

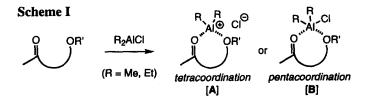
Tetrahedron Letters 40 (1999) 2993-2996

TETRAHEDRON LETTERS

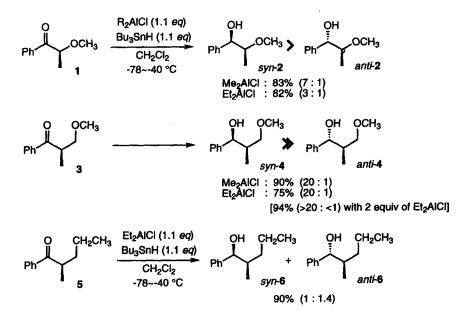
Hypercoordination of Aluminum: Evidence for the Implication of Pentacoordinate Complexes in the R2AlCl-Promoted Reduction of Alkoxycarbonyl Substrates

Takashi Ooi, Junko Morikawa, Daisuke Uraguchi, and Keiji Maruoka*

Department of Chemistry, Graduate School of Science, Hokkaido University Sapporo 060-0810, Japan

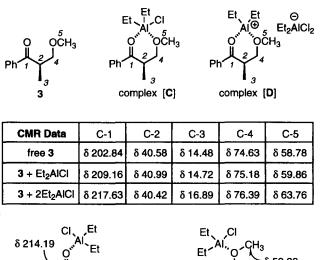

Received 28 December 1998; revised 6 February 1999; accepted 19 February 1999

Abstract

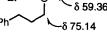

 R_2AlCl -promoted reductions of alkoxycarbonyl substrates with Bu_3SnH were found to proceed diastereoselectively through the formation of pentacoordinate chelate-type complexes which have been characterized by ¹³C NMR spectroscopy. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Aluminum and compounds; Carbonyl compounds; Complexes; Reduction.

Dialkylaluminum halides (R_2AIX), especially chlorides, are recognized as one of the most familiar Lewis acids and routinely employed for a number of Lewis acid-promoted synthetic transformations such as Diels-Alder reactions, conjugate additions, amide formations, and carbonyl alkylations [1-4]. Among those, electrophilic carbonyl alkylation with R_2AIX proceeds through the formation of tetracoordinate aluminum-carbonyl complex [5]. When the substrates possessing certain heteroatom functionalities are used, chelation-controlled reaction often takes place, which is believed to proceed *via* tetracoordinate complex [**A**] resulting from the coordination of carbonyl to the cationic aluminum center. However, there is another possibility which has emerged based on our recent observation of the hypercoordinate aluminum complexes [**B**] with heteroatom-substituted carbonyl compounds without releasing the halogen atom (X) [6-8]. Here we wish to highlight the new aspect of R_2AICI by showing the synthetic and spectroscopic evidence for the implication of such unfamiliar chelate formation in the R_2AICI -promoted reduction of alkoxycarbonyl substrates.



Examination was focused on the stereoselective reduction of alkoxycarbonyl compounds. Initial reaction of α -methoxypropiophenone (1) and Me₂AlCl (1.1 equiv) and subsequent treatment with Bu₃SnH (1.1 equiv) in CH₂Cl₂ at -78~-40 °C for 1.5 h gave rise to the corresponding *sec*-alcohol 2 in 83% yield with *syn/anti* ratio of 7:1. Use of Et₂AlCl as a promotor also afforded *syn*-2 preferentially in 82% yield. β -Methoxy ketone 3 can be reduced in a similar manner, which exhibited excellent diastereoselectivities. It is noteworthy that the reaction of 3 proceeded with the comparable reactivity and selectivity using 2 equiv of Et₂AlCl and the total lack of diastereoselectivity was observed in the reduction of a carbon analogue of 3, 2-methyl-1-phenylpentan-1-one (5) by Et₂AlCl (1.1 equiv)/Bu₃SnH system.


Although these results indicate that the stereochemical outcome of the reduction was governed by the chelate formation, it was still not clear whether a conventional tetracoordinate complex of type [A] or pentacoordinate [B] was operative. Therefore, we set out to take low temperature ¹³C NMR spectroscopy of several Et₂AlCl complexes. The original signal of carbonyl carbon C-1 in β -methoxy ketone 3 occurred at δ 202.84, and the

signals of ethereal carbons C-4 and C-5 appeared at δ 74.63 and 58.78, respectively. When 3 was complexed with Et₂AlCl in a 1:1 molar ratio in CD₂Cl₂ at -50 °C, a single set of peaks for each carbon of 3 was detected by ¹³C NMR analysis at -50 °C and a downfield shift of carbonyl carbon C-1 as well as ethereal carbons C-4 and C-5 was observed at δ 209.16, 75.18 and 59.86, respectively. It should be added that the carbonyl peak of the 1:1 2-methyl-1-phenylpentan-1-one (7)/Et₂AlCl complex [E] appeared at δ 214.19 (δ 204.55 for free 7) and the ethereal carbon peaks of the methyl 3-phenypropyl ether $(8)/Et_2AlCl$ complex [F] occurred at δ 75.14 and 59.36 (δ 71.70 and 58.39 for free 8) under similar analytical conditions. However, addition of β -methoxy ketone 3 to 2 equiv of Et₂AlCl in CD₂Cl₂ at -50 °C showed the signal of carbonyl carbon C-1 at δ 217.63, and the signals of ethereal carbons C-4 and C-5 at δ 76.39 and 63.76, respectively. The observed significant downfield shift can be accounted for by the formation of a six-membered tetracoordinate complex of type [D] with cationic aluminum species which could be more Lewis acidic than Et₂AlCl itself. Consequently, the ¹³C NMR analysis suggests the intervention of pentacoordinate chelate complex [C] in the present R2AlCl-promoted reduction of alkoxycarbonyl compounds as long as 1 equiv of R2AlCl is used, while employment of 2 equiv of R2AlCl results in the in situ production of a cationic aluminum center to be chelated as discussed by Evans et al. [9] in their studies of asymmetric Diels-Alder cycloaddition reactions utilizing chiral 2-oxazolidones [10].

CH₂

8/Et₂AICI complex [F]

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research on Priority Area (No. 706: Dynamic Control of Stereochemistry) from the Ministry of Education, Science, Sports and Culture, Japan.

References and Notes

- [1] Lee VT. In: Trost BM, Fleming I, editors. Comprehensive Organic Synthesis. Oxford: Pergamon Press, 1991, Vol. 4:162.
- [2] Maruoka K, Yamamoto H. In: Trost BM, Fleming I, editors. Comprehensive Organic Synthesis. Oxford: Pergamon Press, 1991, Vo6. 4:763.
- [3] Santelli M, Pons J-M. Lewis Acids and Selectivity in Organic Synthesis. Boca Raton: CRC Press, 1995.
- [4] Shimizu T, Osako K, Nakata T. Tetrahedron Lett. 1997;38:2685
- [5] For Lewis acid-carbonyl complexation, Shambayashi S, Crowe WE, Schreiber SL. Angew. Chem. Int. Ed. Engl. 1990;29:256.
- [6] Ooi T, Kagoshima N, Maruoka K. J. Am. Chem. Soc. 1997;119:5754.
- [7] Ooi T, Uraguchi D, Kagoshima N, Maruoka K. J. Am. Chem. Soc. 1998;120:5323.
- [8] Ooi T, Uraguchi D, Maruoka K. Tetrahedron Lett. 1998;39:8105.
- [9] Evans DA, Chapman KT, Bisaha J. J. Am. Chem. Soc. 1988;110:1238.
- [10] Castellino S, Dwight WJ. J. Am. Chem. Soc. 1993;115:2986.