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Since the initial reports by Kagan regarding samarium diiodide, it has been extensively used in organic 

synthesis. 1 For example, this homogeneous reagent has been used to reduce aldehydes and ketones to ketyl 

radicals designed to undergo elimination 2 or cyclization reactions) In addition, samarium diiodide has been 

used to mediate Barbier-type coupling between alkyl halides and ketones intra- and intermolecular modes. 4 

More recent studies about intramolecular acyl substitution reactions of halo-substituted esters and lactones 

further proved the efficacy of these Sml2-promoted reactions. 5 Although a variety of functional groups have 

been used in SmI2-promoted cyclization and substitution reactions, N-(haloalkyl)imides have not yet been 

reported, We felt that cyclizations of such substrates would provide nitrogen-fused polycyclic structures 

appropriate for the synthesis of alkaloid natural products. 6 We report here our preliminary results on SmI2- 

promoted cyclization of N-(iodoalkyl)-substituted cyclic imides of type 1 to construct pyrrolizidinone, 

indolizidinone, and quinolizidinone ring systems of type 2 and 3 (eq 1), 

~10.,, Sml2 m(H2c)~H (CH2)n~ -H20 ~ m(H2C~CH2)n m (H2C)-.-~( N- CH2(CH2)nCH2-1 = N---../ 
o o o 

1 2 3 

(eq 1 ) 

N-(Iodoalkyl)imide cyclization substrates were prepared by alkylation of corresponding imides with the 

appropriate dibromoalkane followed by a bromide-iodide exchange reaction. 7 Phthalimides 4a, 4b and 4c 

were subjected to 3 equivalents of SmI2 in the presence of Fe(DBM)3 catalyst to afford the results shown in 

Table 1 5 Imide 4a cyclized smoothly at 0*C in 2-3 h to give a mixture of alcohol 5a and dehydration product 

6a. Alcohol 5a slowly dehydrated to 6a during chromatographic separation, Thus, it was most convenient to 

heat the crude mixture of products with powdered 4 A. molecular sieves and catalytic amounts of p-TsOH in 

dichloromethane. In this manner, enamide 6a was obtained in 95% yield from 4a, In a similar manner, 

cyclization of 4b was followed by spontaneous dehydration to provide 6b in 94% yield. Secondary iodide 4c 

gave 6¢, however, in only 43% yield. Succinimide and glutarimide derivatives also provided bicyclic amides. 
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Table 1. Reaction of N-(Iodoalkyl) Cyclic lmide with Sml 2 

Substrate  

0 

{ ~ N ' C H 2 ( C H 2 ) n C H 2 - 1  

O 
4a : n=l 
4b : n=2 

O 

[ ~ N - ( C H 2 ) 2 - C H I - C H 3  

O 

4c 
O 

N-CH2(GH2)nCH2-1 

O 

4d : n=l 
4e : n=2 

-CH2(CH2)nCH2-1 

O 
4f : n=l 
4g : n=2 

CycUzat ion Products  a (% Yield)  b, c 

~ C H 2 ) n  ~ ~ N ~ C H 2 ) n  

O O 
5a : n=l  6a : n=l  (95) 
5b : n=2 6b : n=2 (94) 

0 
6c (43) 

OH 

~ N ~  (CH2)n ~ (CH2)n 

O O 

5d+6d : n=l (32) d 
fie : n=2 6e : n=2 (56) 

OH 

r ~ . . .  (CH2)n  ~ ( C H 2 ) n  

0 0 

5f+6f : n=l (35) d 
fig : n=2 6g : n=2 (60) 

O Ph OH Ph OH 

_(CH2)3_ I Ph 

O O O O 

4h 5h (22) 6h (37) 7h (16) e 

O 

~ ~  H2)3-x 4i :  X= I 
4j : X=H (44) 

a All products were characterized by their 1H-NMR, 13C-NMR, IR and mass spectra, b 3 equiv. 
of Sml 2, 0.03 equiv, of Fe(DBM)3, THF, 0 °C, 3 h. c Isolated yield after complete consumption 
of the starting imide, d Isolated as a mixture, e A diaetereomeric mixture. 

The extent and regiochemistry of  dehydration depended on the size of the ring formed and the nature of 

substituents. Thus, N-(3-iodopropyl)succinimide (4d) cyclized to give a mixture of 5d and 6d in 32% yield. 8 

Glutarimide derivative 4f  similarly gave a mixture of carbinol 5f and enamide 6f in 35% yield. Cyclization of 

4e and 4g, however, led directly to six-membered ring enamides 6e (56%) and 6g (60%) after silica gel 
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chromatography. 9,1°.ll Imide 4h produced 6h (37%) together with diastereomerically pure 5h (22%) and a 

diastereomeric mixture of 7h (16%). Thus, cyclization regioselectivity is 3.7:1 in favor of the carbonyl group 

closest to the phenyl substituent. 12 Surprisingly, no cyclization product was observed from homophthalimide 

4i as only reduction product 4j was isolated in 44% yield. We suspect that the benzylic hydrogens are 

responsible for reduction of the intermediate generated from 4i and Sml2. 

A few reactions which may be of mechanistic significance were also conducted. For example, when 

phthalimides 4a and 8 were treated with only 1.5 equivalents of SmI2, partial reduction products 9 and 10 were 

obtained in 48% and 39% yields, respectively, together with small amounts of cyclization products. 

Apparently, the imide carbonyl was reduced to ketyl radical which abstracted hydrogen from reaction medium 

(eq 2). 13 However, under similar conditions, such partially reduced product was not observed from 

succinimide 4e and glutarimide 4g, and only cyclization products were observed in 34% and 35% yields, 

respectively. These results suggest that these SmI2-promoted cyclizations of imides may follow different 

pathways depending on the structure of imide. In the case of phthalimides 4a-4c reduction of imide carbonyl 

by SmI2 to ketyl radical and subsequent radical-radical coupling process reduction at the iodide position is a 

plausible pathway while succinimides and glutarimides 4d-4h follow carbanionic carbonyl addition process. 14 

0 OH ~ N-(CH2)a-X 1.5 equiv. Sml 2 ~ N . ( C H 2 ) 3 _  X 

O O 

8 (X=Br), 4a (X=I) 9 (X=Br), 10 (X=I) 

(eq 2) 

In summary, readily accessible N-(iodoalkyl) cyclic imides are cyclized to nitrogen-fused bicyclic 

amides by using SmI 2. The resulting carbinol lactams frequently dehydrate to give enamides and spontaneous 

dehydration is observed in cyclizations forming six-membered rings. Studies to access the mechanistic 

pathway in detail and synthetic applications for alkaloid natural products are in progress. 
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