A Synthesis of a New Type of Alkoxycarbonylating Reagents from 1,1-Bis[6-(trifluoromethyl)benzotriazolyl] Carbonate (BTBC) and Their Reactions¹

Kazuyoshi Takeda, Kanoko Tsuboyama, Mitsuho Hoshino, Miyuki Kishino, Haruo Ogura*

School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108. Japan

1,1'-Bis[6-(trifluoromethyl)benzotriazolyl] carbonate (BTBC) was prepared from 1-hydroxy-6-trifluoromethylbenzotriazole and trichloromethyl chloroformate (trichloromethyl carbonochloridate). The reaction of BTBC and alcohols afforded the corresponding active carbonates which were converted into the corresponding carbamates are carbonates.

Several alkoxycarbonylating reagents for amino groups having heterocyclic leaving groups such as *N*-hydroxyimide have been reported.^{2–4} Recently, we also have reported on the utility and versatility of carbonates and oxalates containing an electron withdrawing group such as *N*-hydroxyimide and benzotriazole derivatives as reagents for various transformations.² Surprisingly, however, the alkoxycarbonylating reagents for alcohols are scanty, with the exception of alkoxycarbonyl chloride.

Recently we found that 1-alkoxy[6-(trifluoromethyl)benzotriazolyl] carbonates $1 \mathbf{a} - \mathbf{f}$ easily derived from 1.1-bis[6-(trifluoromethyl)benzotriazolyl] carbonate (BTBC) show high acylating reactivity towards alcohols as well as amino groups. In this paper, we wish to report on the preparation and reactions of novel alkoxycarbonylating agents $1 \mathbf{a} - \mathbf{g}$ (Scheme A).

BTBC was easily prepared from 6-trifluoromethyl-1-hydroxybenzotriazole and trichloromethyl chloroformate in dry ether and was easily purified by washing with dry ether and can be stored for several months in a freezer.

BTBC was allowed to react with primary alcohols in acetonitrile at room temperature to give stable but active carbonates 1a-f.

558 Communications synthesis

$$F_{3}C$$

$$OH$$

$$F_{3}C$$

$$F_{3}C$$

$$F_{3}C$$

$$R^{1}OH/CH_{3}CN,rt$$

$$F_{3}C$$

$$F_{3}C$$

$$R^{2}OH/CH_{3}CN,rt$$

$$F_{3}C$$

$$F_{3}C$$

$$F_{3}C$$

$$F_{4}C$$

$$F_{5}C$$

The carbonates could be easily purified by washing with 4% sodium bicarbonate solution and by crystallization of crude products. The structure was confirmed by MS as well as ¹H-NMR-spectra (Table 1). *t*-Butyl alcohol and *p*-anisyl alcohol failed to react with BTBC.

The utility of the reagents 1a-f was demonstrated in the preparation of carbamates 2a-f of carbonates 2g-l. Thus, as anticipated, the reactive carbonates 1a-g were attacked by the hydroxy group of primary alcohol under the same conditions.

Thus, the active carbonates 1a-f were treated with amines and alcohols to give the carbamates 2a-f or carbonates 2g-l, respectively. The syntheses of carbamates 2a-f and carbonates 2g-l were carried out in acetonitrile at room temperature, or in tetrahydrofuran at $0^{\circ}C$, respectivity (Scheme B). The alkoxycarbonylation of 2-pyrrolidinemethanol afforded only the *N*-alkoxycarbonylated compound 2b. In the case of alkoxycarbonylation of alcohols, the reaction was carried out in the presence of 4-(N,N-dimethylamino)pyridine (DMAP) (Table 2).

$$F_{3}C \xrightarrow{N} N + YH \xrightarrow{CH_{3}CN, r.t. \text{ or } THF_{3}O^{\circ}C} Y \xrightarrow{OR^{1}} OR^{1}$$

$$2a-f Y = N(R^{2})_{2}$$

$$g-I Y = OR^{2}, R^{2}$$

Carbamates 2a-f and carbonates 2g-l were readily formed by the nucleophilic attack of amino or hydroxy groups of amines and alcohols on the carbonyl group of active carbonates 1 because of the presence of electron withdrawing trifluoromethylbenzotriazolyl group.

In summary, we were able to show that as excepted, the esterification with 6-trifluoromethylbenzotriazole esters gave rise to desired products in higher yield than active esters bearing benzotriazole or chlorobenzotriazole. The higher reactivity of the 6-trifluoromethylbenzotriazole ester must be associated with the strong electron withdrawing effect of 6-trifluoromethyl group.

1,1'-Bis[6-(trifluorumethyl)benzotriazolyl] Carbonate (BTBC):

To a stirred solution of 1-hydroxy-6-trifluoromethylbenzotriazole² (20.3 g. 0.1 mol) in dry ether (700 ml) is added trichloromethylchloroformate (5.34 g. 0.025 mol) at room temperature. After 10 min, a further quantity of trichloromethyl chloroformate (5.34 g. 0.025 mol) is added to the mixture, refluxed gently for 1 h, and the precipitate formed is collected and washed with dry ether. Almost pure crystals of BTBC are obtained; yield: 15.1 g (70 %); m.p. 138–143 °C.

C₁₅H₆F₆N₆O₃ calc. C 41.65 H 1.28 N 19.44 (432.2) found 41.67 1.46 19.40

Product R ¹	\mathbb{R}^1	Yield (%)	m.p. (°C) (solvent)	Molecular Formulaª	IR (KBr) $v_{c=0} (cm^{-1})$	'H-NMR (Solvent/TMS) δ (ppm)	$MS (m/z M^+)$
B	C ₆ H ₅ CH ₂	55	153–155	$C_{15}H_{10}F_3N_3O_3$	1750	CDCl ₃ : 5.50 (s, 2H, C ₆ H _s CH ₂); 7.34 (s, 5H, C ₆ H _s); 7.67–8.00 (m 3H)	337
a	Cl_3CCH_2	56	164–165 (CHCl ₃ /ether)	$C_{10}H_{5}Cl_{3}F_{3}N_{3}O_{3}$ (378.5)	1760	CDCl ₃ : 5.09 (s, 2H, CH ₂); 7.80–8.40 (m, 3 H _{arom})	378.5
3	H ₂ C=CHCH ₂	78	140–143 (acetone/ ether)	C ₁₁ H ₈ F ₃ N ₃ O ₃ (287.2)	1755	Aceton- d_6 : 4.97 (d, 2H, $J = 8.0$ Hz, $C_{\bar{H}_2}CH = CH_2$); 5.20–5.64 (m, 2H, $CH = CH_2$); 5.69–6.28 (m, 1H, $C\underline{H} = CH_2$); 7.61–8.36 (m, 3H _{weam})	287
핃	(CH ₃),CHCH ₂	77	187.5–189.5 (CHCl ₃ /ether)	$C_{12}H_{12}F_3N_3O_3$ (303.2)	1760	CDCl: 1.006 [d, 6H, $J = 6.2$ Hz, $(CH_3)_2$ CH]; 1.81–2.45 [m, 1H, $(CH_3)_2$ CH]; 4.28 (d, 2H, $J = 6.2$ Hz); CH ₂); $7.6-8.41$ (m, 3H)	303
e]	CH ₃ SCH ₂ CH ₂	78	115–116 Cacetone/ ether)	$C_{11}H_{10}F_3N_3O_3S$ (321.3)	1770	Acction 46: 2.22 (s, 3H, SCH ₃); 3.00 (t, 2H, $J = 6.2 \text{Hz}$, SCH ₂ CH ₂ O); 5.74 (t, 2H, $J = 6.2 \text{Hz}$, SCH ₂ CH ₂ O); 6.99–8.63 (m. 3 H _{1,000})	321
<u>=</u>	9-Fluorenylmethyl	95	190–193 (acetone/ ether)	$C_{22}H_{14}F_3N_3O_3$ (425.4)	1750	CDCl ₃ : 443 (m, 1H, H – 9); 4.90 (d, 2H, $J = 6.4$ Hz, CH ₂); $7.20-8.33$ (m, $11 H_{arem}$)	425

Table 1. Active Carbonates 1a-f Prepared

Satisfactory microanalyses obtained: $C \pm 0.25$, $H \pm 0.29$, $N \pm 0.14$

Prepared
Z3
Compounds
ri
aple

		•						- Internation
Prod- uct	. A	À	Yield (%)	m. p. (°C) (solvent)	Molecular Formula ^a or Lit. m.p. (°C)	IR (KBr) v _{c=o} (cm ⁻¹)	¹H-NMR (CDCl₃/TMS) ð (ppm)	MS (m/z, M +)
2a	$C_6H_5CH_2$	i-C₃H,CH(CO₂CH₃)NH —	95	oil ^b	m.p. 54–55	1730	0.90 [q, 6H, J = 4.0 Hz, (CH ₃) ₂ CHJ; 2.13-2.33 [m, 1H, (CH ₃) ₂ CHJ; 4.22 (q, 1H, J = 4.0 Hz, NH(H); 5.48 (br, 1H, NH); 5.05 (s, 2H, C ₆ H ₅ CH ₂); 7.27 (s, 5H, C ₆ H ₅)	265
2b	$C_6H_5CH_2$	ж.) сн ₂ он	95	oil	C ₁₃ H ₁₇ NO ₃ (235.3)	1700	1.44–2.35 (m, 4H, CH ₂ CH ₂); 2.95–4.30 (m, 6H, CH ₂ CHCHCH ₂ OH); 5.11 (s, 2H, C ₆ H ₅ CH ₂); 7.30 (s, 4H, CH ₂)	235
2 c	Cl_3CCH_2	$C_6H_5CH_2NH-$	64	83–84 (ether)	C ₁₀ H ₁₀ Cl ₃ NO ₂ (282.6)	1720	2.2. (6.1.5) 2.2.4 (m. 1 H. NH); 7.29 (s. 5H. C.H.)	282.5
2d	H ₂ C=CHCH ₂	C ₆ H ₅ CH ₂ CH(CO ₂ C ₂ H ₅)NH –	76	oile	C ₁₅ H ₁₉ NO ₄ (277.3)	1730	1.21 (t, 3 H, J = 6.6 Hz, CH ₂ CH ₃); 3.10 (d, 2 H, J = 6.0 Hz, C ₆ H ₃ CH ₂); 4.15 (q, 2 H, J = 6.6 Hz, CH ₂ (CH ₃); 4.40-4.60 (m, 2 H, CH ₂ OCO); 4.67 (br, 1 H, CH ₂ CH); 5.69-5.40 (m, 3 H, CHCH ₂), NH); 5.67-6.13 (m, 1 H, CH ₂ CH); 7.77 (m, 5 H, CH ₂)	<i>TT2</i>
2 e	$\mathrm{CH_{3}SCH_{2}CH_{2}}$	$C_6H_5CH_2NH -$	08	lio	C ₁₁ H ₁₅ NO ₂ S (225.3)	1700	2.13 (s. 3.H. CH ₃); 2.66 (t. 2H. $J = 6.6$ Hz, SCH ₂); $J = 6.6$ Hz, CH ₂ , CH ₂ OCO), 4.29 (d. 2H. $J = 5.2$ Hz, CH ₂ NH; 5.02 (br s. 1H, NH; $\overline{J} = 3.1$ (s. 5.H. C. H.)	225
2f	9-Fluorenyl- methyl	C ₂ H ₅ O ₂ CCH ₂ NH	86	105 107 (ether)	105 110°	1700	J. 26,13, 1, 26,13, 1, 2, 2, 2, 3, 3, 3, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 2	S. C.
2g	$C_6H_3CH_2$	2-Furylmethyl	ŝ6	oil	$C_{13}H_{12}O_4$ (232.2)	1730	5.10, 5.13 (2 s, 2 × 2 H, CH ₂ , C ₆ H ₈ CH ₂); 6.25–6.48 (m, 2H, furfuryl H-3, H-4); 7.27–7.47 (m, 6H, C ₆ H ₈ , furfuryl H-5)	232
2h	$C_6H_5CH_2$	H ₃ CCH=CHCH ₂ O	89	oil	C ₁₂ H ₁₄ O ₃ (206.2)	1750	1.67 (4) 34, $J = 5.2$ Hz, CH ₃); 4.49 (d, 2H, $J = 5.2$ Hz, OCH ₂); 5.08 (s, 2H, C_6 H ₅ CH ₂); 5.50–6.00 (m, 2H, CH ₂ CH ₂); 5.50–6.00 (m, 2H, CH ₂ CH ₂); 5.50–6.00	206
i;	Cl_3CCH_2	H ₃ CCH = CHCH ₂ O	23	oil	C ₇ H ₀ Cl ₃ O ₃ (247.5)	1762	(iii, Zii, CH = CH), (iiii, Zii, Chin), (iiii), (iii), (iii), (iiii), (iiii), (iiii), (iiii), (iiii), (iiii), (iiii), (iiiii), (iiiiiiiiii	247.5
2j	H2C=CHCH2	2-Furylmethyi	28	io	C ₉ H ₁₀ O ₄ (182.2)	1748	2H, furturyl H-3, H-4); $7.34-7.47$ (m, 1H, furfuryl H-3).	182
2k	$H_2C = CHCH_2$	P -	74	oil	C ₁₄ H ₂₂ O ₃ (238.3)	1740	2.0 (s, 3H, C=CH ₃); 1.67, 1.72 [2s, 2×3H, C(CH ₃₂]; 2.01-2.12 (m, 4H, CH ₂ CH ₂); 4.60-4.64 (m, 2H, CH ₂ =CHCH ₂); 4.66 (d, 2H, $J = 8.0$ Hz, OCH ₂ CH=); 5.24-5.28, 5.33-5.39 (2m, 1H each, CH ₂ =CH=CH ₂); 5.05-5.10, 5.35, 5.41 (m, 2H, 2x=CH=CH ₂); 5.05-5.10, 5.35, 5.41 (m, 2H, 2x=CH); 5.89-6.00 (m, 1H, CH, =CHCH ₂))	238
7	C_2H_s	ا م	74	ig	C ₁₃ H ₂₂ O ₃ (226.3)	1740	1.29 (1.37) (2.70) (1.37) (1.27) (1.27) (1.28) (1.31) (1.29) (1.37) (1.37) (1.38) (1.	
and the second second second	CARLO MANAGEMENT OF THE PROPERTY OF THE PROPER	TO THE RESIDENCE AND ADDRESS OF THE PROPERTY O		THE PERSON NAMED IN COLUMN 2 I		Completed and relationships before the property of the base and of the first of		

^a Satisfactory microanalyses obtained: $C \pm 0.30$, $H \pm 0.25$, $N \pm 0.21$.
^b $[\alpha]_D^{2^4} = -17.7^\circ$ (c = 1.1 ethanol); Lit. $^5[\alpha]_D^{2^6} = -18.9^\circ$ (c = 1, methanol).

° $[\alpha]_D^{24} = -3.8^\circ$ (e = 1.7, ethanol). d $(CH_3)_2 C = CH(CH_2)_2 C(CH_3) = CHCH_2 O = -1.2$ IR (KBr): v = 1850, 1815 (C=O); 1605 cm⁻¹ (C=C_{arom}). ¹H-NMR (Acctone- d_6): $\delta = 7.50-8.45$ ppm (H_{arom}). MS: m/z = 432 (M⁺).

1-Alkoxy[6-(trifluoromethyl)benzotriazolyl] Carbonates 1a-f; General Procedure:

A solution of alcohol (3.5 mmol) in acetonitrile (2 ml) is added to BTBC (1.3 g, 3.0 mmol) in acetonitrile (150 ml) under stirring at room temperature. After 24 h, the mixture is evaporated *in vacuo*, the residue is washed with aqueous sodium hydrogen carbonate (20 ml) and the precipitate is collected. The dried precipitate is recrystallized from appropriate solvent (Table 1).

Carbamates 2a-f and Carbonates 2g-l; General Procedure:

A mixture of active carbonate (1, 1 mmol and the appropriate amino compound (1 mmol) in acetonitrile (15 ml) or the appropriate alcohol (1 mmol) with DMAP (1 mmol) in tetrahydrofuran is stirred at room temperature or at 0°C respectively. After 24 h, the mixture is evaporated and ethyl acetate (150 ml) is added to the residue. The organic layer is washed with 4% aqueous sodium hydrogen carbonate (80 ml), 0.5 normal hydrochloric acid (80 ml) and saturated brine (80 ml) and the solvent evaporated. The residue is purified by TLC on silica gel plates to afford the carbamates 2a-f and carbonates 2g-l.

Received: 15 July 1986 (Revised form: 16 December 1986)

- (1) This constitutes Part XIII of a series entitled Studies on Activating Methods of Functional Groups. Part XII: Takeda, K., Tsuboyama, K., Suzuki, A., Ogura, H. Chem. Pharm. Bull. 1985, 33, 2545.
- (2) Ogura, H., Kobayashi, T., Shimizu, K., Kawabe, K., Takeda, K. Tetrahedron Lett. 1979, 4745.

Ogura, H., Takeda, K. Nippon Kagaku Kaishi 1981, 836.

Ogura, H., Sato, O., Takeda, K. Tetrahedron Lett. 1981, 22, 4817.

Takeda, K., Ogura, H. Synth. Commun. 1982, 12, 213.

- Takeda, K., Akagi, Y., Saiki, A., Tsukahara, T., Ogura, H. *Tetra-hedron Lett.* **1983**, *24*, 4569. Takeda, K., Sawada, I., Suzuki, A. *Tetrahedron Lett.* **1983**, *24*, 445.
- (3) Takeda, K., Tsuboyama, K., Yamaguchi, K., Ogura, H. J. Org. Chem. 1985, 5θ, 273.
- (4) Bodanszky, M., Klausner, Y.S., Ondetti, M.A. Peptide Syntheses, Wiley, New York 1976, p. 18.
- (5) Miyoshi, M. Bull. Chem. Soc. Jpn. 1973, 46, 1489.
- (6) Carpino, L.A., Ham, G.Y. J. Org. Chem. 1972, 37, 3404.

Errata and Addenda 1987

Hall, G., Sugden, J.K., Waghela, M.B.

Page 10. Line 3 of the Abstract should read: dropyrolizines

Page 14. The first word of Section 3.11. should be: Benzo[b]pyrrolizines

Page 15. Formula 27 should be:

Page 15. The product referred to in Section 4.6., lines 4-5, should be: 10*H*-pyrrolizino[1,2-*h*]quinoline

Page 17. In Section 7., line 4 of the second paragraph should read:

Ahlbrecht, H., von Daacke, A.

Page 24. Formula 8 should be:

$$R^1$$
 NC
 R_2
 R^3
 R^4
 R^4

Costisella, B., Keitel, I.

Page 45. In the heading of the experimental procedure, 6 should read 3 and 8 should read 7.

Stoss, P., Merrath, P., Schlüter, G.

Page 174. Numbers 1 and 3 should be exhanged in formula 2a-f.

Singh, G., Deb, B., Ha, H., Junjappa, H.

Page 286. Compounds 1 are 2-aroyl-2-arylthioketene dithioacetals.

Asaad, F.M., Becher, J., Møller, J., Varma, K.S.

Page 301. Under the reaction scheme, the X group in compounds 3b,d and 4b,d should be $CO_2C_2H_5$.

Legrel, P., Baudy-Floc'h, M., Robert, A.

Page 306. The title should read: A One-Pot Synthesis of z-Halohydrazides from 2,2-Dicyanooxiranes.

Page 306. In the table under the reaction scheme, the second heading R¹ should be R².

van der Goorbergh, J. A. M., van der Steeg, M., van der Gen. A.

Pages 314–317. The systematic names for the heterocycles involved are: 4,5-dioxo-3,4-dihydro-2*H*,5*H*-thiopyrano[3,2-*c*] [1]benzopyrans **4** (RF 24756), 4,5-dioxo-2*H*,5*H*-thiopyrano[3,2-*c*] [1]benzopyrans **7** (RF 24756), and 4,5-dioxo-1,3,4,4a,5,10b-hexahydro-2*H*-[1]benzopyrano[4,3-*b*]pyridines **8** (RF 24539).

Attanasi, O. A., Filippone, P., Santensanio, S., Serra-Zanetti, F.

Page 382. In the table under the reaction scheme, R^3 for 1b should be $CO_2C_3H_5$ and R^3 for 1c should be CO_2CH_3 .

Campbell, A. L., Lenz, G. R.

Pages 428 and 446. Formulae 95 and 298 should be:

Page 437. The heading for Table 3 should be: Intermolecular ...

Pelletier, J.C., Cava, M.P.

Page 476. Formula 1a-m should be:

1a-m

L'abbé, G.

Page 528. Compound 45 should be named: 3-(2-pyridyl)-2,4-dithioxo-3,4-dihydro-2*H*-pyrido[1,2-*a*][1,3,5]triazine (RF 9177).

Evans, R.D., Schauble, J.H.

Page 551. Compounds 10 and 11 are tricyclo[2.2.1.0^{2.6}]heptane derivatives.

Takeda, K., Tsuboyama, K., Hoshino, M., Kishino, M., Ogura, H.

Page 559. The Y-group for 2g and 2j should be furfuryloxy.

Takeda, K., Tsuboyama, K., Takayanagi, H., Ogura, H.

Page 560. The following figure should appear after the 4th paragraph:

Eicher, T., Stapperfenne, U.

Page 625. Compounds **13a,b** are 6,7-dihydrofuro[2,3-*b*]pyridines (RF 7431), and compounds **15a,b** are 1.4-dihydrocyclopentimidazoles (RF 5892).

Dölling, W., Augustin, M., Ihrke, R.

Page 655. Formula 6 should be:

$$0 = \begin{cases} S & \text{NH}_2 \\ S & \text{S} - \text{CO}_2\text{CH}_3 \end{cases}$$

Mikołajczyk, M., Bałczewski, P.

Page 661. The second paragraph of ref. 21 should be ref. 22; refs. 22 and 23 should be 23 and 24, respectively.

Rösch, W., Regitz, M.

Page 692. Compounds 21a,b are 2H-1,2,3-diazaphospholes.

Tietze, L.-F., Brumby, T., Pretor, M.

Page 702. Compounds 8 and 9 are 4a,10b-dihydro-4H,5H-pyrano[3,4-c][1]benzopyran-2-carboxylic esters.

Wamhoff, H., Zahran, M.

Page 877. Formula 18a,b should be:

$$C_{\varepsilon}H_{5}$$

N-N

N

 $C_{\varepsilon}H_{5}$

18a,b

Castaldi, G., Giordano, C.

Page 1039. The target compounds 3 are 1-bromoalkyl aryl ketones.