179. Die Oxidation von 3-(1-Nitro-2-oxocycloalkyl)propanal

von Alois Zürcher und Manfred Hesse*

Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

(I.IX.87)

The Oxidation of 3-(1-Nitro-2-oxocycloalkyl)propanal

Oxidation of the title compound 1 with KMnO₄ under neutral conditions led to the corresponding acid 2, 5-(2,3,4,5-tetrahydro-2-nitro-5-oxo-2-furyl) pentanoic acid (4), and 4-oxononadioic acid (6). On the basis of experimental results the mechanism of the formation of 4 is discussed (*Scheme 1*). Oxidation of 1 with KMnO₄ under basic conditions gave 6 which was transformed to (*E*)-4,5-dihydro-5-(2'-oxocyclopentyliden)furan-2(3H)-one (12) with benzene/TsOH (*Scheme 3*). In contrast to this result the corresponding 4-oxoheptandioic acid (22) yields 1,6-dioxaspiro[4.4]nonan-2,7-dione (23) only (*Scheme 4*).

In [1] haben wir über die Bildung von 5-(2,3,4,5-Tetrahydro-2-nitro-5-oxo-2-furyl)pentansäure (4) aus 3-(1-Nitro-2-oxocyclohexyl)propanal (1) durch KMnO₄-Behandlung

berichtet (Schema 1). Über den Reaktionsablauf dieser Oxidation wurden nur Vermutungen angestellt, experimentelle Fakten fehlten. Im folgenden geben wir nun die experimentellen Resultate einer eingehenderen Untersuchung wieder.

Bei der KMnO₄-Oxidation von 1 in THF/H₂O entstehen neben polaren Produkten (z.B. 3) das erwähnte 4 (7,5%) und die Carbonsäure 2 (39%); Schema 1. Die (C(1)-C(2))-Bindung in 2 ist, wie frühere Arbeiten an analogen Verbindungen gezeigt haben [2], leicht durch externe Nukleophile zu öffnen: Unter wässrig-basischen Bedingungen erfolgt die Bildung der Nitrodicarbonsäure 3 in nahezu quantitativer Ausbeute und mit NaOMe/MeOH diejenige des entsprechenden Monomethylesters 5 (76%; Schema 2). Unter diesen Bedingungen werden keine nennenswerten Mengen der entsprechenden Oxosäuren (Umwandlung $C(NO_2)H \rightarrow C = O$) gefunden. Die 4-Oxononandisäure (6) ist jedoch das Hauptprodukt der Oxidation von 1 mit $KMnO_4$ in wässriger KOH-Lösung. Die Verbindungen 4 und 6 werden auch bei der KMnO₄-Behandlung der Carbonsäuren 2 und 3 gebildet. Auch der offenkettige Nitromethylester 5 bildet bei der Oxidation den Methylester von 4, nämlich 7, und den Oxoester 8 (Schema 2). Damit ist sichergestellt, dass bei der Herstellung von 4 aus 1 zunächst die Carbonsäure 2 entsteht, die hydrolytisch zur Nitrodicarbonsäure 3 geöffnet wird. Letztere cyclisiert sich durch Angriff der 1-ständigen Carboxylat-Gruppe am Nitronat zu der nicht nachgewiesenen 5-(2,3,4,5-Tetrahydro-2-nitroso-5-oxo-2-furyl)pentansäure (9), die in Gegenwart von $KMnO_4$ zu 4 oxidiert wird (Schema 1).

Wir hatten berichtet [1], dass das Nitrolacton 4 mit wässriger Säure in die Oxodicarbonsäure 6 übergeführt werden kann. Bei der Behandlung von 4 mit methanolischer HCl-Lösung wurde der 6 entsprechende Dimethylester 10 nachgewiesen. Ferner entstand auch der 4 entsprechende Methylester 7 (*Schema 2*). In mechanistischer Hinsicht von Interesse ist die Bildung des dritten Reaktionsproduktes aus 4, des Monooxims 11. Bei dieser Substanz handelt es sich um ein Gemisch stellungsisomerer Oxime. Durch Umsetzung von 6 mit NaNO₂ in methanolischer HCl-Lösung wurde das in spektraler und chromatographischer Hinsicht gleiche Isomerengemisch erhalten. Aus der Bildung von 11 lässt sich folgern, dass die NO_2 -Gruppe in 4 unter Einfluss des Äther-O-Atoms ionisch als Nitrit-Anion abgespalten wird. Durch Reaktion des Oxonium-Ions mit H₂O bzw. MeOH lassen sich die Produkte 8 und 10 erklären; 11 ist das Oximierungsprodukt von 10. Die spontane Zersetzung von 4 unter Abspaltung nitroser Gase konnte in dieser Versuchsserie nicht beobachtet werden.

Wurde die Oxodicarbonsäure 6 in Benzol mit katalytischen Mengen p-Toluolsulfonsäure (TsOH) unter Wasserabscheidung gekocht, so bildete sich die Cyclopentyliden-Verbindung 12 (Schema 3). Hierbei handelt es sich um eine isomerenreine Substanz, deren Struktur aufgrund spektraler Daten zu (E)-4,5-Dihydro-5-(2-oxocyclopentyliden)furan-2(3H)-on bestimmt wurde. Die Entscheidung zwischen dem (E)- und dem (Z)-Isomeren geschah aufgrund der Ähnlichkeit spektraler Daten mit der durch Röntgenstrukturanalyse bestimmten Verbindung (E)-4,5-Dihydro-5-(2-oxocyclohexyliden)furan-2(3H)-on (13). Die Hydrolyse von 12 mit 1n wässriger HCl lieferte die kristalline 4-Oxo-4-(2-oxocyclopentyl)butansäure (14).

In Analogie zur Umwandlung des Nitroaldehydes 1 in die Oxodicarbonsäure 6 wurde aus 3-(1-Nitro-2-oxocycloheptyl)propanal (15) [3] mit KMnO₄/KOH/H₂O die homologe Oxodicarbonsäure 16 erhalten (*Schema 3*). Neben unverändertem Ausgangsmaterial wurden bei der Umsetzung von 16 mit Benzol/TsOH die beiden Verbindungen 13 und 17 gebildet. Substanz 17 wurde als Hydrolyseprodukt von 13 nachgewiesen. Wie erwähnt, erfolgte die Strukturableitung von 13 auf röntgenographischem Wege. *Hünig et al.* [4] haben über die Bildung von 13 berichtet und das (*Z*)-Isomere abgebildet. Wir haben nach ihren Vorschriften die Verbindung synthetisiert und festgestellt, dass sie mit 13 identisch ist und es sich demzufolge um das (*E*)-Isomer handelt.

In [1] haben wir berichtet, dass sich das Nitrolacton 4 bei der Destillation zersetzt und bei der nachfolgenden DC-Analyse des Destillates nur die Anwesenheit der Oxodicarbonsäure 6 angezeigt wird. Als Zwischenprodukt wurde das Spirodilacton 18 (*Schema 4*) angenommen, welches hydrolytisch (DC) in 6 übergehen könnte. Die Umsetzungen (Benzol/TsOH) der Oxodicarbonsäuren 6 und 16 lieferten keine Hinweise auf die

Bildung entsprechender Spirodilactone. Wir haben daraus den Schluss gezogen, dass Spirodilactone mit 7-/5- bzw. 8-/5-Ringen sehr hydrolyse-empfindlich sind. Hingegen sollte die Kombination zweier 5-Ringe nach dieser Methode möglich sein [5] [6].

Der 4-Nitroheptandisäure-dimethylester (19) wurde durch Umsetzung von Nitromethan mit Acrylsäuremethylester erhalten [7] (*Schema 4*) und zur kristallinen Oxodicarbonsäure 20 hydrolysiert. Oxidation von 20 mit $K_2S_2O_8/KOH/H_2O$ [8] lieferte drei Produkte: 3-(2,3,4,5-Tetrahydro-2-nitro-5-oxo-2-furyl)propansäure (21), 4-Oxoheptandisäure (22) und das erwartete 1,6-Dioxaspiro[4.4]nonan-2,7-dion (23). Beim Schmelzen von 21 gefolgt von DC-Chromatographie der erstarrten Schmelze konnten sowohl das Spirodilacton 23 als auch die Oxodicarbonsäure 22 nachgewiesen werden. Letztere liess sich mit Benzol/TsOH in guter Ausbeute zu 23 (80%) umsetzen. Ausser dem Reaktionsgemisch konnten keine 12 oder 14 entsprechenden Produkte isoliert werden. Die basenkatalysierte Hydrolyse von 23 lieferte die Oxodicarbonsäure 22. Die hier angeführten Befunde untermauern die in [1] angegebenen Reaktionswege der Bildung und Zersetzung von 4.

Die vorliegende Arbeit wurde in dankenswerter Weise vom Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung unterstützt. Unser Dank gilt ferner den Herren A. Guggisberg und St. Bienz für technische Assistenz, Herrn Dr. R. Prewo für die Ausführung der Röntgenstrukturanalyse von 13 und den analytischen Abteilungen unseres Institutes für die Aufnahme der Spektren.

Experimenteller Teil

Allgemeines. Falls nicht anders angegeben gelten: Trocknen der org. Extrakte über MgSO₄, Schmp. auf *Mettler FP-5*. IR (CHCl₃): in cm⁻¹. ¹H-NMR (200 MHz) und ¹³C-NMR (50,4 MHz): *Varian XL-200*; in CDCl₃ relativ zu internem TMS, δ in ppm, *J* in Hz. CI-MS: *MAT 112S*; Isobutan. EI-MS: *MAT 112S*; *m/z* (> 5% ab *m/z* 40).

1. Reaktionen mit 3-(1-Nitro-2-oxocyclohexyl)propanal (1). -1.1.5 - (2', 3', 4', 5' - Tetrahydro-2' - nitro-5-oxo-2' - furyl)pentansäure (4). Entsprechend Versuch 2 in [1] wurden 0,50 g (2,5 mmol) 1 [9] in 5 ml THF mit 0,20 g (1,27 mmol) KMnO₄ in 10 ml H₂O oxidiert: 0,21 g (39%, schneller wandernd) 3-(1'-Nitro-2'-oxocyclohexyl)propansäure (2) [1] und 0,08 g (7,5%) 4¹).

¹) Auf die Isolierung des im DC nachgewiesenen polaren Produktes 6 wurde verzichtet.

4: Schmp. 95–97° (Zers.; CHCl₃/Hexan). IR: 3500–2400 (COOH), 2950, 2880, 1822 (Lacton), 1715 (COOH), 1565 (NO₂), 1422, 1355, 1170, 1102, 1040, 928. ¹H-NMR: 2,9–2,4 (*m*); 2,3–2,1 (*m*); 1,85–1,55 (*m*); 1,55–1,25 (*m*). ¹³C-NMR: 178,5, 173,3 (2*s*, CO); 114,6 (*s*, C(2')); 35,9, 33,3, 32,8, 26,4, 24,0, 22,6 (6 *t*). CI-MS: 203, 185 ([*M*-NO₂]⁺). Anal. ber. für C₉H₁₃NO₆ (231,21): C 46,75, H 5,67, N 6,06; gef.: C 46,89, H 5,86, N 6,22.

Wurde 1 mit anderen Oxidationsmitteln (Na MnO_4 , Na₂S₂O₄ oder 30% H₂O₂ in wässr. Lsg.) behandelt, so wurden neben 2 und 6 kleinere Mengen an 4 gebildet (DC, IR).

Nach der Umsetzung von 2 mit $KMnO_4$ entsprechend der oben beschriebenen Methode wurden 2, 4 und 6 nachgewiesen. Ebenso wurden bei der $KMnO_4$ -Oxidation von 3, 4 und auch 6 gebildet (DC, IR).

1.2. *4*-*Nitrononandisäure* (3). Es wurden 1,50 g (7 mmol) 2 und 0,76 g (13,3 mol) KOH in 20 ml THF und 0,2 ml (11 mmol) H_2O vorgelegt. Nach 20 h Rühren bei 20° wurde mit AcOH bei – 20° angesäuert, mit CHCl₃ extrahiert, der Extrakt getrocknet und eingedampft: 1,65 g (100%) Rohprodukt ergaben nach Chromatographie (CHCl₃, Kieselsäure) 1,05 g (65%) 3. Schmp. 81–82°. IR: 3500–2500 (COOH), 2950, 2880, 1715 (COOH), 1555 (NO₂), 1415, 1140, 1040, ¹H-NMR: 10,76 (br., 2 COOH); 4,67–4,54 (*m*, H–C(4)); 2,55–1,94 (*m*, 7 H); 1,87–1,61 (*m*, 3 H); 1,49–1,35 (*m*, 2 H). ¹³C-NMR: 179,7, 178,1 (2 *s*, 2 COOH); 87,2 (*d*, C(4)); 33,5, 33,3, 29,9, 28,2, 25,0, 23,8 (6 *t*). CI-MS: 234 (11, $[M+1]^+$), 218 (10), 217 (7), 216 (59), 203 (14), 200 (8), 198 (14), 187 (49), 186 (6), 185 (71), 184 (5), 182 (5), 170 (9), 169 (92), 168 (20), 167 (87), 152 (11), 151 (86), 150 (13), 141 (19), 140 (5), 139 (16), 124 (20), 123 (100), 121 (8), 114 (5), 111 (7), 109 (7), 105 (8), 101 (9), 99 (6), 97 (5), 96 (6), 95 (33), 93 (10), 85 (16), 83 (9), 82 (6), 81 (58), 80 (6), 79 (18), 71 (6), 67 (17). Anal. ber. für C₉H₁₅NO₆ (233,22): C 46,35, H 6,48, N 6,01; gef.: C 45,90, H 6,60, N 6,02.

1.3. Behandlung von 4 mit MeOH/HCl. Eine Probe 4 wurde 20 min mit abs.MeOH/HCl behandelt, dann mit Na₂CO₃ neutralisiert, in H₂O/CHCl₃ aufgenommen und extrahiert. Die org. Phase wurde getrocknet und eingedampft. Der Rückstand wurde durch präp. DC (Et₂O/Hexan 4:1) getrennt: 3-(Hydroxymino)-4-oxononandisäure-dimethylester (11)/Isomer (schneller wandernd) und 4-Oxononandisäure-dimethylester (10).

11/Isomer: IR: 3560, 3400–3150 (OH), 2960, 1735, 1695, 1555, 1440, 1365. ¹H-NMR: Gemisch *ca*. 2:3 (OH bei 9,11 und 8,83, 2 *s*). Cl-MS: 260 ([*M*+1]⁺), 143, 115 (100).

10 [10]: 1R: 2960, 1730 (br.), 1440, 1365. ¹H-NMR: 3,68 (*s*, CH₃); 3,67 (*s*, CH₃); 2,75–2,29 (*m*, 8 H); 1,69–1,59 (*m*, 4 H). CI-MS: 231 ([*M*+1]⁺), 199.

Nach kürzeren Reaktionszeiten wurden im DC neben 10 und 11 auch 7 (vgl. *Versuch 1.5*) nachgewiesen. Durch Umsetzen von 4-Oxononandisäure (6) mit überschüssigem NaNO₂ in McOH/HCl wurde nach üblicher Aufarbeitung ein Rohprodukt erhalten, welches mit Hexan/Et₂O 2:1 chromatographiert (Kieselgel) ein Oxim-Gemisch ergab, welches gleiche Eigenschaften (DC, IR, ¹H-NMR, CI-MS) wie 11/Isomer aufwies.

1.4. *4-Nitrononandisäure-9-methylester* (5). Zu 2,70 g (12,5 mmol) **2** in 50 ml MeOH wurde MeONa (50 mmol in 100 ml MeOH) bei 0° innerhalb 1 h entsprechend [2] zugetropft. Nach 2 h Rühren bei 0° wurde mit AcOH angesäuert, eingedampft, der Rückstand in CHCl₃/1N wässr. HCl aufgenommen und die org. Phase abgetrennt, getrocknet und eingedampft: 3,07 g (99%) Rohprodukt. Umkristallisation aus Et₂O/Hexan ergab 2,34 g (76%) **5**, beige Kristalle. Schmp. 45–46°. IR: 3500–2500 (COOH), 2960, 2870, 1735, 1605, 1555 (NO₂), 1440, 1370, 1100. ¹H-NMR: 10,75 (br., COOH); 4,65–4,51 (*m*, H–C(4)); 3,68 (*s*, CH₃O); 2,48–1,93 (*m*, 7 H); 1,86–1,58 (*m*, 3 H); 1,45–1,30 (*m*, 2 H). ¹³C-NMR: 177,5 (*s*, COOH); 173,7 (*s*, COOR); 87,3 (*s*, C(4)); 51,6 (*q*, CH₃); 33,5, 33,4, 29,8, 28,2, 25,1, 24,1 (6 *t*). CI-MS: 248 ([*M*+1]⁺). Anal. ber. für C₁₀H₁₇NO₆ (247,25): C 48,58, H 6,93, N 5,67; gef.: C 48.49, H 6,78, N 5,65.

1.5. 5 - (2', 3', 4', 5' - Tetrahydro-2' - nitro-5 - oxo-2' - furyl) pentansäure-methylester (7). Zu ciner Lsg. von 0,49 g (2,0 mol) 5 in 8 ml THF wurde 0,50 g (3,0 mmol) KMnO₄ in 15 ml H₂O gegeben und 24 h bei 20° gerührt. Dann wurde über*Celite* $filtriert, die Lsg. mit 1N wässr. HCl angesäuert, mit CHCl₃ extrahiert und an Kieselsäure chromatographiert (CHCl₃). Nach Trocknen i. HV. (Entfernen von eventuell gebildetem <math>\gamma$ -Butyrolacton aus THF) wurden zwei Produkte isoliert: 0,84 g (17%, schneller wandernd) 7, farbloses Öl, und 0,23 g (53%) 4-Oxononandisäure-9-methyl-ester (8), farblose Kristalle. Schmp. 62–64°.

7: IR (Film): 2960, 2880, 1820 (Lacton), 1740 (Ester), 1565 (NO₂), 1440, 1260, 1105, 1045, 930. ¹H-NMR: 3,67 (*s*, CH₃O); 2,80–2,44 (*m*, 5 H); 2,37–2,30 (*t*, 2 H); 2,20–2,05 (*m*, 1 H); 1,77–1,51 (*m*, 3 H); 1,49 1,26 (*m*, 1 H). ¹³C-NMR: 173,4, 173,3 (2*s*, CO); 114,6 (*s*, C(2')); 51,6 (*q*, CH₃); 35,8, 33,4, 32,8, 26,4, 24,2, 22,7 (6 *t*). CI-MS: 246 ($[M+1]^+$), 199 (100, $[M-NO_2]^+$). Anal. ber. für C₁₀H₁₅NO₆ (245,23): C 48,98, H 6,17, N 5,71; gef.: C 48,30, H 6,08, N 5,40.

8: IR: 3400–2400 (COOH), 2960, 2870, 1722 (br.), 1605, 1445, 1415, 1370, 1105. ¹H-NMR: 9,0–8,0 (COOH); 3,67 (*s*, CH₃O); 2,76–2,59 (*m*, 4 H); 2,52–2,45 (*m*, 2 H); 2,36–2,30 (*m*, 2 H); 1,70–1,59 (*m*, 4 H). ¹³C-NMR: 208,2 (*s*, CO); 178,2 (*s*, COOH); 173,9 (*s*, COOR); 51,5 (*q*, CH₃); 42,1, 36,7, 33,7, 27,7, 24,3, 23,1 (*b t*). EI-MS: 198 (3, $[M-H_2O]^+$), 167 (22, $[M-H_2O-CH_3O]^+$), 143 (24), 139 (17), 125 (8), 124 (6), 121 (6), 116 (43), 115 (16), 112 (6),

111 (81), 101 (50), 98 (34), 97 (8), 93 (5), 87 (39), 84 (10), 83 (30), 74 (9), 73 (54), 69 (5), 59 (41), 57 (7), 56 (16), 55 (100), 45 (21), 43 (19), 42 (11), 41 (25). Anal. ber. für C₁₀H₁₆O₅ (216,24): C 55,55, H 7,46; gef.: C 55,54, H 7,53. Bei der Oxidation von 5 mit K₂S₂O₈ [8] wurden 7 und 8 nachgewiesen (DC und IR).

1.6. 4-Oxononandisäure (6). Zu 1,0 g (5,0 mmol) 1 in 20 ml H_2O wurden 0,1 g (1,8 mmol) KOH und dann 1,0 g (6,3 mmol) KMnO₄ gegeben und nach 1 h bei 20° über *Celite* filtriert. Daraufhin wurde mit wässr. KOH-Lsg. stark basisch gestellt und auf 50° erhitzt, bei 20° mit 1N wässr. HCl stark sauer gestellt, eingedampft und mit Aceton extrahiert, das Lsgm. eingedampft und der Rückstand aus AcOEt/Hexan umkristallisiert: 0,62 g (61%) 6, farblose Kristalle. Schmp. 107–108°. Die spektralen Daten stimmen mit den früher publizierten überein [1] [11].

1.7. (E)-4,5-Dihydro-5-(2'-oxocyclopentyliden)furan-2(3H)-on (12). In 150 ml Benzol wurden 300 mg (1,49 mmol) 6 und 300 mg (1,6 mmol) TsOH·H₂O unter dem Wasserabscheider gekocht. Nach 4 h wurde auf 20° abgekühlt, über Kieselsäure filtriert und das Filtrat eingedampft: 170 mg (70%) 12. Schmp. 109–110° (Cyclohexan), farblose Nadeln. IR: 2930, 2860, 1820 (Lacton), 1725 (CO), 1650 (C=C), 1435, 1415, 1305, 1290, 1120, 1075, 1010, 1000, 970, 910, 840. IR (KBr): u. a. 1715, 1650, 1635. ¹H-NMR: 3,40–3,29 (m, 2 H–C(4)); 2,79–2,69 (m, 2 H–C(5'), 2 H–C(3)); 2,40–2,32 (t, 2 H–C(3')); 2,04–1,89 (m, 2 H–C(4')). ¹³C-NMR: 208,4 (s, C(2')); 174,2 (s, C(2)); 158,3 (s, C(5)); 113,0 (s, C(1')); 39,7, 26,3, 26,0, 25,4, 20,0 (5 t). CI-MS: 167 ([M+1]⁺). Anal. ber. für C₉H₁₀O₃ (166,18): C 65,05, H 6,07; gef.: C 65,31, H 6,01.

1.8. 4-Oxo-4-(2'-oxocyclopentyl)butansäure (14). In 100 ml 1N wässr. HCl wurden 170 mg (1,02 mmol) 12 5 h bei 25° gerührt und dann mit CHCl₃ extrahiert. Der Extrakt wurde getrocknet, eingedampft und der Rückstand (140 mg (75%) gelbliches, kristallines 14) umkristallisiert. Schmp. 65–66° (AcOEt/Hexan, farblose Nadeln). Die Substanz liegt als Keton/Enol-Gemisch vor. IR: 3510 (Enol), 3400–2300 (COOH), 2970, 1745 (CO), 1715 (CO). IR (KBr): 3700–2300 (COOH), 1705 (br., CO), 1635, 1595, 1405, 1350, 1250. ¹H-NMR: 3,49–3,37 (*m*); 3,25–3,09 (*m*); 2,88–1,82 (*m*). ¹³C-NMR: 212,8, 202,4, 199,6, 191,3, 178,4, 178,2 (6 s); 109,7 (s, C(1'), Enol); 61,9 (d, C(1'), Keton); 38,7, 37,1, 35,8, 30,0, 28,6, 27,7, 25,8, 25,1, 20,7, 20,1 (10 t). CI-MS: 185 ([M+1]⁺). Anal. ber. für C₉H₁₂O₄ (184,19): C 58,69, H 6,47; gef.: C 58,69, H 6,48.

2. Reaktionen mit 3-(1-Nitro-2-oxocycloheptyl)propanal (15). -2.1.4-Oxodecandisäure (16). Es wurden 1,60 g (7,5 mmol) 15 [3] analog Versuch 1.6 umgesetzt: Rohausbeute 1,07 g (67%). Nach Chromatographie (CHCl₃, Kieselsäure) wurden 0,74 g (46%) 16 [4] isoliert, farblose Kristalle. Schmp. 108–110°. IR (KBr): 3700–2300 (COOH), 2940, 2870, 1697 (br., CO), 1465, 1430, 1415, 1380, 1345, 1295, 1245, 1215, 1110, 1090, 1045, 965, 940, 830, 735, 675, 630. ¹H-NMR: 2,76–2,60 (*m*, 4 H); 2,52-2,45 (*t*, 2 H); 2,39-2,32 (*t*, 2 H); 1,72–1,56 (*m*, 4 H); 1,43–1,30 (*m*, 2 H). ¹³C-NMR (CD₃OD): 211,7 (*s*, CO); 177,5, 176,4, (2*s*, 2 COOH); 43,1, 37,9, 34,7, 29,6, 28,6, 25,8, 24,4 (7 *t*). CI-MS: 217 (22, [M+1]⁺), 199 (100, [M + 1 – H₂O]⁺). Anal. ber. für C₁₀H₁₆O₅ (216,24): C 55,55, H 7,46; gef.: C 55,43, H 7,49.

2.2. (E)-4,5-Dihydro-5-(2'-oxocyclohexyliden)furan-2(3H)-on (13). Bei der Umsetzung von 0,216 g (1,0 mmol) 16 analog Versuch 1.7 wurden 60 mg (30%) 13 isoliert. Schmp. 87–89° (Cyclohexan, farblose Kristalle). Daneben wurden 50 mg (20%) 16 und 100 mg (50%) 17 (vgl. 2.3) erhalten. Zur Röntgenstrukturanalyse wurde eine Probe 13 aus AcOEt/Hexan umkristallisiert.

13: IR: 2945, 2870, 1812 (Lacton), 1685 (Keton), 1602 (C=C), 1440, 1430, 1410, 1345, 1325, 1310, 1290, 1260, 1135, 1095, 1060, 1010, 995, 955, 915, 900, 870, 825, 800, 755. IR (KBr): u. a. 1603, 1585. ¹H-NMR: 3,37–3,26 (*m*, 2 H); 2,75–2,57 (*m*, 4 H); 2,43–2,33 (*t*, 2 H); 1,88–1,67 (*m*, 4 H). ¹³C-NMR: 201,2 (*s*, C(2')); 174,2 (*s*, C(2)); 160,5 (*s*, C(5)); 113,2 (*s*, C(1')); 40,7, 27,5, 26,4, 25,3, 22,9, 22,6, (6 *t*). EI-MS: 180 (75, M^{++}), 153 (5), 152 (38), 151 (75), 135 (5), 126 (9), 125 (100), 124 (17), 123 (18), 111 (6), 109 (9), 97 (10), 96 (15), 95 (10), 83 (9), 82 (6), 81 (9), 79 (14), 77 (5), 69 (15), 68 (13), 67 (12), 57 (5), 56 (16), 55 (45), 54 (10), 53 (10), 51 (5), 43 (15), 42 (12), 41 (36), 40 (13). Anal. ber. für C₁₀H₁₂O₃ (180,21): C 66,65, H 6,71; gef.: C 66,41, H 6,76.

Nach [4] wurde aus Cyclohexanon und Bernsteinsäure-dichlorid eine Substanz hergestellt, die in allen Eigenschaften (Schmp., DC, IR, ¹H- und ¹³C-NMR, Misch-¹³C-NMR, MS) mit 13 übereinstimmt. Auf dieser Basis ist die in [4] angegebene Struktur ((Z)-Isomer) zu revidieren.

2.3. 4-Oxo-4-(2'-oxocyclohexyl)butansäure (17). Verbindung 17 entstand bei der säurekatalysierten Hydrolyse von 13 [4] und bei der Bildung von 13, vgl. 2.2. Schmp. 119–121° (Cyclohexan). IR: 3400–2500 (COOH), 2950, 2870, 1750, 1715, 1710, 1625, 1590, 1445, 1420, 1400, 1350, 1320, 1295, 1255, 1245, 1205, 1170, 1075, 1055, 985, 975, 965, 945, 920, 880, 845, 820, 720, 680. ¹H-NMR: 15,33 (*s*, 1 H, Enol); 2,81–2,64 (*m*, 4 H); 2,39–2,30 (*m*, 4 H); 1,74–1,66 (*m*, 4 H). ¹³C-NMR: 200,3 (Keton); 179,2, 178,8 (2*s*, C(4), COOH); 106,6 (*s*, C(2')); 31,9, 30,2, 27,7, 23,3, 22,4, 21,3 (6 *t*). CI-MS: 199 (100, $[M+1]^+$), 181 (20). Anal. ber. für C₁₀H₁₄O₄ (198,22): C 60,59, H 7,12; gef.: C 60,01, H 7,11.

3. Reaktionen mit 4-Nitroheptandisäure-dimethylester (19). -3.1. Synthese von 19 [7]. CH₃NO₂ (30,5 g, 0,5 mmol) und Acrylsäure-methylester (43,5 g, 0,5 mmol) wurden in Gegenwart von 3 g Triton B in 20 ml t-BuOH

umgesetzt. Nach Aufarbeitung und Destillation im Kugelrohr ($110-140^{\circ}/0.03$ mbar) resultierten *ca.* 28 g (*ca.* 50 %) **19**.

3.2. 4-Nitroheptandisäure (20). In 150 ml 18N wässr. H_2SO_4 wurden 4,66 (20 mmol) 19 auf 90° erhitzt. Nach 18 h wurde auf 23° abgekühlt, ges. NaCl-Lsg. zugefügt, mit Et₂O extrahiert, die org. Phase getrocknet und eingedampft: 3,1 g (76%) 20. Eine Probe wurde aus CHCl₃/Hexan umkristallisiert, farblose Kristalle. Schmp. 81–83°. IR (KBr): 3600–2400 (COOH), 1700, 1550, 1445, 1425, 1385, 1340, 1275, 1210, 1090, 1065, 945, 865, 835, 810, 730, 675. ¹H-NMR ((D₆)DMSO/CDCl₃): 7,5 · 5,0 (br., COOH); 4,73–4,65 (*m*, H–C(4)); 2,32–2,25 (*m*); 2,17–2,02 (*m*). ¹³C-NMR ((D₆)DMSO): 173,0 (*s*, COOH); 86,7 (*d*, C(4)); 29,7, 28,1 (2 *t*). CI-MS: 206 (22, $[M+1]^+$), 188 (100, $[M-H_2O]^+$). Anal. ber. für C₇H₁₁NO₆ (205,17): C 40,98, H 5,40, N 6,83; gef.: C 40,62, H 5,30, N 6,62.

3.3. 3 - (2', 3', 4', 5' - Tetrahydro-2' - nitro-5' - oxo-2' - furyl) propansäure (21). Zu 205 mg (1,0 mmol) 20 und 190 mg (3,3 mmol) KOH in 0,5 ml H₂O wurden bei 0° 1,5 ml CH₂Cl₂ und 65 mg (0,2 mmol) Kaliumhexacyanoferrat(III) in 0,5 ml H₂O und dann portionenweise 540 mg (2 mmol) K₂S₂O₈ [8] gegeben. Nach 20 min Rühren bei 20° wurde mit CH₂Cl₂ extrahiert; der Extrakt ergab 25 mg (16%) 1,6-Dioxaspiro[4.4]nonan-2,7-dion (23). Dem Ansäuern der H₂O-Phase mit verd. AcOH bei 0° folgte ein weiterer CH₂Cl₂-Auszug, der 80 mg (40%) 21 ergab; farblose Kristalle. Schmp. 91–94° (Zers.; AcOEt/Hexan). Die wässr. Phase enthielt fast reine 4-Oxoheptandisäure (22) [5], die jedoch nicht isoliert wurde.

21: IR: 3500–2500 (COOH), 2940, 2860, 1822 (Lacton), 1720 (COOH), 1562 (NO₂), 1420, 1335, 1170, 1140, 1095, 940. ¹H-NMR (CD₃OD): 2,83–2,26 (*m*). ¹³C-NMR (CD₃CN): 175,4, 173,6 (2*s*, 2 CO); 115,8 (*s*, C(2')); 33,2, 31,9, 28,5, 27,2^{\checkmark} (4 *t*). CI-MS: 185 (5, [*M*-H₂O]⁺), 157 (100, [*M*-NO₂]⁺). Anal. ber. für C₇H₉NO₆ (203,15): C 41,39, H 4,47, N 6,89; gef.: C 41,67, H 4,34, N 6,67.

Wurde 20 unter gleichen Bedingungen jedoch ohne Gegenwart eines Oxidationsmittels behandelt, so wurden neben 20 und 22 auch *ca.* 5% 23 isoliert; 21 wurde nicht nachgewiesen.

Eine Probe von **21** wurde geschmolzen und *ca*. 5 min bei 110° gehalten, wobei braune Gase entwichen. In der erkalteten Schmelze wurden **23** und **22** nachgewiesen. Das Produktverhältnis ist vom H₂O-Gehalt abhängig.

3.4. 1,6-Dioxaspiro[4.4]nonan-2,7-dion (23). Zu 325 mg (0,22 mmol) 22 in 50 ml Benzol wurden 30 mg (0,16 mmol) TsOH \cdot H₂O gegeben und 2 h gekocht, wobei das H₂O mittels Wasserabscheider entfernt wurde. Filtration über wenig Kieselsäure ergab 25 mg (80%) 23. Schmp. 62–63° (EtOH). IR: 2950, 1790 (CO, sh), 1450, 1420, 1355, 1295, 1160, 1110, 1050, 990, 940, 880, 655. IR (KBr): 3020, 2990, 2980, 2950, 1785 (br., CO), 1450, 1425, 1410, 1360, 1300, 1230, 1165, 1120, 1095, 1050, 1000, 990, 930, 885, 820, 795, 710, 655. ¹H-NMR: 3,0–2,3 (m). ¹³C-NMR: 174,1 (s, CO); 112,4 (s, C(5)); 32,3, 27,8, (2 t). CI-MS: 157 ([M+1]⁺). Anal. ber. für C₇H₈O₄ (156,14): C 53,85, H 5,16; gef.: C 53,86, H 4,89.

Verbindung 23 wurde auch nach [5] hergestellt; beide Präparate sind identisch.

3.5. 4-Oxoheptandisäure (22). Zu 0,37 g (2,37 mmol) 23 in 25 ml H₂O wurde 1,0 g (18,0 mmol) KOH gegeben und 10 min gerührt. Dann wurde bei 0° mit 1N wässr. HCl angesäuert, die Lsg. bei 50° i.V. eingedampft und der Rückstand mit Aceton ausgezogen. Nach dem Eindampfen wurden 0,40 g (97%) 22 (Rohprodukt) erhalten, farblose Kristalle. Schmp. 141–142° (AcOEt/Hexan). IR (KBr): 3700–2300 (COOH), 2930, 1695 (br., CO), 1430, 1410, 1380, 1350, 1325, 1290, 1260, 1245, 1220, 1195, 1150, 1100, 1030, 1020, 965, 930, 910, 845, 815, 805, 710, 670, 610. ¹H-NMR (CD₃OD): 4,94 (br., 2 COOH); 2,79–2,71 (*m*, 4 H); 2,57–2,50 (*m*, 4 H). ¹³C-NMR (CD₃OD): 209,7 (*s*, CO); 176,3 (*s*, COOH); 37,9, 28,7 (2 *t*). CI-MS: 175 (5, $[M+1]^+$), 157 (100, $[M + 1 - H_2O]^+$). Anal. ber. für C₇H₁₀O₅ (174,16): C 48,28, H 5,79; gef.: C 48,19, H 5,68.

LITERATURVERZEICHNIS

- [1] K. Kostova, M. Hesse, Helv. Chim. Acta 1984, 67, 1725.
- [2] W. Huggenberg, M. Hesse, Helv. Chim. Acta 1983, 66, 1519 und darin zit. Arbeiten.
- [3] A. Zürcher, unveröffentlichte Versuche.
- [4] S. Hünig, E. Lücke, Chem. Ber. 1959, 92, 652; S. Hünig, Dtsch. Patent Nr. 1193039, 1966.
- [5] R.J. Pariza, F. Kus, P.L. Fuchs, Synth. Commun. 1983, 13, 243.
- [6] Th. R. Hoye, D. R. Peck, P. K. Trumper, J. Am. Chem. Soc. 1981, 103, 5618.
- [7] D.W. Chasar, Synthesis 1982, 841.
- [8] L.C. Garver, V. Grakauskas, K. Baum, J. Org. Chem. 1985, 50, 1699.
- [9] K. Kostova, M. Hesse, Helv. Chim. Acta 1984, 67, 1713.
- [10] S. Torii, R. Inokuchi, R. Oi, J. Org. Chem. 1983, 48, 1944.
- [11] S. Hünig, W. Lendle, Chem. Ber. 1960, 93, 913.