Carbohydrate Research 374 (2013) 8-13

Contents lists available at SciVerse ScienceDirect

Carbohydrate Research

journal homepage: www.elsevier.com/locate/carres

Concise synthesis of flavocommelin, 7-O-methylapigenin 6-C-, 4'-Obis-β-D-glucoside, a component of the blue supramolecular pigment from *Commelina communis*

Kazufumi Misawa, Yoshiki Gunji, Shingo Sato*

Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa-shi, Yamagata 992-8510, Japan

ARTICLE INFO

Article history: Received 26 February 2013 Accepted 19 March 2013 Available online 30 March 2013

Keywords: C,O-diglycosylflavonoid Phloroacetophenone C-glycosylation Regioselective oxidative cyclization Regioselective deprotection

ABSTRACT

Flavocommelin, 7-O-methylapigenin 6-C-, 4'-O-bis- β -D-glucoside, was synthesized in 9 steps from the C-glycosylation of 6-O-benzy-4-O-methylphloroacetophenone via the introduction of a cinnamoyl residue by aldol condensation and the formation of a C-ring by regioselective and oxidative ring-closure to regioand stereoselective O-glycosylation for an overall yield of 31%.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A variety of C-glycosylflavonoids are widely distributed in plants, in which sugars are generally linked at C-6 and/or C-8 on the A-ring. C-glycosides show different various biological activities¹ from the related aglycone and O-glycoside, because they are not enzymatically hydrolyzed in vivo. We have achieved the synthesis of some naturally occurring mono- and di-C-glycosylflavonoids (flavone, isoflavone, flavanone, and chalcone) showing biological activity based on our development of two different Cglycosylation methods: C-glycosylation of phloroacetophenone 4,6-bis-ether by O-C glycoside rearrangement,² and a direct monoand di-C-glycosylation of the non-protected phloroacetophenone with a non-protected sugar in an aqueous solution.³ However, we have not attempted the synthesis of C,O-diglycosylflavonoid. More than 100 naturally occurring C,O-diglycosylflavonoids have been discovered and their structure comfirmed.⁴ Among them, some compounds have shown biological activity. For example, saponarin (6-C-glucosylapigenin 7-O-glucoside) shows potent anti-inflammatory and antidiabetic activities.⁵

Flavocommelin (1) (Fig. 1) is one of the components of commelinin, a blue supramolecular pigment that is a metalloanthocyanin (a metal-complex anthocyanin) in *Commelina communis*, which has been elucidated by Kondo's group.⁶ For the structure analysis of the supramolecular pigment, Oyama and Kondo first synthesized

* Corresponding author. Tel.: +81 238263120. E-mail address: shingo-s@yz.yamagata-u.ac.jp (S. Sato). **1** via 12 steps in a 6.2% overall yield from (\pm) naringenin, using the C-glycosylation of the flavan as a key reaction. This is the only report of the synthesis of C,O-diglycosylflavonoid.⁷

Herein we describe the concise synthesis of **1** using the former of our two C-glycoside synthetic methods, with planning and examination as shown in Scheme 1: (1) C-glycosylation of 2-Obenzyl-4-O-methylphloroacetophenone by the O-C glycoside rearrangement method; (2) introduction of a cinnamoyl residue by aldol condensation; (3) regioselective deprotection of the 6-OH group on the A-ring followed by the formation of a flavone skeleton using oxidative cyclization; and, (4) regioselective deprotection of the 4'-OH group on the B-ring and its stereoselective O-glycosylation by the Koenigs–Knorr reaction according to the conditions stipulated by Oyama.⁶

2. Results and discussion

C-glycosylation of 2-O-benzyl-4-O-methylphloroacetophenone $(2)^{2e}$ was carried out by raising the reaction temperature from -78 °C to room temperature for 5 h, using 1.0 equiv of per-O-benzyl- α -D-glucosyl fluoride as a glycosyl donor to 2.0 equiv of 2 in CH₂Cl₂ in the presence of 1.5 equiv of BF₃·OEt₂ and powdered molecular sieves 4A. The desired C-glycoside 3^{2e} was furnished in 85% yield. The advantage of this method is that the reaction proceeds smoothly in an excellent yield using BF₃·OEt₂ with neither the use of a potent and expensive catalyst metallocene (Cp₂MCl₂: M = Ti, Zr, Hf) and Ag salt, nor scandium(III) trifluoromethanesulfonate [Sc(OTf)₃] to give the desired C-glycoside, owing to formation

^{0008-6215/\$ -} see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.carres.2013.03.016

Figure 1. Structure of flavocommelin (1).

Scheme 1. Synthetic plan of flavocommelin (1).

of the C-glycoside via O-glycosylation to the chelated phenolic hydroxyl. Further, Schmidt's C-glycosylation method⁸ using 2 and 1.2 equiv of per-O-benzyl- α -D-glucosyl trichloroacetimidate in place of the fluoride as a donor and 0.2 equiv of trimethylsilyl trifluoromethanesulfonate (TMSOTf) as a catalyst to 1.0 equiv of 2 also afforded 3 in an 81% yield. Structure analysis of the synthetic compounds was conducted mainly by means of ¹H NMR and ¹H–¹H COSY, and FAB-MS. A ¹H NMR spectrum gave a complex spectrum due to a mixture of rotamers, particularly on the A-ring bearing a C-glycoside. The ¹H NMR spectra measured in DMSO-d₆ at more than 120 °C were simple without a mixture of rotamers, which allowed assignment. However, C-glycosides bearing an O-glycoside could not be measured at more than 120 °C due to instability. Both the use of fluoride/BF₃·OEt₂ and imidate/TMSOTf as a combination of donor and catalyst gave 3 in good yield. Next, the aldol condensation of 3 with 1.1 equiv of p-benzyloxybenzaldehyde in the presence of 1.5 equiv of sodium methoxide in 1,4-dioxane at room temperature for 2 h gave chalcone 4 in a 98% yield. After a 2-OH group on the A-ring of 4 was benzoylated with benzoyl chloride and pyridine (5 Y: 95%), selective deprotection of the 6-O-benzyl group on the A-ring was attempted. Under hydrogenolysis conditions using 5% or/and 10% Pd-C as a catalyst, reduction of the olefin proceeded in preference to O-debenzylation. Next, hydrogenolysis in a solution containing HCl was examined and the desired 6 was produced in a maximum yield of 38%. Further, one-pot formation of the flavanone by deprotection and cyclization by refluxing in HCl aqueous solution or in the presence of Dowex® (H⁺) resin, and one-pot formation of flavones via deprotection and oxidative cyclization by heating in DMSO in the presence of a catalytic amount of I₂ were attempted. However, they yielded a mixture of many products. Since a 6-O-benzyl group of chalcone 5 can be more labile by comparison with other benzyl groups, 6-Odebenzylation using a Lewis acid was next examined. A treatment of 5 with 4.5 equiv of BF₃·OEt₂ in an ice-salt bath for 5 h proceeded smoothly, providing 6 in a 76% yield. In succession, regioselective oxidative cyclization by the heating of 6 in DMSO at 130 °C for 30 min in the presence of 0.1 equiv of I_2 proceeded satisfactorily, affording the desired flavone **7** in an 88% yield^{2d} (Scheme 2).

Toward the next regioselective O-glycosylation, the regioselective debenzylation of the 4'-phenolic benzylether on the B-ring of **7** by the above hydrogenolysis using 5% Pd–C in AcOEt was carried out, and the desired 4'-OH-free flavone **8** was acquired in a 68% yield. Since a partial deprotection of the benzyl ether of the glucose hydroxyls proceeded well under these conditions, the yield was moderate. In order to improve the yield, first, a protecting element of the 6-OH group of **7** was changed from a benzyl to an acetyl group, then the regioselective deprotection of the 4'-O-acetyl group on the B-ring of acetate **10** was examined using Oyama's method [2.5 equiv of tetramethylguanidine (TMG) in CH₃CN at rt, for 2 h].⁹ This regioselective deprotection reaction proceeded smoothly to give 4'-OH-free **10** (**11**) in an 89% yield.

Finally, the stereoselective O-glycosylation of **11** was carried out via a Koenigs–Knorr reaction using the procedure established by Oyama [per-O-acetylglucosyl bromide (3.0 equiv), Ag_2CO_3 (1.5 equiv), in quinoline, at 0 °C to rt, for 3 h],⁹ providing **12** in an 80% yield. The final deprotection of acetyl and benzoyl groups was conducted via treatment with sodium methoxide in methanol followed by neutralization using Dowex[®] 50Wx8 (H⁺) resin, then recrystallization from H₂O–CH₃CN gave **1** as a white solid in an 84% yield. The ¹H NMR data of **1** gave a complex spectrum due to the mixture of rotamers, but it was identical to that of a natural compound as well as that of Oyama and Kondo's synthetic one. The other physico-chemical data were also identical.⁷

3. Conclusion

Flavocommelin (1) was efficiently synthesized via 9 steps from 2 in an overall 31% yield. A concise synthesis of C,O-diglycosylflavone using phloroacetophenone bis-ether as a starting material was achieved. The synthetic route proposed here was shown to be viable for the synthesis of various C,O-diglycosylflavonoids. Synthesis of the more complex 6-C-7-O- β -D-diglucosylapigenin, saponarin is in progress.

4. Experimental

4.1. General

The solvents used in these reactions were purified by distillation. Reactions were monitored by TLC on 0.25-mm silica gel F254 plates (E. Merck) using UV light, and a 7% ethanolic solution of phosphomolybdic acid with heat as the coloration agent. Flash column chromatography was performed on silica-gel (40–50 μ m, Kanto Reagents Co. Ltd, silica-gel 60) to separate and purify the reaction products. Optical rotations were recorded on a JASCO DIP-370 polarimeter. Melting points were determined using an

Reagents and conditions : a) **2** (2 equiv), per-*O*-benzylglucosyl fluoride (1 equiv), BF₃OEt₂ (2 equiv) in CH₂Cl₂, at -70 °C - rt, 5 h, Y:85% b) *p*-BnO-benzaldehyde (1.2 equiv), NaOMe (1.2 equiv), in dioxane, rt, 1.5 h, Y:98% c) BzCl (1.5 equiv), in pyridine, 0 °C - rt, 3 h, Y: 95% d) BF₃OEt₂ (3.5 equiv), in CH₂Cl₂, -20 - -10 °C, 3 h, Y:76% e) I₂ (0.1 equiv) in DMSO at 130 °C, 30 min, Y:88% f) H₂ / 5 and 10% Pd-C, in AcOEt, rt, 6 h. Y:68% g) per-*O*-acetylglucosyl bromide (3.5 equiv), Ag₂CO₃ (1.5 equiv), in quinoline, at 0 °C - rt, 3 h, Y:70%

Reagents and conditions : h) 1. $H_2/10\%$ Pd(OH)₂, AcOEt/EtOH (1:1), rt, 3 h, 2. Ac₂O/Py, rt, 3 h, Y:98\%, i) TMG (2.5 equiv), in CH₃CN, rt, 3h, Y:80\% g) Y:80\% k) NaOMe in MeOH, rt, for 1 h, then Dowex50W (H⁺), Y: 100%.

Scheme 2. Total synthesis of flavocommelin (1).

ASONE micro-melting point apparatus and uncorrected values were reported. IR spectra were recorded on a Horiba FT-720 IR spectrometer using a KBr disk. NMR spectra were recorded on a JEOL ECX-500 spectrometer using Me₄Si as the internal standard. Mass spectral data were obtained by fast-atom bombardment (FAB) using 3-nitrobenzyl alcohol (NBA) as a matrix on a JEOL JMS-AX505HA instrument. High-resolution mass spectra (HRMS) were obtained under electron spray ionization (ESI) conditions on a JEOL JMS-T100LP. Elemental analyses were performed on a Perkin–Elmer PE 2400 II instrument. After drying at 70 °C under reduced pressure for more than 2 h, each product was subjected to elemental analysis.

4.1.1. 4',6-Dibenzyloxy-3-C-(2'',3'',4'',6''-tetra-O-benzyl-β-Dglucopyranosyl)-4-methoxychalcone (4)

To a solution of **3** (1.24 g, 1.56 mmol) and *p*-benzyloxybenzaldehyde (0.330 g, 1.56 mmol) in 1,4-dioxane (10 mL), a 28% NaOMe–MeOH solution (8.0 mL) was added and the mixture was stirred at room temperature for 1.5 h. To the reaction mixture, ice-cold 2 N-HCl solution (20 mL) was added, then the mixture was extracted three times with AcOEt. The organic layer was washed with water and brine, dried over anhydrous Na₂SO₄, and evaporated to dryness. The residual solid was purified by silicagel column chromatography (*n*-Hexane–AcOEt = 4:1–3:1) to afford **4** (1.51 g, Y: 98%) as a yellow amorphous powder. $[\alpha]_{D}^{22}$ –6.6 (*c* 0.550, CHCl₃). IR (KBr): 3425, 3030, 2920, 2856, 1624, 1558, 1508, 1454, 1423, 1230, 1066, 735, 696 cm⁻¹. ¹H NMR (DMSO-*d*₆, at 120 °C) δ 3.50 (1H, m, H5"), 3.59 (1H, t, *J* = 9.1 Hz, H4"), 3.67 (2H, m, H6"a,b), 3.68 (1H, m, H3"), 3.86 (3H, s, OCH₃), 4.20 (1H, d, *J* = 12.1 Hz, *CH*₂Ph), 4.31 (1H, t, *J* = 9.1 Hz, H2"), 4.46 and 4.49 (each 1H, d, *J* = 12.1 Hz, *CH*₂Ph), 4.56 (1H, d, *J* = 12.1 Hz, *CH*₂Ph), 4.56 (1H, d, *J* = 12.1 Hz, *CH*₂Ph), 4.81 (1H, d, *J* = 9.1 Hz, H1"), 5.15 (2H, s, ArOCH₂Ph), 5.26 (2H, s, ArOCH₂Ph), 6.38 (1H, s, 8-ArH), 7.59 and 7.64 (each 1H, d, *J* = 15.9 Hz, *trans*-vinyl H), 6.90–7.51 (34H, m, ArH), 14.0 (1H, br s, 5-OH); FAB-MS (*m*/*z*) 989 (M+H)⁺. Anal. Calcd for C₆₄H₆₀O₁₀·0.5H₂O: C, 77.01; H, 6.16. Found: C, 76.96; H, 6.12.

4.1.2. 2-Benzoyl-4',6-dibenzyloxy-3-C-(2",3",4",6"-tetra-0benzyl-β-D-glucopyranosyl)-4-methoxychalcone (5)

To a solution of 4(1.21 g, 1.22 mmol) in pyridine (2.5 mL), benzyl chloride (556 µL, 6.71 mmol) was added at 0 °C. The reaction mixture was stirred at room temperature for 4 h. To the resultant mixture ice-cold water and 2 N HCl (15 mL) were added, then the mixture was extracted three times with AcOEt. The organic layer was washed with water and brine, and dried over anhydrous Na₂SO₄ and then evaporated to dryness. The residual solid was purified by silica-gel column chromatography (*n*-Hexane–AcOEt = 3:1–2:1) to afford **5** (1.27 g, Y:95%) as a pale-yellow amorphous powder.

[α]_D²² −40 (*c* 1.88, CHCl₃). IR (KBr): 3446, 3031, 2904, 2864, 1743, 1602, 1508, 1452, 1250, 1099, 1070, 737, 698 cm⁻¹. ¹H NMR (CDCl₃) δ 2.95 (2H, t, *J* = 9.1 Hz, H4″), 2.95 (1H, m, H6″a), 3.36 (1H, br d, *J* = 10.6 Hz, H6″b), 3.43 (1H, br t, *J* = 6.8 Hz, 8.4, H5″), 3.67 (1H, t, *J* = 9.1 Hz, H3″), 3.77 (3H, s, OCH₃), 4.09 (1H, t, *J* = 9.1 Hz, H2″), 4.16 (1H, d, *J* = 10.6 Hz, CH₂Ph), 4.22 and 4.26 (each 1H, d, *J* = 9.9 Hz, CH₂Ph), 4.32 (each 1H, d, *J* = 12.1 Hz, CH₂Ph), 4.60 (2H, t, *J* = 12.1 and 11.3 Hz, CH₂Ph), 4.80 (1H, d, *J* = 10.6 Hz, CH₂Ph), 4.91 (1H, d, *J* = 10.6 Hz, CH₂Ph), 4.95 (1H, d, *J* = 9.9 Hz, H1″), 5.08 (2H, s, ArOCH₂Ph), 5.15 (2H, s, ArOCH₂Ph), 6.46 (1H, s, 8-ArH), 6.86–8.04 (36H, m, ArH × 34, vinyl H × 2); FAB-MS (*m*/*z*) 1093 (M+H)⁺. Anal. Calcd for C₇₁H₆₄O₁₁: C, 78.00; H, 5.90.

4.1.3. 2-Benzoyl-4'-benzyloxy-3-C-(2",3",4",6"-tetra-O-benzyl-β-D-glucopyranosyl)-6-hydroxy-4-methoxychalcone (6)

To a solution of **5** (730 mg, 0.668 mmol) in CH_2Cl_2 (5.0 mL) $BF_3 \cdot OEt_2$ (371 µL, 3.01 mmol) was dropwise added at -15 °C, and the mixture was stirred at -15 to -10 °C for 5 h. To the reaction mixture, ice-cold water was added, then the mixture was extracted three times with AcOEt. The organic layer was washed with water and brine, dried over anhydrous Na_2SO_4 , and evaporated to dryness. The residual solid was purified by silica-gel column chromatography (*n*-Hexane-AcOEt = 4:1–3:1) to afford **6** (509 mg, Y: 76%) as a yellow amorphous powder.

 $[\alpha]_{D}^{23}$ – 34 (*c* 1.95, CHCl₃). IR (KBr): 3435, 3031, 2922, 2860, 1751, 1628, 1554, 1508, 1452, 1350, 1219, 737, 698 cm⁻¹. ¹H NMR (CDCl₃) δ 2.87 (1H, dd, *J* = 10.6 and 5.3 Hz, H6"a), 3.06 (1H, t, *J* = 9.0 and 9.1 Hz, H4"), 3.27 (1H, d, *J* = 9.8 Hz, H6"b), 3.39 (1H, m, H5"), 3.75 (1H, t, *J* = 9.1 Hz, H3"), 3.87 (3H, s, OCH₃), 4.26 (1H, t, *J* = 9.1 Hz, H2"), 4.06 and 4.12 (each 1H, d, *J* = 12.1 Hz, *CH*₂Ph), 4.20 and 4.62 (each 1H, d, *J* = 11.3 Hz, *CH*₂Ph), 4.50 and 4.72 (each 1H, d, *J* = 11.4 Hz, *CH*₂Ph), 4.92 and 4.99 (each 1H, d, *J* = 11.3 Hz, *CH*₂Ph), 4.89 (1H, d, *J* = 9.8 Hz, H1"), 5.02 (2H, s, ArOCH₂Ph), 6.46 (1H, s, 8-ArH), 6.86–7.99 (36H, m, ArH × 34, vinyl H × 2); FAB-MS (*m*/*z*) 1003 (M+H)⁺. Anal. Calcd for C₇₆H₆₀O₁₁: C, 76.63; H, 5.83. Found: C, 76.89; H, 6.06.

4.1.4. 5-Benzoyl-4'-benzyloxy-6-C-(2",3",4",6"-tetra-O-benzyl-β-D-glucopyranosyl)-7-methoxyflavone (7)

A solution of **6** (422 mg, 0.421 mmol) and iodide (10.6 mg, 0.0421 mmol) in DMSO (1.4 mL) was stirred at 130 $^{\circ}$ C (oil bath)

for 0.5 h. After cooling at room temperature, ice-cold water was added to the resultant mixture, which then was extracted three times with AcOEt. The organic layer was washed with a saturated $Na_2S_2O_3$ solution and brine and dried over anhydrous Na_2SO_4 , and then evaporated to dryness. The residual solid was purified by silica-gel column chromatography (*n*-Hexane–AcOEt = 3:1–2:1) to afford **7** (371 mg, Y: 88%) as a colorless amorphous powder.

[α]_D²³ –5.3 (*c* 1.77, CHCl₃). IR (KBr): 3483, 3062, 3030, 2912, 2866, 1751, 1643, 1608, 1510, 1452, 1352, 1257, 1097, 833, 737, 698 cm⁻¹. ¹H NMR (CDCl₃) δ 3.00 (1H, dd, *J* = 10.9 and 5.7 Hz, H6″a), 3.13 (1H, t, *J* = 9.5 Hz, H4″), 3.41 (1H, dd, *J* = 1.5 and 10.6 Hz, H6″b), 3.46 (1H, ddd, *J* = 1.5, 6.1 and 7.2 Hz, H5″), 3.74 (1H, t, *J* = 9.5 Hz, H3″), 4.21-4.29 (4H, m, H2″ and *CH*₂Ph), 3.91 and 3.72 (3H, s, OCH₃), 4.67 (1H, d, *J* = 10.6 Hz, H1″), 4.66 (1H, d, *J* = 11.4 Hz, *CH*₂Ph), 4.68 (1H, d, *J* = 10.6 Hz, *CH*₂Ph), 4.87 and 4.94 (each 1H, d, *J* = 11.3 Hz, *CH*₂Ph), 4.99 (1H, d, *J* = 9.8 Hz, H1″), 5.14 (2H, s, ArOCH₂Ph), 6.47 (3H, s, ArOCH₂Ph), 6.47 (1H, s, H3), 6.83 (1H, s, 8-ArH), 6.96-8.17 (34H, m, ArH); FAB-MS (*m*/*z*) 1001 (M+H)⁺. Anal. Calcd for C₆₄H₅₆O₁₁: C, 76.78; H, 5.64. Found: C, 76.64; H, 5.46.

4.1.5. 5-Benzoyl-6-C-(2",3",4",6"-tetra-O-benzyl-β-D-glucopyranosyl)-4'-hydroxy-7-methoxyflavone (8)

To a solution of **7** (100 mg, 0.0999 mmol) in AcOEt, 5% Pd–C (50 mg) was added, and the mixture was stirred vigorously under hydrogen atmosphere at room temperature for 4 h. To the reaction mixture 10% Pd–C (10 mg) was added, and the mixture was again vigorously stirred under hydrogen atmosphere at room temperature for 1 h. After monitoring the disappearance of **7** by silica-gel TLC (*n*-Hexane:AcOEt = 2:1), the resultant mixture was filtered with a celite pad, followed by washing with AcOEt, and then it was allowed to evaporate to dryness. The residual solid was purified by silica-gel column chromatography (*n*-Hexane:AcOEt = 3:1–2:1) to afford **8** (61.9 mg, Y:68%) as a colorless solid.

 $[\alpha]_{2}^{23}$ 9.0 (*c* 0.840, CHCl₃). IR (KBr): 3435, 3030, 2923, 2860, 1751, 1629, 1608, 1512, 1452, 1354, 1255, 1095, 837, 737, 698 cm⁻¹. ¹H NMR (CDCl₃) was observed with rotamers, δ 2.88 (1H, dd, *J* = 7.6 and 10.6 Hz, H6"a), 2.94 (1H, t, *J* = 9.8 Hz, H4"), 3.36 (1H, d, *J* = 9.8 Hz, H6"b), 3.51 (1H, m, H5"), 3.73 (1H, t, *J* = 8.3 and 9.1 Hz, H3"), 3.73 and 3.82 [3H (2.6:1), each s, OCH₃], 4.18 (1H, d, *J* = 11.3 Hz, *CH*₂Ph), 4.24 (1H, t, *J* = 9.1 and 9.8 Hz, H2"), 4.27 (1H, d, *J* = 11.3 Hz, *CH*₂Ph), 4.32 and 4.33 (each 1H, d, *J* = 12.1 Hz, *CH*₂Ph), 4.63 (1H, d, *J* = 10.6 Hz, *CH*₂Ph), 4.66 (1H, d, *J* = 11.3 Hz, *CH*₂Ph), 4.94 (1H, d, *J* = 11.3 Hz, *CH*₂Ph), 4.95 (1H, d, *J* = 9.8 Hz, H1"), 6.35 (1H, s, H3), 6.53 (1H, s, H8), 6.70–8.40 (30H, m, ArH × 29 and 4'-OH); FAB-MS (*m*/*z*) 911 (M+H)⁺. Anal. Calcd for C₅₇H₅₀O₁₁·0.25H₂O: C, 74.78; H, 5.56. Found: C, 74.51; H, 5.41.

4.1.6. 5-Benzoyl-6-C-(2'',3'',4'',6''-tetra-O-benzyl- β -D-glucopyranosyl)-4'-O-(2''',3''',4''',6'''-tetra-O-acetyl- β -D-glucopyranosyl)-7-methoxyflavone (9)

To a solution of **8** (20.0 mg, 0.0220 mmol) in quinoline (0.3 mL), Ag₂CO₃ (9.1 mg, 0.0330 mmol) and acetobromoglucose per-*O*-acetylglucosyl bromide (27.1 mg, 0.0660 mmol) were added at 0 °C and the mixture was stirred at room temperature under a shielded light for 3 h. The reaction was quenched with MeOH, and the mixture was eluted through a short silica-gel column with AcOEt. The eluate was evaporated to dryness. To the residue, 1 N HCl (0.5 mL) was added, then the mixture was extracted three times with AcOEt. The organic layer was washed with water and brine, then dried over anhydrous Na₂SO₄. After evaporation, the residual solid was purified by silica-gel column chromatography (*n*-Hexane:AcOEt = 2:1–1:1) to afford **12** (19.1 mg, Y: 70%) as a white solid. $[\alpha]_D^{24}$ –17 (*c* 1.14, CHCl₃). IR (KBr): 3030, 2929, 2866, 1751, 1647, 1610, 1508, 1452, 1232, 1068, 698 cm⁻¹. ¹H NMR (DMSO-*d*₆) was observed with a mixture of rotamers, δ 1.972, 2.010, 2.015, 2.024 (each 3H × 4, s × 4, OAc × 4), 2.65 (1H, dd, *J* = 6.9 and 10.6 Hz, H6"a), 2.78 (1H, t, *J* = 9.1 Hz, H4"), 3.18 (1H, br d, *J* = 10.6 Hz, H6"b), 3.39 (1H, m, H5"), 3.68 (1H, t, *J* = 9.1 Hz, H3"), 3.97 (3H, s, OCH₃), 4.08 (1H, dd, *J* = 2.2 and 12.1 Hz, H6"'a), 4.14 (1H, t, *J* = 9.1 and 9.9 Hz, H2"), 4.21 (1H, dd, *J* = 5.3 and 12.1 Hz, H6"'b), 4.31 (1H, m, H5"'), 4.87 (1H, d, *J* = 9.9 Hz, H1"), 5.03 (1H, t, *J* = 9.8 Hz, H4"''), 5.76 (1H, d, *J* = 7.6 Hz, H1"''), 6.71 (1H, s, H3), 6.94–8.21 (30H, m, ArH × 30); FAB-MS (*m*/*z*) 1241 (M+H)⁺. Anal. Calcd for C_{71H68}O₂₀: C, 68.70; H, 5.52. Found: C, 68.60; H, 5.35.

4.1.7. 4'-Acetoxy-5-benzoyl-6-C-(2'',3'',4'',6''-tetra-O-acetyl-β-D-glucopyranosyl)-7-methoxyflavone (10)

To a solution of **9** (322 mg, 0.260 mmol) in AcOEt (2.0 mL) and EtOH (2.0 mL), 10% Pd–C (120 mg) was added and the mixture was vigorously stirred at room temperature under H₂ atmosphere for 3 h. The resultant mixture was filtered with a celite pad followed by washing with EtOH and the filtrate was evaporated to dryness. The residual white powder was dissolved in Ac₂O (1.5 mL) and pyridine (1.5 mL), and stirred at room temperature for 3 h. To the reaction mixture ice-cold water was added then the mixture was extracted three times with AcOEt. The organic layer was washed with water, brine, and dried over anhydrous Na₂SO₄, and the organic solvent was purified by silica-gel column chromatography (*n*-Hexane:AcOEt = 2:1–1:1) to afford **10** (194 mg, Y: 98%, 2 steps) as a white solid.

[α]_D²² –21 (*c* 0.910, CHCl₃). IR (KBr): 3068, 2943, 1764, 1737, 1656, 1612, 1508, 1452, 1369, 912, 847, 706 cm⁻¹. ¹H NMR (CDCl₃) was observed with a mixture of rotamers, *δ* 1.82, 1.87, 1.95, 1.99, 2.02, 2.03, 2.06, 2.09 (12H, OAc × 4), 2.34 (3H, s, ArOAc), 3.64, 3.70, 3.77 (1H, m, H5″), 3.98, 4.05, 4.08 [3H (1.8:1.0:3.3), s, OCH₃], 3.76 and 4.17 [1H (1:2.3), br d, *J* = 12.1 Hz, H6″a], 3.89 and 4.26 [1H (1;2.3), dd, *J* = 12.1 and 4.5 Hz, H6″b], 4.77 and 5.17 [1H (1:2.3), m, H4″], 4.86 and 5.15 [1H (1:2.3), d, *J* = 9.9 Hz, H1″], 5.19 and 5.28 [1H (1:2.3), m, H3″], 5.78 and 5.93 [1H (1:2.3), t, H2″] 6.51 [1H, s, H3], 6.88 and 6.94 [1H (1:2.4), s, H8], 7.24 and 7.85 (each 2H, d, *J* = 8.3 and 9.1 Hz, *p*-substituted ArH), 7.57 (2H, m, Ph), 7.64–7.70 (1H, m, Ph), 8.23 and 8.31 [1H (2.3:1), d, *J* = 7.6 Hz, Ph]; FAB-MS (*m*/*z*) 761 (M+H)⁺. Anal. Calcd for C₃₉H₃₆O₁₆: C, 61.58; H, 4.77. Found: C, 61.18; H, 4.64.

4.1.8. 5-Benzoyl-4'-hydroxy-6-C-(2'',3'',4'',6''-tetra-O-acetyl-β-D-glucopyranosyl)-7-methoxyflavone (11)

To a solution of **5** (55.6 mg, 0.0730 mmol) in CH₃CN (1.0 mL), TMG (23.0 mL, 0.183 mmol) was added dropwise at room temperature and the mixture was stirred for 3 h. To the reaction mixture, a saturated NH₄Cl aqueous solution (2.0 mL) was added, then the solution was extracted three times with AcOEt. The organic layer was washed with water and brine, and dried over anhydrous Na₂SO₄, and evaporated to dryness. The residual solid was purified by silica-gel column chromatography (CHCl₃:MeOH = 30:1) to afford **11** (42.0 mg, Y: 80%) as a pale-yellow solid.

 $[\alpha]_{2}^{D^{3}}$ –21 (*c* 0.585, CHCl₃). IR (KBr): 3442, 2941, 1751, 1631, 1608, 1452, 1352, 1244, 1047, 837, 704 cm⁻¹. ¹H NMR (CDCl₃) was observed with a mixture of rotamers, δ 1.941, 1.958, 2.010, 2.036, 2.077, 2.087, 2.094 (12H, each s, OAc × 4), 3.73 and 3.79 [1H (1:2.4), m, H5″], 3.78 and 4.19 [1H (1:2.4), br d, *J* = 10.6 Hz, H6″a], 3.99, 4.03, and 4.09 [3H (1.8:1.0:3.3), s, OCH₃], 4.00 and 4.25 [1H (1:2.4), dd, *J* = 4.6 and 12.1 Hz, H6″b], 4.74 and 5.18 [1H (1:2.4), t, *J* = 9.8 Hz, H4″], 4.86 and 5.16 [1H (2.4:1), d, *J* = 9.9 Hz, H1″], 5.20 and 5.21 [1H (2.4:1), t, *J* = 9.9 Hz, H3″], 5.78 and 5.96

[1H (1:2.4), t, J = 9.8 Hz, H2″], 7.41 (1H, br s, 4′-OH), 6.27 and 6.34 [1H (1:2.4), s, H3], 6.78 (1H, s, H8), 7.58 (2H, m, Ph), 7.69 (1H, m, Ph), 8.25 and 8.33 [2H (1:2.4), d, J = 7.6 Hz, Ph]; FAB-MS (m/z) 719 (M+H)⁺. Anal. Calcd for C₃₇H₃₄O₁₅·1.5H₂O: C, 59.59; H, 5.00. Found: C, 59.70; H, 4.60.

4.1.9. 5-Benzoyl-6-C-(2'',3'',4'',6''-tetra-O-acetyl- β -D-glucopyranosyl)-4'-O-(2''',3''',4''',6'''-tetra-O-acetyl- β -D-glucopyranosyl)-7-methoxyflavone (12)

To a solution of **11** (47.3 mg, 0.0658 mmol) in quinoline (0.6 mL), Ag_2CO_3 (27.2 mg, 0.0987 mmol) and acetobromoglucose per-O-acetylglucosyl bromide (81.2 mg, 0.197 mmol) were added at 0 °C and the mixture was stirred at room temperature under a shielded light for 3 h. The reaction was quenched with MeOH and the mixture was eluted through a short silica-gel column with AcOEt. The eluate was evaporated to dryness. To the residue, 1 N HCl (1 mL) was added, then the mixture was extracted three times with AcOEt. The organic layer was washed with water and brine, and dried over anhydrous Na₂SO₄. After evaporation, the residual solid was purified by silica-gel column chromatography (*n*-Hexane:AcOEt = 1:1–1:2) to afford **12** (55.2 mg, Y: 80%) as a white solid.

[α]_D²³ –23 (*c* 0.515, CHCl₃). IR (KBr): 2941, 1755, 1647, 1612, 1508, 1454, 1367, 1232, 1045, 839, 706 cm⁻¹. ¹H NMR (CDCl₃) was observed with a mixture of rotamers, δ 1.822, 1.862, 1.954, 1.993, 2.029, 2.050, 2.061, 2.073, 2.077, 2.093 (24H, OAc × 8), 3.71, 3.77, and 3.91 (1H, m, H5″, H5″'), 3.99, 4.05, and 4.08 [3H (3.3:1.0:1.8), s, OCH₃], 5.20 and 5.31 (6H, m, H1‴, H2‴, H3″, 3‴, H4″, 4‴), 4.17–4.20 (2H, dd, *J* = 12.3 and 2.3 Hz, H6″a), 4.24–4.33 (2H, dd, *J* = 12.1 and 5.3 Hz, H6″b), 4.85 and 5.32 (1H, d, *J* = 9.9 Hz, H1″), 5.78 and 5.93 [1H (1:2.4), t, *J* = 9.1 Hz, H2″], 6.47 (1H, s, H3), 6.88 and 6.93 [1H (1:2.4), s, H8], 7.58 (2H, m, Ph), 7.68 (1H, m, Ph), 7.09 and 7.79 (each 2H, d, *J* = 9.1 Hz, *p*-substituted ArH), 8.23 and 8.30 [2H (2.4:1), d, *J* = 7.6 Hz, Ph]; FAB-MS (*m*/*z*) 1049 (M+H)⁺. Anal. Calcd for C₅₁H₅₂O₂₄: C, 58.40; H, 5.00. Found: C, 58.54; H, 5.01.

4.1.10. Flavocommelin (1)

To a solution of **12** (24.0 mg, 0.0229 mmol) in MeOH, 28% NaOMe methanolic solution (ca. 50 mg) was added and the mixture was stirred at room temperature for 1 h. The reaction mixture was neutralized with Dowex[®] 50Wx8 (H⁺), filtered and washed with MeOH, and evaporated to dryness. The residual solid was recrystallized from H₂O and CH₃CN to afford **1** (11.7 mg, Y: 84%) as a white solid.

Mp 209–210 °C (natural: 209–210 °C);⁷ [α]_D²¹–69 (c 0.33, H₂O) [natural: [α]_D²⁴–57.7 (c 0.3, H₂O)];⁷ IR (KBr): 3400, 2923, 2889, 1655, 1608, 1508, 1491, 1448, 1350, 1244, 1203, 1074, 841, 659 cm⁻¹. ¹H NMR (DMSO- d_6) was observed with a mixture of rotamers, δ 3.15–3.12 (1H, m), 3.13–3.22 (3H, m), 3.27–3.34 (2H, m), 3.35–3.52 (3H, m), 3.68–3.72 (2H, m), 3.88 and 3.91 (3H, s, OCH₃), 4.00 and 4.18 (each 0.5H, m), 4.48 (1H, m), 4.60 (1H, t, J = 9.8 and 10.6 Hz), 4.63–4.68 (2H, m), 4.87 (1H, d, J = 4.5 Hz, OH), 4.90 (1H, m), 5.04 (1H, d, J = 6.8 Hz, H1‴), 5.11 (1H, d, J = 4.6 Hz, OH), 5.16 (1H, d, J = 4.6 Hz, OH), 5.43 (1H, d, J = 4.5 Hz, OH), 3.88 and 6.90 (each 0.5H, s, H3), 6.97 and 6.99 (each 0.5H, H8), 7.21 and 8.10 (each 2H, d, J = 9.1 and 8.3 Hz, p-substituted ArH), 13.41 and 13.43 (each 0.5H, s, OH); FAB-MS (m/z) 609 (M+H)⁺. HRMS (ESI⁺) calcd for C₂₈H₃₂NaO₁₅ 631.16389, found 631.16364.

Acknowledgement

The authors are grateful to Professor Bunpei Hatano for his measurement of HRMS.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.carres.2013. 03.016.

References

- (a) Matsubara, Y.; Sawabe, A. J. Synth. Org. Chem. Jpn. 1994, 52, 318–327; (b) Chopin, J.; Dellamonica, G. C-Glycosylflavonoids. In *The Flavonoids*; Harborne, J. B., Ed.; Chapman and Hall: London, 1998; pp 63–97; (c) Kawaguchi, K.; Melloalves, S.; Watanabe, T.; Kikuchi, S.; Satake, M.; Kumazawa, Y. *Planta Med.* 1998, 329, 855–859; (d) Matsubara, Y.; Suekuni, H.; Honda, S.; Kakehi, K.; Murakami, T.; Okamoto, K.; Miyake, H. Jpn. Heart J. 1980, 21, 583; (e) lizuka, Y.; Murakami, T.; Okamoto, K.; Miyake, H. Jpn. Heart J. 1980, 21, 583; (e) lizuka, Y.; Murakami, T.; Matsubara, Y.; Yokoi, K.; Okamoto, K.; Miyake, H.; Honda, S.; Kakehi, K. Jpn. Heart J. 1980, 21, 584; (f) Kumamoto, H.; Matsubara, Y.; lizuka, Y.; Okamoto, K.; Yokoi, K. Agric. Biol. Chem. 1986, 50, 781; (g) Kawasaki, M.; Hayashi, T.; Arisawa, M.; Morita, N.; Berganza, L. H. Phytochemistry 1988, 27, 3709–3711; (h) Ohsugi, T.; Nishida, R.; Fukami, H. Agric. Biol. Chem. 1985, 49, 1897–1900; (i) Basile, A.; Sorbo, S.; Lopez-Saez, J. A.; Cobianchi, R. C. Phytochemistry 2003, 62, 1145–1152; (j) Nagaprashantha, L. D.; Vatsyayan, R.; Singhal, J.; Fast, S.; Roby, R.; Awasthi, S.; Singhal, S. S. Biochem. Pharm. 2011, 82, 1100–1109.
- (a) Kometani, T.; Kondo, H.; Fujimori, Y. Synthesis **1988**, 1005–1007; (b) Matsumoto, T.; Katsuki, M.; Suzuki, K. *Tetrahedron Lett.* **1988**, 29, 6935–6938; (c) Kumazawa, T.; Ohki, K.; Ishida, M.; Sato, S.; Onodera, J.-i.; Matsuba, S. Bull. *Chem. Soc. Jpn.* **1995**, *68*, 1379–1384; (d) Kumazawa, T.; Minatogawa, T.; Matsuba, S.; Sato, S.; Onodera, J.-i. *Carbohydr. Res.* **2000**, *329*, 507–513; (e)

Kumazawa, T.; Kimura, T.; Matsuba, S.; Sato, S.; Onodera, J.-i. *Carbohydr. Res.* **2001**, 334, 183–193; (f) Sato, S.; Hiroe, K.; Kumazawa, T.; Onodera, J.-i. *Carbohydr. Res.* **2006**, 341, 1091–1095.

- (a) Sato, S.; Akiya, T.; Suzuki, T.; Onodera, J.-i. *Carbohydr. Res.* 2004, 339, 2611–2614; (b) Sato, S.; Nojiri, T.; Onodera, J.-i. *Carbohydr. Res.* 2005, 340, 389–393; (c) Sato, S.; Akiya, T.; Nishizawa, H.; Suzuki, T. *Carbohydr. Res.* 2006, 341, 964–970; (d) Sato, S.; Koide, T. *Carbohydr. Res.* 2010, 345, 1825–1830; (e) Sato, S.; Ishikawa, H. Synthesis 2010, 18, 3126–3130.
- Maurice, J.; Marie-Rose, V.; Jean-Francois, G. C-Glycosylflavonoids. In *The Flavonoids*; Anderson, O. M., Markham, K. R., Eds.; CRC Press, 2005; pp 857–915.
- 5. Sengupta, S.; Mukherjee, A.; Goswami, R.; Basu, S. J. Enzyme Inhib. Med. Chem. 2009, 24, 684–690.
- (a) Goto, T.; Kondo, T. Angew. Chem. **1991**, *103*, 17–33; (b) Kondo, T.; Yoshida, K.; Nakagawa, A.; Kawai, T.; Tamura, H.; Goto, T. Nature **1992**, *358*, 515–518; (c) Kondo, T.; Ueda, M.; Yoshida, K.; Titani, K.; Isobe, M.; Goto, T. J. Am. Chem. Soc. **1994**, *116*, 7457–7458; (d) Kondo, T.; Ueda, M.; Isobe, M.; Goto, T. Tetrahedron Lett. **1998**, *39*, 8307–8310; (e) Kondo, T.; Oyama, K.-i.; Yoshida, K. Angew. Chem. **2001**, *40*, 894–897.
- 7. Oyama, K.-i.; Kondo, T. J. Org. Chem. **2004**, 69, 5240–5246.
- (a) Mahling, J.-A.; Schmidt, R. R. Synthesis 1993, 325–328; (b) Mahling, J.-A.; Jung, K.-H.; Schmidt, R. R. Liebigs Ann. 1995, 461–466; (c) Mahling, J. A.; Schmidt, R. R. Liebigs Ann. 1995, 467–469; (d) Telbani, E. E.; Desoky, S. E.; Hammad, M. A.; Rahman, A. R. H. A.; Schmidt, R. R. Eur. J. Org. Chem. 1998, 2317–2322.
- (a) Oyama, K.-i.; Kondo, T. Org. Lett. 2003, 5, 209–212; (b) Oyama, K.-i.; Kondo, T. Tetrahedron 2004, 60, 2025–2034; (c) Wagner, H.; Aurnhammer, G.; Hörhammer, L; Farkas, L.; Nógrádi, M. Chem. Ber. 1969, 102, 785–791; (d) Aurnhammer, G.; Wagner, H.; Hörhammer, L.; Farkas, L. Chem. Ber. 1970, 103, 1578–1581.