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Abstract—A series of N-linked tetrakis(tetrapeptido)calix[4]arene diversomers, 3A–P, has been synthesized by coupling of a cone
calix[4]arene tetracarboxylic acid chloride with tetrapeptides 1A–P obtained in a parallel fashion. The inhibition activity of 3A–P
towards tissue and microbial transglutaminase was evaluated by in vitro assays with a labeled substrate. Kinetic analysis using
one of the most active derivatives (3A) showed a noncompetitive inhibition with respect to the amino acceptor substrate and an
uncompetitive inhibition with respect to amino donor substrate. Experimental results are in accordance with an inhibition due to
a protein specific surface recognition on a region noncomprising the enzyme active site.
� 2005 Elsevier Ltd. All rights reserved.
Transglutaminases (TGs; EC 2.3.2.13) form a large fam-
ily of enzymes that catalyze an acyl transfer reaction
between the c-carboxamide group of the protein-bound
glutamine residue and the primary amino group of the
protein-bound lysine residue or biogenic polyamines.1

Due to the TG-catalyzed post-translational modification
of selected protein substrates, these enzymes play impor-
tant roles in several biological functions.2 Recent find-
ings suggest that some TGs, normally expressed at low
levels in many tissue types, are activated and/or over-
expressed in a variety of disorders, which include celiac
sprue and Huntington disease.3 Consequently, there is a
strong interest in the search of TG inhibitors as poten-
tial therapeutic agents.4

In this regard, a potential alternative to conventional
small-molecule inhibitor approach, could be the exploi-
tation of the principles of protein surface recognition,
successfully applied, in the last few years, by Hamilton
and co-workers.5 Following these lines, here we report
the synthesis of a series of peptidocalix[4]arene diver-
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somers6 and their evaluation as inhibitors of two TG
isoforms.

In the design of peptidocalixarenes, we first decided to
use a calix[4]arene scaffold blocked in the cone confor-
mation and bearing tetrapeptide chains N-linked at the
upper rim.7 In this way, a convergent presentation to
the protein surface is favoured by the fixed conforma-
tion of the scaffold, while the intramolecular interchain
interaction, observed for some C-linked derivatives,
should be disfavoured.8 In addition, glycine was chosen
as the first amino acid of the peptide chain because of
the minimal steric bulkiness of the a-substituent, which
would allow its appropriate folding over the protein
surface.

In order to have a more general unbiased approach, we
decided to initially test peptidocalix[4]arenes bearing an
apolar, anionic or cationic ending residue. Thus, tetra-
peptides 1A–C ending with tyrosine, aspartic acid and
lysine, respectively, were synthesized by using the solu-
tion phase methodology reported by Carpino and co-
workers,9 which relies on the successive coupling of
Fmoc-protected amino acid chlorides (Scheme 1). The
tetrapeptides were then coupled with the known tetra-
propoxycalix[4]arene tetracarboxylic acid chloride 2,7

blocked in the cone conformation, in the presence of
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Scheme 1. Reagents and conditions: (a) NaHCO3, 5%, Fmoc-AA-Cl, CH2Cl2; (b) TAEA, CH2Cl2; (c) CH2Cl2/DMF (150/3), DIC, 0 �C, DMAP; (d)

20% piperidine, DMF, 30 min; (e) HBTU, Fmoc-AA-OH, DIPEA, DMF; (f) MeOH, N(Et)3, DMF, 2 d; (g) (1) CF3COOH, (Et)3SiH, CH2Cl2, 1 h;

(2) (trimethylsilyl)diazomethane. Side chain of Tyr and Asp amino acids were protected by tert-butyl group; e-amino group of Lys was protected by

Boc group. Left- and right-side routes were used to prepare tetrapeptides 1A–C or 1D–P, respectively.
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NEt3, to give tetrakis(tetrapeptido)calix[4]arenes 3A–C,
as methyl ester derivatives. These compounds, as well
as all the other diversomers successively described, were
structurally characterized by NMR, ESI/MS and ele-
mental analysis. In all instances no significant racemiza-
tion was evidenced by NMR and [a]D measurements.

The synthesized tetrapeptidocalix[4]arenes were in vitro
screened (by using a concentration ranging between 0.01
and 1 mM) for their inhibition activity towards tissue
TG (tTG) (Fig. 1) and microbial TG (mTG) (Fig. 2).
The assays were carried out by measuring the incorpora-
tion of 3H-labeled spermidine (Spd) into N,N-dimethyl-
Figure 1. Tissue transglutaminase (tTG) activity in the presence of the synth

were used in a concentration ranging between 0.01 and 1 mM (only data for

three independent sets of experiments with two replicates and the bars rep

protected, fully and partially deprotected derivatives is shown only for 3A,D a

only the datum for the most active form is shown in the other instances.
ated casein (DMC).10 As shown in panels A (Figs. 1 and
2) the tetrakis(tetrapeptido)calix[4]arene 3A, ending
with tyrosine was found to be more effective than 3B
and 3C towards both TG isoforms.

Successive deprotection treatments of 3A–C led to deriv-
atives 3Aa–Ca, fully deprotected at both the side chain
and the terminal residue. In addition, partially deprotec-
ted compounds 3Ab–Cb and 3Ac–Cc were also obtained
by a single treatment under basic or acid conditions,
respectively (Scheme 1).11 However, all these derivatives
showed a lower inhibition activity with respect to the
parent compounds 3A–C (Figs. 1 and 2, panels A).
esized tetrapeptidocalix[4]arene diversomers (see Scheme 1). Inhibitors

the highest concentration are shown). Columns represent an average of

resent the standard deviations. Comparison of inhibition activity of

nd 3I and their corresponding free tetrapeptides (1A,D and 1I), whereas



Figure 2. Microbial transglutaminase (mTG) activity in the presence of the synthesized tetrapeptidocalix[4]arene diversomers (see Scheme 1).

Inhibitors were used in a concentration ranging between 0.01 and 1 mM (only data for the highest concentration are shown). Columns represent an

average of three independent sets of experiments with two replicates and the bars represent the standard deviations. Comparison of inhibition activity

of protected, fully and partially deprotected derivatives is shown only for 3A,D and 3I and their corresponding free tetrapeptides (1A,D and 1I),

whereas only the datum for the most active form is shown in the other instances.
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Interestingly, no significant inhibition was found for free
tetrapeptides 1A–C and tetracarboxylic acid 2a, suggest-
ing a specific, multipoint surface binding interaction of
tetrapeptidocalix[4]arenes 3 in enzyme inhibition.

On the basis of the above results, we directed our atten-
tion to the synthesis of further apolar peptidocalixarenes
ending with tyrosine residue and having a combination
of different residues at intermediate positions of the pep-
tide chain. The synthesis of such tetrapeptides, namely
1D–H, was performed in a parallel fashion, in the solid
phase by using an automated synthesis workstation
(Chemspeed ASW1000 synthesizer).12 A polystyrene
Wang resin was used as solid support on which Fmoc-
protected amino acid were then coupled with HBTU
as condensing agent (Scheme 1).

The tetrapeptides were detached from the solid sup-
port13 and then coupled with 2 to give tetrapeptidoca-
lix[4]arenes 3D–H that were tested for their inhibition
activity towards tTG and mTG (Figs. 1 and 2, panels
B, respectively). These compounds exhibited a very
low inhibition activity towards both the TG isoforms,
thus evidencing the relevance of the internal sequence
on inhibition activity.
Figure 3. Study on tTG inhibition by 3A. Panel A: nondenaturing gel electrop

with 3A (right lane). Panel B: kinetic analysis of tTG inhibition by 3A. Linew

(B1) and spermidine (Spd) (B2) as variable substrates. tTG from guinea pig l

(0.1 mM, squares; 1 mM, triangles).
Compounds 3D–H were subsequently deprotected11 to
give 3Da–Ha, 3Db–Hb and 3Dc–Hc derivatives. Among
them 3Da was found to exhibit the best inhibitory effect
towards tTG (34% activity reduction) and mTG (35%
activity reduction) (Figs. 1 and 2, panels B, respectively).

The solid phase synthesis was then extended to tetrapep-
tides 1I–P,11–13 with phenylalanine ending residue, to
give tetrapeptidocalix[4]arenes 3I–P (Scheme 1). These
compounds generally showed a low level of inhibition
activity, whilst the corresponding deprotected com-
pounds, 3Ia–Pa, were more effective (Figs. 1 and 2, pan-
els C, respectively). In particular, 3Ia was found to be
the best inhibitor for tTG (�40% activity reduction),
while 3Na and 3Pa were more effective on mTG
(�58% and 62% activity reduction, respectively).

The proposed TG inhibition by tetrapeptidocalix[4]-
arenes 3 through a specific complex formation was
confirmed by nondenaturing gel electrophoresis on
acrylamide/agarose gel (Fig. 3, panel A).14 In fact, the
effective formation of a tTG/3A complex, which
migrated towards the cathode faster than the uncom-
plexed enzyme, was observed in the lane corresponding
to their mixture.
horesis on acrylamide/agarose gel of free tTG (left lane) and its mixture

eaver–Burk plots were made by using N,N-dimethylated casein (DMC)

iver was incubated in the absence (rhombuses) or in the presence of 3A
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Further information on the type of inhibition (competi-
tive, noncompetitive, and uncompetitive) of 3A on tTG
activity were obtained through a kinetic study.15 As
shown in Figure 3, 3A exhibited a noncompetitive inhi-
bition with respect to the amino acceptor substrate
DMC (Fig. 3, panel B1) and uncompetitive with respect
to amino donor substrate Spd (Fig. 3, panel B2). These
results lend support to a tTG/3A complex formation
promoted by a specific surface recognition on a region
noncomprising the enzyme active site (hot spot).5c Con-
sequently, TG inhibition could be due to a conforma-
tional rearrangement of the active form produced by
the enzyme/inhibitor recognition interaction.

On the basis of the above results, we concluded that the
sequences Gly-Phe-Gly-Tyr (3A) and Gly-Phe-Gly-Phe
(3Ia) are the most effective tTG inhibitors in the frame
of our tetrapeptidocalix[4]arene library. Interestingly,
both compounds have the same internal sequence (Phe-
Gly), which appears to be important for a specific sur-
face recognition of tTG. Furthermore, the presence of
an apolar aromatic moiety in the side chain of the termi-
nal amino acid appears to be also necessary. In fact, a
comparable activity was observed for 3Ia and 3A ending
with phenylalanine and But-O-protected tyrosine,
respectively, whereas the corresponding O-deprotected
derivative 3Aa showed a lower efficiency (Fig. 1). On
the other hand, the best inhibitory effect on mTG was
observed with derivatives 3Na and 3Pa (Fig. 2), having
a very similar sequence (Gly-Leu-Phe-Phe and Gly-Leu-
Gly-Phe, respectively), again supporting the specificity
of surface recognition by different diversomers on the
two TG isoforms.

In conclusion, this study demonstrates that TGs can be
inhibited by peptidocalix[4]arene diversomers by means
of unconventional protein surface recognition, but
further efforts are required to improve their limited
efficiency. The extension of this strategy to the elabora-
tion of a second generation of TGs inhibitors may include
the less symmetrical attachment of diverse peptide chains
on the same scaffold or the use of a calix[4]arene skeleton
bearing both NH2 and COOH groups to give peptidomi-
meticN,C-linked derivatives.16 Both approaches are cur-
rently under study in our laboratory.
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