

TETRAHEDRON LETTERS

A FACILE NEW METHOD FOR SELECTIVE DEPROTECTION OF N-(tert-BUTOXYCARBONYL)-PROTECTED CARBOXAMIDES WITH Yb(OTf)3 SUPPORTED ON SILICA GEL

Hiyoshizo Kotsuki,* Takeshi Ohishi, Tomohiro Araki, and Koji Arimura

Department of Chemistry, Faculty of Science, Kochi University, Akebono-cho, Kochi 780, Japan

Received 24 March 1998; revised 23 April 1998; accepted 8 May 1998

Abstract: A selective new method for the deprotection of N-Boc carboxamides was achieved by using $Yb(OTf)_3$ supported on silica gel under solvent-free conditions. © 1998 Elsevier Science Ltd. All rights reserved.

The *tert*-butoxycarbonyl (Boc) group is widely recognized as a convenient group for protecting a variety of amino compounds.¹ Classically, deprotection of the *N*-Boc group can be performed by the action of strong acids such as CF₃COOH and HCl,¹ and recently much milder reagents have been developed for this purpose.² In a closely related field of protection/deprotection of lactam amines, their carbamate intermediates are extensively employed in organic synthesis.³ In a separate study of the synthesis of natural products,⁴ we required an efficient method for the selective deprotection of *N*-Boc carboxamide derivatives. Toward this end, we were particularly interested in the characteristic Lewis acid nature of Yb(OTf)₃-SiO₂.⁵ In this paper, we describe exactly how this reagent system is useful for the chemoselective deprotection of *N*-Boc carboxamides under solvent-free conditions (Scheme 1).⁶

Scheme 1

The results are summarized in **Table 1**.⁷ A variety of *N*-Boc carboxamide derivatives were cleanly deprotected at room temperature or at 40 $^{\circ}$ C to the corresponding free amides in almost quantitative yields. Excellent chemoselectivity was observed for substrates containing a *N*-Cbz or a *N*-Boc amino group. The method is quite useful for the substrate having an acid-sensitive acetonide function. As exemplified in the last entries of the Table, *N*-Boc protected cyclic amine and pyrazole derivatives survived completely under these conditions. Although the present reactions were able to proceed in a heterogeneous phase in the presence of an organic solvent, they took longer than those using the solvent-free method, e.g., deprotection of *N*-Boc acetanilide in refluxing CH₂Cl₂ completed after 4.5 h (98% yield).

In conclusion, we have developed a very simple and efficient procedure for the chemoselective deprotection of N-Boc carboxamides with Yb(OTf)₃-SiO₂ to the corresponding free amides under solvent-free conditions.⁸ This method offers considerable advantages for use in organic synthesis in view of its simplicity, excellent yields, convenient work-up procedure, and very mild conditions involved.

Substrate	Conditions	Product	Yield, % ^t	Substrate	Conditions	Product	Yield, % ^b
P2N COOEt	rt, 12 h	PHN_CO	OEt 97		40 °C,	$\overline{\bigcirc}$	100
CbzPN_COO	Et ^{40 °C,} 0	Cbz H NCC	DOEt 99	O P	511		
PhCH ₂ NPAc	40 °C, 60 h	PhCH ₂ NH/	Ac 99	o CC	40 °C, ⊃OMe 3 h 0≂	K Co	ОМе ^{100°}
PhN P Ac	40 °C, 3 h	PhN H Ac	98	X	2	$\mathcal{X}_{\mathcal{P}}$	2
	40 °C, 66 h	√N C O	NH2 96	O N N	40 °C, Bu ^t 1 h O≠		Bu ^t 97
	40 °C, 2 h		`Ph 1 00	Unreactive sul	bstrates:		٦
	40 °C, 6 h		96	ACQ	C12H25		NP ™N
		O' N H		(40 °C	C, 24 h)	(40 °C, 2	24 h)

Table 1. Selective Deprotection of *N*-Boc-Protected Carboxamides with $Yb(OTf)_3 / SiO_2 (P = Boc)^a$

^a All reactions were performed using 9% Yb(OTf)₃-SiO₂ (400 mg / mmol). ^b Isolated yield. ^c No racemization was observed (specific rotation measurement was performed after reconversion to the starting *N*-Boc lactam).

General procedure: A mixture of the starting material (2 mmol) and 9% Yb(OTf)₃-SiO₂ (800 mg)⁵ was suspended in 2 ml of CH₂Cl₂ and the solvent was removed *in vacuo*.⁹ After standing at either room temperature or at 40 °C,¹⁰ the product was extracted into ethyl acetate.¹¹ Concentration and purification by silica gel column chromatography or preparative TLC gave the corresponding free amide.

Acknowledgment. We thank Sumitomo Chemical Co., Ltd., for generously supplying Boc₂O.

References and Notes

- 1. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis; 2nd Ed., John Wiley & Sons: New York, 1991.
- Hamada, Y.; Kato, S.; Shioiri, T. *Tetrahedron Lett.* 1985, *26*, 3223-3226; Sakaitani, M.; Ohfune, Y. *ibid.* 1985, *26*, 5543-5546; Nigami, S. C.; Mann, A.; Taddei, M.; Wermuth, C.-G. *Syn. Commun.* 1989, *19*, 3139-3142; Sivanandaiah, K. M.; Suresh Babu, V. V.; Gangadhar, B. P. *Tetrahedron Lett.* 1996, *37*, 5989-5990.
- Coppola, G. M.; H. F. Schuster Asymmetric Synthesis. Construction of Chiral Molecules Using Amino Acids, John Wiley & Sons: New York, 1991. See also: Stafford, J. A.; Brackeen, M. F.; Karanewsky, D. S.; Valvano, N. L. Tetrahedron Lett. 1993, 34, 7873-7876; Wei, Z.-Y.; Knaus, E. E. ibid. 1994, 35, 847-848.
- Kotsuki, H.; Iwasaki, M.; Ochi, M. Heterocycles, 1994, 38, 17-20; Kotsuki, H.; Ohishi, T.; Araki, T. Tetrahedron Lett. 1997, 38, 2129-2132.
- 5. Kotsuki, H.; Arimura, K. Tetrahedron Lett. 1997, 38, 7583-7586.
- For related papers on the use of silica gel for deprotection of the N-Boc group, see: Apelqvist, T.; Wensbo, D. Tetrahedron Lett. 1996, 37, 1471-1472; Siro, J. G.; Martín, J.; García-Navío, J. L.; Remuiñan, M. J.; Vaquero, J. J. Synlett 1998, 147-148.
- 7. Satisfactory spectral data were obtained for all new compouds.
- 8. The use of Yb(OTf), or SiO₂ separately as the reagent showed no synthetic value.
- 9. To dissolve the starting substrate, CH₂Cl₂ can be replaced with any solvent, e.g., AcOEt and THF.
- 10. During the reaction, carbon dioxide gas evolution was observed (positive $Ba(OH)_2$ test).
- 11. Due to the significant loss of Yb(OTF), from the SiO, surface, recycling the catalyst was fruitless.