulfonamide 17 was isolated as by-product (6%) of the transformation of the gluconolactam 6 to the tetrazole 12, and upon treatment of 6 with Tf<sub>2</sub>O in the absence of NaN<sub>3</sub> (23%).<sup>18</sup>

Hydrogenolysis of the new tetrazole 15 yielded 91% of the cellobionotetrazole 18.



Attempts to prepare the *N*-acetyl-glucosamine-derived tetrazole 16<sup>4</sup> from the *N*-acetyl-D-gluconolactam 11<sup>14</sup> by the Tf<sub>2</sub>O/NaN<sub>3</sub> method failed. However, 16 (30%) was obtained along with the known *manno*-epimer 19<sup>4</sup> (15%) and the aromatised product 20<sup>4</sup> (40%) when 11 was treated with PCl<sub>5</sub> and TMSN<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub> at 15° (*Scheme 2*).<sup>19</sup> Conducting the reaction at 0° suppressed the formation of 20, but led to a slow and only partial conversion of 11.



a) PCl<sub>5</sub>, TMSN<sub>3</sub>, CH<sub>2</sub>Cl<sub>2</sub>, 24 h, 15°.

### **Experimental Part**

# (3S,4S,5R,6R)-3,4,5-Tris(benzyloxy)-6-[(benzyloxy)methyl]piperidin-2-one (7)

a) From 6 with piperidine: A soln. of  $6^7$  (0.3 g, 0.6 mmol) in toluene (5ml) and piperidine (0.1 ml) was heated to reflux. After 96 h the solvent was evaporated *i.v.* and the residue was purified by FC (silica gel; hexane/EtOAc 3:1) to afford 6 (0.18 g, 59%) and 7 (0.11 g, 37%).

b) From 6 with pyridine and PPTS or TFA: A soln. of 6 (0.3 g, 0.6 mmol) and pyridinium para-toluenesulfonate (0.1 g) or trifluoroacetic acid (0.05 ml) in pyridine (5 ml) was heated to reflux for 24 h and worked up as described above to afford 6 (0.17 g, 57%) and 7 (0.11 g, 36%).

c) *From* **8**: A suspension of **8**<sup>11</sup> (0.8 g, 1.4 mmol) and Hg(OAc)<sub>2</sub> (0.6 g, 1.9 mmol) in 95% aq. THF (15 ml) was stirred for 16 h at 20°. After filtration through *Celite*, the filtrate was concentrated *i.v.*, the residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (20 ml) and washed with sat. aq. NaHCO<sub>3</sub> soln. Drying of the org. phase (MgSO<sub>4</sub>), evaporation, and FC (silica gel; hexane/EtOAc 3:1) afforded **6** (0.30 g, 38%) and 7 (0.33 g, 42%).

Data of 6:<sup>7,8</sup> Rf (hexane/EtOAc 1:1) 0.45.

*Data of* **7**:<sup>8</sup> *R*<sup>f</sup> (hexane/EtOAc 1:1) 0.40. <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 50 MHz): 54.28 (*d*); 71.15 (*t*); 72.61 (*t*); 72.88 (*t*); 73.09 (*t*); 73.18 (*t*); 74.80 (*d*); 74.87 (*d*); 77.72 (*d*); 127.69–128.39 (several *d*); 137.40 (*s*); 137.53 (*s*); 137.88 (*s*); 137.92 (*s*); 169.56 (*s*). FAB-MS (3-NOBA): 554.2 (8), 538.2 (100, [*M* + H]<sup>+</sup>), 90.8 (38).

(5R,6R,7S,8S)-6,7,8-Tris(benzyloxy)-5-[(benzyloxy)methyl]-5,6,7,8-tetrahydro-tetrazolo[1,5-a]pyridine (12)

At -15°, a suspension of 6 7 (2.70 g, 5 mmol) and sodium azide (390 mg, 6 mmol)

in anhydrous CH<sub>3</sub>CN (50 ml, dist. from CaH<sub>2</sub>) was treated with triflic anhydride (1.23 ml, 7.5 mmol). After 50 min, the colourless solution was treated with a sat. aq. NaHCO<sub>3</sub> soln. (20 ml), the product extracted with CH<sub>2</sub>Cl<sub>2</sub> (2x40 ml) and the org. phase washed with brine and dried (MgSO<sub>4</sub>). Evaporation gave a pale yellow oil (2.8 g) which was purified by FC (silica gel; hexane/EtOAc 4:1) to afford 12 (2.5 g, 87% after crystallisation from MeOH) and 17 (0.18 g, 6%).

Data of 12:1 Rf (hexane/EtOAc 2:1) 0.50. M.p. 92-92.5° (oil 1).

### (5R,6R,7S,8R)-6,7,8-Tris(benzyloxy)-5-[(benzyloxy)methyl]-5,6,7,8-tetrahydro-tetrazolo[1,5-a]pyridine (13)

At  $-15^{\circ}$ , a suspension of 7 (40 mg, 74 µmol) and sodium azide (5.8 mg, 90 µmol) in anhydrous CH<sub>3</sub>CN (1 ml) was treated with triflic anhydride (18 µl, 0.11 mmol). After 50 min, the colourless solution was worked up as described for 12. Purification by FC (silica gel; hexane/EtOAc 7:3) afforded 13<sup>2</sup> (32 mg, 77%) as a colourless oil.

### (5R,6S,7S,8S)-6,7,8-Tris(benzyloxy)-5-[(benzyloxy)methyl]-5,6,7,8-tetrahydro-tetrazolo[1,5-a]pyridine (14)

At  $-15^{\circ}$ , a suspension of 9 <sup>12</sup> (270 mg, 0.5 mmol) and sodium azide (39 mg, 0.6 mmol) in anhydrous CH<sub>3</sub>CN (5 ml) was treated with triflic anhydride (0.12 ml, 0.75 mmol). After 1 h, the colourless solution was worked up as described for 12. Purification by FC (silica gel; hexane/EtOAc 4:1) afforded 14 <sup>4</sup> (235 mg, 82%) as a colourless solid.

## (5R,6R,7S,8S)-6-(2,3,4,6-Tetra-O-benzyl-β-D-glucopyranosyloxy)-7,8-bis-(benzyloxy)-5-[(benzyloxy)methyl]-5,6,7,8-tetrahydrotetrazolo[1,5-a]pyridine (15)

At -15°, a suspension of hepta-O-benzyl-D-cellobionolactam 10<sup>13</sup> (0.27 g, 0.28 mmol) in anhydrous CH<sub>3</sub>CN (3 ml) was treated with triflic anhydride (0.1 ml, 0.61 mmol). After 30 min, sodium azide (30 mg, 0.46 mmol) was added and stirring was continued at -15° for 50 min. Work-up as described for 12 and HPLC (silica gel; hexane/EtOAc 5:1) afforded 15 (0.22 g, 79%). Colourless oil. *R*f (hexane/EtOAc 7:3) 0.65.  $[\alpha]_D^{25} = +27.9$  (c = 0.5, CHCl<sub>3</sub>). IR (CH<sub>2</sub>Cl<sub>2</sub>): 3089w, 3033w, 2870m, 1955w, 1876w, 1812w, 1605w, 1496m, 1454m, 1362m, 1071s (br.). 1028m, 913m. <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz): 3.36 (*dd*, J = 8.9, 7.9, H–C(3')); 3.37 (*ddd*, J = 9.4, 4.4, 1.9, H–C(5')); 3.56 (t,  $J \approx 8.5$ , H–C(2')); 3.58 (t,  $J \approx 8.2$ , H–C(4')); 3.61 (*dd*, J = 10.9, 4.6, H–C(6')); 3.66 (*dd*, J = 10.9, 2.2, H'–C(6')); 3.91 (*dd*, J = 9.9, 6.5, CH–C(5)); 4.04 (*dd*, J = 9.9, 4.1, CH'–C(5)); 4.28 (*dd*, J =

5.7, 4.2, 1 H); 4.45–4.51 (*m*, 7 H); 4.54 (*d*, J = 11.7, PhC*H*); 4.55 (*d*, J = 10.9, PhC*H*); 4.65 (*d*, J = 11.6, PhC*H*); 4.64–4.68 (*m*, PHC*H*, H–C(6)); 4.78 (*d*, J = 11.0, PhC*H*); 4.79–4.82 (*m*, H–C(2), 2 PhC*H*); 4.87 (*d*, J = 11.0, PhC*H*); 4.95 (*d*, J = 11.6, PhC*H*)); 6.97–7.04 (*m*, 1 arom. H); 7.17–7.36 (*m*, 34 arom. H). <sup>13</sup>C-NMR (CDC1<sub>3</sub>, 50 MHz): 59.91 (*d*); 67.50 (*t*); 68.87 (*t*); 69.56 (*d*); 72.55 (*d*); 72.61 (*t*); 73.47 (*t*, 3 C); 74.96 (*t*, 2 C); 75.18 (*d*); 75.66 (*t*); 76.96 (*d*); 78.55 (*d*); 81.94 (*d*); 84.61 (*d*); 102.51 (*d*); 127.71–128.64 (several *d*); 137.01 (*s*); 137.27 (*s*, 2 C); 137.40 (*s*); 138.03 (*s*); 138.25 (*s*); 138.54 (*s*); 150.27 (*s*). FAB-MS (3-NOBA): 1085.5 (29), 995.5 (100, [M + H]<sup>+</sup>), 887.4 (63), 563.2 (33), 473.2 (21), 91.1 (100). Anal. calc. for C<sub>61</sub>H<sub>62</sub>N<sub>4</sub>O<sub>9</sub> (995.18): C 73.62, H 6.28, N 5.63; found: C 73.35, H 6.30, N 5.68.

(5R,6R,7R,8S)-8-Acetamido-6,7-bis(benzyloxy)-5-[(benzyloxy)methyl]-

5,6,7,8-tetrahydrotetrazolo[1,5-a]pyridine (16), (5R,6R,7R,8R)-8-acetamido-6,7-bis-(benzyloxy)-5-[(benzyloxy)methyl]-5,6,7,8-tetrahydrotetrazolo[1,5a]pyridine (19) and 8-acetamido-5-[(benzyloxy)methyl]tetrazolo[1,5a]pyridine (20)

At 15°, a soln. of 11 <sup>14</sup> (0.25 g, 0.5 mmol) in anhydrous CH<sub>2</sub>Cl<sub>2</sub> (5 ml, dist. from CaH<sub>2</sub>) was treated with PCl<sub>5</sub> (0.11 g, 0.55 mmol) and trimethylsilyl azide (0.5 ml, 3.8 mmol). After 24 h at 15°, the mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> (10 ml) washed with a sat. aq. NaHCO<sub>3</sub> soln. (20 ml), and dried (MgSO<sub>4</sub>). Evaporation gave a pale yellow oil (0.25 g) which was purified by FC (silica gel; hexane/EtOAc 1:1  $\rightarrow$  1:2) to afford 16 (80 mg, 30%), 19 (38 mg, 15%) and 20 (60 mg, 40%).

Data of 16:<sup>2</sup>  $R_f$  (hexane/EtOAc 1:4) 0.20.

Data of 19:2 Rf (hexane/EtOAc 1:4) 0.25.

Data of 20:<sup>2</sup> Rf (hexane/EtOAc 1:4) 0.60. <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 200 MHz): 24.59 (q); 65.60 (t); 73.69 (t); 115.94 (d); 117.37 (d); 125.68 (s); 128.00 (d, 2 C); 128.28 (d); 128.70 (d, 2 C); 130.45 (s); 137.02 (s); 143.14 (s); 169.55 (s).

### (3S,4S,5R,6R)-3,4,5-Tris(benzyloxy)-6-[(benzyloxy)methyl]-1-(trifluoromethyl-sulfonyl)piperidin-2-one (17)

At -15°, a suspension of **6** (0.13 g, 0.24 mmol) in anhydrous CH<sub>3</sub>CN (4 ml) was treated with triflic anhydride (60  $\mu$ l, 0.37 mmol). After 1 h at 0°, the pale yellow solution was worked up as described for **12**. Purification by FC (silica gel; hexane/EtOAc 9:1) afforded **6** (92 mg, 71%) and **17** (32 mg, 23%).  $R_{\rm f}$  (hexane/EtOAc 2:1) 0.85. Pale yellow oil. IR (CH<sub>2</sub>Cl<sub>2</sub>): 3033m, 2871m, 1755s,

1576*m*, 1497*m*, 1455*s*, 1406*s*, 1357*s*, 1207*s*, 1094*s*, 610*m*. <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 300 MHz): 3.65 (*dd*, J = 9.7, 4.4, CH–C(6)); 3.78 (*dd*, J = 9.7, 7.8, CH–C(6)); 3.90 (*ddd*, J = 7.2, 2.5, 1.6, H–C(4)); 3.98 (*t*,  $J \approx 2.7$ , H–C(5)); 4.39 (*d*, J = 7.2, H–C(3)); 4.45–4.57 (*m*, 7 H); 4.59 (*d*, J = 11.5, PhC*H*); 4.99 (*d*, J = 11.2, PhC*H*); 7.20–7.40 (*m*, 20 arom. H). <sup>1</sup>H-NMR (C<sub>6</sub>D<sub>6</sub>, 300 MHz): 3.47 (*dd*, J = 9.7, 5.0, CH–C(6)); 3.55 (*dd*, J = 9.4, 8.7, CH–C(6)); 3.86–3.89 (*m*, 2 H); 4.07 (*s*, 2 H); 4.12 (*m*, 2 H); 4.23–4.30 (*m*, 2 H); 4.32 (*d*, J = 11.5, PhC*H*); 4.33 (*d*, J = 11.5, PhC*H*); 4.66 (*m*, H–C(6)); 4.96 (*d*, J = 11.2, PhC*H*); 7.00–7.33 (*m*, 20 arom. H). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 75 MHz): 62.00 (*d*); 69.08 (*t*); 71.60 (*t*); 73.09 (*t*); 73.50 (*t*); 74.14 (*t*); 74.58 (*d*); 80.16 (*d*); 81.99 (*d*); 127.85–128.68 (several *d*); 136.80 (*s*); 137.10 (*s*); 137.20 (*s*); 137.40 (*s*); 169.48 (*s*). <sup>19</sup>F-NMR (CDCl<sub>3</sub>, 282 MHz): –71.43.

## (5R,6R,7S,8S)-6-(β-D-Glucopyranosyloxy)-5-hydroxymethyl-5,6,7,8tetrahydro-tetrazolo[1,5-a]pyridine-7,8-diol (18)

A soln. of **15** (70 mg, 70 µmol) in MeOH (10 ml) containing AcOH (0.05 ml) was hydrogenated for 48 h at 1 atm and at 22° in the presence of 10% Pd/C (40 mg). The suspension was diluted with MeOH and filtered. The filter paper was washed twice with MeOH and the filtrate was evaporated and dried *i.v.* Crystallisation from methanol gave **20** (23 mg, 91%). Colourless solid. *R*f (EtOAc/MeOH/H<sub>2</sub>O 4:2:1) 0.75. M.p. 230–235° (dec.). IR (KBr): 3342s (br.), 2921*m*, 1569*m*, 1465*m*, 1409*m*, 1371*m*, 1252*m*, 1165*m*, 1085*s*, 1024*m*, 906*w*, 894*w*, 849*m*, 595*m*. <sup>1</sup>H-NMR (CD<sub>3</sub>OD, 500 MHz): 3.29 (*dd*, *J* = 9.1, 7.9, 1 H); 3.31–3.41 (*m*, 4 H); 3.70 (*dd*, *J* = 11.9, 5.3, H–C(6')); 3.89 (*dd*, *J* = 12.0, 2.1, H'–C(6')); 4.01 (*dd*, *J* = 8.9, 7.7, 1 H); 4.31 (*dd*, *J* = 12.2, 2.4, CH–C(5)); 4.39 (*dd*, *J* = 8.9, 8.7, 1 H); 4.44 (*dd*, *J* = 12.2, 3.1, CH'–C(5)); 4.56 (*d*, *J* = 7.8, H–C(1')); 4.55-4.59 (*m*, H–C(5)). <sup>13</sup>C-NMR (CD<sub>3</sub>OD, 50 MHz): 59.30 (*t*); 62.41 (*t*); 63.26 (*d*); 66.88 (*d*); 71.23 (*d*); 74.40 (*d*); 74.78 (*d*); 77.23 (*d*); 77.74 (*d*); 78.34 (*d*); 104.78 (*d*); 156.08 (*s*). FAB-MS (3-NOBA): 483.3 (16), 461.3 (24), 387.2 (15), 365.2 (26, [*M* + H]<sup>+</sup>).

We thank the Swiss National Science Foundation for financial support, and T. D. Heightman and C. Galley for the preparation of 9, Dr. M. Pipelier for a sample of 10, and T. Granier for a sample of 11.

#### References

- 1. Ermert, P. and Vasella, A. Helv. Chim. Acta 1991, 74, 2043.
- Ermert, P., Vasella, A., Weber, M., Rupitz, K. and Withers, S.G. Carbohydr. Res. 1993, 250, 113.
- Brandstetter, T.W., Davis, B., Hyett, D., Smith, C., Hackett, L., Winchester, B.G. and Fleet, G.W.J. *Tetrahedron Lett.* 1995, 36, 7511.
- Heightman, T.D., Ermert, P., Klein, D. and Vasella, A. Helv. Chim. Acta 1995, 78, 514.
- 5. Butler, R.N. Adv. Heterocyc. Chem. 1977, 21, 378.
- 6. Thomas, E.W. Synthesis 1993, 767.
- Hoos, R., Naughton, A.B. and Vasella, A. Helv. Chim. Acta 1992, 75, 1802.
- Overkleeft, H.S., Wiltenburg, J.v. and Pandit, U.K. Tetrahedron 1994, 50, 4215.
- 9. Shing, T.K.M. J. Chem. Soc., Chem. Commun. 1988, 1221.
- 10. Fleet, G.W.J., Ramsden, N.G. and Witty, D.R. Tetrahedron 1989, 45, 319.
- 11. Hoos, R., Naughton, A.B., Thiel, W., Vasella, A., Weber, W., Rupitz, K. and Withers, S.G. *Helv. Chim. Acta* **1993**, *76*, 2666.
- 12. Heightman, T.D., Galley, C., Vasella, A. unpublished results.
- 13. Pipelier, M. and Vasella, A. unpublished results.
- 14. Granier, T., Vasella, A. unpublished results.
- 15. Known compounds were identified on the basis of their reported physical and spectroscopic data.
- Contrary to the literature procedure the addition of Hünig's base did not improve the yield nor did it accelerate the reaction.
- 17. Cf. the reduced reactivity of di- and oligosaccharide-derived glycosyl donors; Paulsen, H. Angew. Chem., Int. Ed. Engl. **1982**, 21, 155.
- 18. The structure of the sulfonamide 17 is evidenced by the strong IR absorption at 1755 cm<sup>-1</sup> (6, 1685 cm<sup>-1</sup>) and the <sup>19</sup>F-NMR signal for a CF<sub>3</sub> group at -71.4 ppm. The <sup>1</sup>H-NMR signals for H-C(3) at 4.39 ppm (6, 4.00 ppm) and H-C(6) at ca. 4.50 ppm (6, 3.55 ppm) are shifted to lowerfield; the J values J<sub>4,5</sub> = J<sub>5,6</sub> ≈ 2.7 Hz and the long-range coupling (W coupling) between H-C(4) and H-C(6) are best rationalised by assuming a <sup>4</sup>H<sub>5</sub> conformation; cf. Glänzer, B.I., Györgydeák, Z., Bernet, B., Vasella, A. *Helv. Chim. Acta* 1991, 74, 343.

 Meanwell, N.A., Hewawasam, P., Thomas, J.A., Wright, J.J.K., Russell, J.W., Gamberdella, M., Goldenberg, H.J., Seiler, S.M. and Zavoico, G.B. J. Med. Chem. 1993, 36, 3251.

(Received in England 23 July 1998)