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The development of simple and general methods for the 
preparation of enantiomerically pure organic compounds from 
readily available, achiral substrates is one of the major challenges 
of organic synthesis today.' A reagent-controlled approach2 is 
particularly useful because it allows for the formation of either 
enantiomer of a particular compound from the same substrates. 
We recently reported a method for the synthesis of racemic allylic 
amines from simple amines and unfunctionalized alkynes via imine 
complexes of ~irconocene,~ and we now report the development 
of an asymmetric variant of this reaction that proceeds to give 
products with ee's up to 99% in moderate to good  yield^.^ 

We required a chiral equivalent of zirconocene dichloride, the 
achiral organometallic precursor to much of the chemistry we have 
previously described, for use as a starting material. Several such 
compounds have been ~ynthesized,~ and we chose to focus our 
attention on [ 1 ,2-ethylenebis(a5-4,5,6,7-tetrahydro-l-indenyl)]- 
zirconium dichloride [(EBTHI)ZrCI2, l],7a**8 first synthesized 
by Brintzinger. Briefly, kinetic resolution of 1'O was accomplished 
by using lithium (S)-[ 1 ,l'-binaphthyl]-2,2'-diolate, in a method 
similar to that used to resolve the titanium analogue," and un- 
reacted 1 was removed by stirring with alumina. The enantiom- 
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"R = Si(r-Bu)(CHg)p. bIsolated yields, >95% pure by G C  and l H  
NMR, of both diastereomers or regioisomers where applicable. CBy 
Eu(hfc)g shift studies, except where noted. dThe minor component was 
established to be an  isomer by comparison of the GC-MS of the two 
species. eDetermined by capillary G C  on a CyclodexB chiral column 
(J&W Scientific). fThe regioisomer was inidally present (7: 1 ratio), 
but it was removed during chromatography. g o n e  diastereomer of the 
metallacycle precursor was  clearly predominant by  l H  NMR. 
hDetermined by *9F NMR studies of the Mosher's ester of the major 
diastereomer. 

crically purc dimethyl derivative, (S,S)-2 ([ctl2lD = +I70 & 3O 
( c  = 0.05, CH2CI&), was obtained in 63% overall yield from 
(S ,S) -  1 . ' 2  
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For the synthesis of allylic amines, compound 2 was treated 
with 1 equiv of triflic acid at -78 OC to afford 3 (see Scheme I). 
A solution of lithium anilide was then added at room temperature, 
followed by an alkyne, and the solution was heated to 80 OC for 
several hours. During this time 4 lost methane to give imine 
complex/zirconaaziridine 5, which was trapped in situ by the 
alkyne to give metallapyrroline 6. We expected that the steric 
constraints of the EBTHI ligand would force the imine complex 
5 to exist only as the trans diastereomer, as shown in Scheme I. 
Insertion of an alkyne was then expected to proceed with retention 
of configuration a t  the imine carbon atom,14 generating diaste- 
reomerically pure metallacycle 6. Indeed, in most cases, the 
metallapyrroline 6 appeared to be diastereomerically and re- 
gioisomerically pure by IH NMR.  Hydrolysis of 6 (aqueous 
HCl/ether), followed by chromatographic purification, afforded 
the allylic amine 7 in moderate to good yield. When (S,S)-2 was 
used as the starting material, 7 was obtained with ee's >90% to 
-99% (except for 7e; see below).15 Thus, for 1OO:l diastereo- 
selectivity at 80 OC, we compute either AAG* or AAGO I 3.2 
kcal/mol for formation of the two diastereomers of 5. 

The method tolerates a wide variety of structures in both the 
alkyne and the amine, as shown in Table I, including substrates 
with oxygen functionalities. Also, 1-(trimethylsily1)alkynes and 
I-phenylalkynes react in  a highly regioselective manner. Un- 
fortunately, terminal alkynes do not insert, giving instead the 
alkynyl(amido)zirconium species, in contrast to their reaction with 
imine complexes of unsubstituted ~ i rconocene .~ .~~ To our surprise, 
imine complex 5e (Ar = R,  = Ph) does not couple alkynes 
diastereoselectively, and allylic amine 7e is obtained with a low 
e8.I' However, 5e does couple diastereoselectively to propion- 
aldehyde and I-hexene, and good eels were obtained for the re- 
sulting organic compounds. We note that the metallacyclic 
precursors to compounds 8 and 9 contain two new stereogenic 
centers that have been formed with excellent absolute stereose- 
lectivity. 

An X-ray crystallographic study of one of the racemic me- 
tallacycles, 6b (Ar = Ph; R ,  = n-Bu; R2 = R3 = CH3), allowed 
us to assign the absolute stereochemistry of the enantiomerically 
pure amines.l* The allylic carbon atom possessed RS configu- 
ration with respect to the ligand's RS,RS configuration. Thus, 
the enantiomerically pure allylic amines derived from (S,S)-2 have 
the S absolute configuration, as drawn in Scheme I. 

These results demonstate the feasibility of using 1 and its 
derivatives as starting materials for asymmetric organic synthesis. 
The availability of enantiomerically pure 1, the ability to func- 
tionalize unactivated substrates, and the very high ee's obtained 
for the allylic amines at  80 OC make this an ideal system for 
further study. We are working to develop several other highly 
enantioselective, catalytic reactions based on the EBTHI ligand 
system. 
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by treatment with excess (R)-(-)-0-acetylmandelic acid in C6D6. Only one 
of the two possible diastereomers could be detected by IH NMR.  See the 
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We find that the reaction of coronene (1) with strong oxidants 
yields the ESR spectrum of a thermally accessible triplet associated 
with the dipositive ion 12+. The triplet arises, by Hund's rule, 
from the 2-fold degeneracy of the HOMOS of the 6-fold-symmetric 
framework. The species is surprisingly stable a t  ambient tem- 
perature, decomposing above 50-70 OC. 12+ and the previously 
reported coronene dianion' 12- provide a pair of aromatic diions 
to test if the MO-pairing relationships for alternate hydrocarbons2 
can be extended to their triplet states. Dications of benzene 
derivatives of 3-fold or higher symmetry3 have also been of recent 
interest as potential components of molecular ferromagnetic 
 material^.^ 

As an unsubstituted aromatic dication, 12+ may be compared 
with the substituted cases reported previously. The hexachloro- 
benzene dipositive ion (22+) is a ground-state triplet.5 No evidence 
for a thermally excited singlet state was found. The species was 
produced by reaction of 2 with CI2/SbF5 to produce the radical 
cation; irradiation at  4-100 K yielded the dication. The latter 
did not survive softening of the SbFS matrix at about 180 K. The 
elegant synthesis of a derivative of hexaaminobenzene by Breslow 
et al., and its oxidation to a dication (32+) exhibiting a triplet ESR 

1 2 +  32 + 

spectrum, provided a system stable at ambient temperatures6 A 
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