A CONCISE SYNTHESIS OF ARNOTTIN I VIA INTERNAL BIARYL COUPLING REACTION USING PALLADIUM REAGENT ⁵

Takashi Harayama* and Hirotake Yasuda

Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka 1-1-1,Okayama 700, Japan

Abstract---Total synthesis of arnottin I (1) was accomplished *via* the internal arylaryl coupling reaction of iodo-ester (2) by the palladium-assisted cyclization reaction.

The structure of amottin I (1) isolated from *Xanthoxylum arnottianum* Maxim. has recently been identified by its synthesis busing the common intermediate for the synthesis of chelerythrine. Its skeleton, 6*H*-benzo[*d*]naphtho[1,2-*b*]pyran-6-one (A) is the same as that of gilvocarcin type, which has attracted much attention because of its high antitumor activity. Thus, we developed a convenient and concise synthetic method for 1. Since the internal cross coupling reaction with palladium catalyst has recently been utilized for the synthesis of condensed aromatic compounds, we designed a synthetic plan for 1 involving an internal biaryl coupling reaction by Pd as a key reaction shown in Scheme 1.

This paper is dedicated to the memory of the late Professor Syun-ichi Yamada

It was reported that an internal coupling reaction of bromo-ester (5a) with Pd(OAc)₂ (0.1 eq), triphenyl-phosphine (0.2 eq), and sodium acetate (2.4 eq) in dimethylacetoamide at 170°C gave cyclized product (6) in 41% yield.^{5a} To improve the yield, cyclization reaction of 5 was examined using Pd(II) including purified Pd(OAc)₂,⁶ ligand and base. The results, as summarized in Table I, indicated that iodo-ester (5b) is more reactive than bromo-ester (5a). Interestingly, the reaction of 5b with Pd(OAc)₂ in the presence of bidentate ligand (DPPP) or without ligand provided 6 in a higher yield (see runs 7-9) in comparison with reaction of 5b with other Pd reagents (see runs 10 -13). However, reaction of 5c⁷ was unfruitful.

Table 1. Results of Cyclization Reaction of Phenyl 2-Substituted Benzoate (5) a)

starting material	run	catalyst	equiv.	ligand	solvent	base	time	temp.	yield of 6 (%)
	1	Pd(OAc) ₂	0.1	PPh ₃	DMF	NaOAc	2 h	reflux	61
Eo	2	Pd(OAc) ₂	0.1		DMF	NaOAc	48 h	reflux	59
5a	3	$Pd(OAc)_2$	0.5	PPh_3	DMF	NaOAc	2 h	геflux	15
	4	$Pd(OAc)_2$	0.1	PPh_3	benzene	NaOAc	2 h	reflux	— b)
	5	Pd(OAc) ₂	0.1	PPh ₃	DMF	NaOAc	1.5 h	reflux	68
5b	6	$Pd(OAc)_2$	0.1	POT	DMF	Ag_2CO_3	24 h	reflux	38
	7	$Pd(OAc)_2$	0.1	DPPP	DMF	NaOAc	2 h	reflux	75
	8	Pd(OAc) ₂	0.1		DMF	NaOAc	1 h	reflux	84
	9	$Pd(OAc)_2$	0.1		DMF	NaOAc	5 h	130°C	84
	10	Pd(PPh ₃) ₂ Cl ₂	0.1	_	DMF	NaOAc	1.5 h	130°C	66
	11	Pd(acac) ₂	0.1		DMF	NaOAc	1.5 h	130°C	68
	12	$Pd(acac)_2$	0.1	PPh_3	DMF	NaOAc	2.5 h	130°C	57
	13	Pd(PPh ₃) ₄	0.1		DMF	NaOAc	4 h	_130°C	54
	14	Pd(OAc) ₂	0.1	PPh ₃	DMF	'Pr ₂ NEt	8 h	reflux	12
5c	15	$Pd(OAc)_2$	0.1	-	DMF	NaOAc	3.5 h	reflux	— ^{c)}
	16	$Pd(OAc)_2$	0.1	DPPP	DMF	'Pr ₂ NEt	3 h	reflux	20
	17	Pd(PPh ₃) ₂ Cl ₂			DMA	NaOPiv	10 h	80°C	22 ^{d)}
	18	Pd(PPh ₃) ₂ Cl ₂			DMF	'Pr ₂ NEt	8 h	reflux	22 ^{e)}
	19	Pd(acac) ₂	0.1	DPPP	DMF	'Pr ₂ NEt	24 h	reflux	— f)
	20	$Pd(PPh_3)_4$	0.1	_	DMF	'Pr ₂ NEt	4 h	reflux	g)

a) All reactions were carried out using Pd catalyst and ligand in a ratio of 1:2 and 2 mol equivalent of base. b) **5b** was recovered in 45% yield. c) Acetate (**5**, X=OAc) was obtained in 24% yield.

d) See reference 5c). Hydrolysis product (5, X=OH) was obtained in 21% yield. e) Phenyl benzoate was obtained in 40% yield together with 8% yield recovered 5c. f) Phenyl benzoate was obtained in 90% yield. g) Phenyl benzoate and 5c were obtained in 23 and 41% yields, respectively.

Table 2. Results of Cyclization Reaction of 1-Naphthyl Benzoate (7) a)

starting material	run	catalyst	equiv.	ligand	time	temp.	yield of 8 (%)
	1	Pd(OAc) ₂	0.1	PPh ₃	3 h	150°C	55
	2	$Pd(OAc)_2$	0.1		4 h	130°C	48
	3	$Pd(OAc)_2$	0.1		2 h	reflux	51
7.	4	$Pd(PPh_3)_2Cl_2$	0.1		5 h	130°C	59
7a	5	$Pd(PPh_3)_2Cl_2$	0.2		3.5 h	130°C	70
	6	Pd(acac) ₂	0.1	PPh_3	1.5 h	130°C	59
	7	Pd(acac) ₂	0.1		2.5 h	130°C	72
	8	Pd(PPh ₃) ₄	0.1		5 h	130°C	49
	9	Pd(OAc) ₂	0.1	_	16 h	130°C	58
	10	$Pd(OAc)_2$	0.1		2 h	reflux	47 b)
76	11	$Pd(PPh_3)_2Cl_2$	0.1	_	5 h	130°C	60
7b	12	Pd(acac) ₂	0.1		4 h	130°C	76
	13	Pd(acac) ₂	0.1	PPh_3	3 h	130°C	79
	14	$Pd(PPh_3)_4$	0.1		5 h	130°C	64

a) All reactions were carried out using Pd catalyst and ligand in a ratio of 1:2 and 2 mol equivalent of AcONa. b) Demethylated compound (B) was obtained in 30% yield.

$$MeO$$
 O O O O O O

Table 3. Results of Cyclization Reaction of 6,7-Methylenedioxy-1-naphthyl 2,3-Dimethoxy-6-iodobenzoate (2) to Arnottin I (1)^{a)}

run	catalyst	equiv.	ligand	time	temp.	yield of 1 (%)
1	Pd(PPh ₃) ₂ Cl ₂	0.1		5 h	130°C	52
2	Pd(acac) ₂	0.1	PPh_3	4 h	130°C	56
3	Pd(acac) ₂	0.1	PPh_3	2 h	150°C	72
4	$Pd(PPh_3)_4$	0.1		3.5 h	130°C	58
5	$Pd(PPh_3)_4$	0.1	_	2 h	150°C	71

a) All reactions were carried out using Pd catalyst and ligand in a ratio of 1:2 and 2 mol equivalent of AcONa.

Next, the internal coupling reaction of naphthyl benzoate (7)⁸ to tetracyclic compound (8) was examined. As shown in Table 2, Pd(acac)₂ and/or Pd(PPh₃)₂Cl₂ were more effective than Pd(OAc)₂ or Pd(PPh₃)₄ in the synthesis of 8.

Finally, 1 was synthesized according to the synthetic plan shown in Scheme 1. Thus, ester (2) was prepared from acid (3)⁹ and naphthol (4)¹¹ in 57% yield by Parish's method.¹⁰ Palladium-assisted internal biaryl coupling reaction of 2 provided the cyclization product in a high yield as shown in Table 3 (see runs 3 and 5). The synthetic sample was identified with the authentic sample of arnottin I (1).

In conclusion, the present method using the Pd reagent is convenient for preparing benzonaphthopyranone derivatives (A).

REFERENCES AND NOTES

- 1. a) H. Ishii, T. Ishikawa, and J. Haginiwa, Yakugaku Zasshi, 1977, 97, 890; b) H. Ishii, T. Ishikawa, M. Murota, Y. Aoki, and T. Harayama, J. Chem. Soc., Perkin Trans. 1, 1993, 1019.
- 2. H. Ishii, T. Ishikawa, S. Takeda, M. Suzuki, and T. Harayama, Chem. Pharm. Bull., 1992, 40, 2002.
- 3. a) H. Nakano, Y. Matsuda, K. Ito, S. Ohkubo, M. Morimoto, and F. Tomita, J. Antibiotics, 1981, 34, 266; b) M. Morimoto, S. Ohkubo, F. Tomita, and H. Marumo, J. Antibiotics, 1981, 34, 701; c) O. Kikuchi, T. Eguchi, K. Kakinuma, Y. Koezuka, K. Shindo, and N. Otake, J. Antibiotics, 1993, 46, 985; d) U. Hacksell and G. D. Daves, Jr., Prog. Med. Chem., 1985, 22, 1.
- 4. a) J. Tsuji, "Palladium Reagents and Catalysts," John Wiley & Sons Inc., New York, 1995, pp. 125-252; b) D. W. Knight, "Comprehensive Organic Synthesis," Vol. 3, ed. by B. M. Trost, I. Fleming, Pergamon Press, Oxford, 1991, pp. 481-520.
- 5. a) D. E. Ames and A. Opalko, *Tetrahedron*, 1984, 40, 1919; b) G. Bringmann, R. Walter, and R. Weirich, *Angew. Chem., Int. Ed. Engl.*, 1990, 29, 977 and references cited therein; c) T. Hosoya, E. Takashiro, T. Matsumoto, and K. Suzuki, *J. Am. Chem. Soc.*, 1994, 116, 1004 and references cited therein; d) P. P. Deshpande and O. R. Martin, *Tetrahedron Lett.*, 1990, 31, 6313; e)T. Hosoya, E. Takashiro, T. Matsumoto, and K. Suzuki, *Tetrahedron Lett.*, 1994, 35,4591.
- 6. K. Ohrai, K. Kondo, M. Sodeoka, and M. Shibasaki, J. Am. Chem. Soc., 1994, 116, 11737.
- 7. Triflate ester (5c) was prepared from salicylaldehyde *via* three steps in total yield of 51%; i) reaction with Tf₂O, ii) oxidation with NaClO₂ and H₂O₂ in aqueous MeCN, and iii) reaction with (COCl)₂, followed by phenol.
- 8. Naphthyl ester (7b) was prepared from acid (3)⁹ in 72% yield by successive treatment with (CF₃CO)₂O and 1-naphthol in benzene at 60°C.¹⁰
- 9. S. F. Dyke and E. P. Tiley, Tetrahedron, 1975, 31, 561.
- 10. R. C. Parish and L. M. Stock, J. Org. Chem., 1965, 30, 927.
- 11. Naphthol (4) was prepared from 6,7-dimethoxy-1-tetralone *via* five steps in total yield of 15%; i) demethylation with BBr₃, ii) methylenation with CH₂Br₂ in the presence of CsF, iii) enol acetylation with isopropenyl acetate, iv) dehydrogenation with DDO, and v) hydrolysis with 5% NaOH. ¹²
- 12. G. Wang and M. Cushman, Synth. Commun., 1991, 21, 989.

Received, 20th February, 1997