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ENANTIOSELECTIVE TOTAL SYNTHESIS OF (+)-MONOMORINE I 
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Abstract: Enantioselective total synthesis of (+)-monomorine I was achieved starting from 
diethyl L-tartrate via 1,2-asymmetric induction based on highly diastereoselective 
hydride addition to acyclic a,R-dialkoxy ketones. 

(+)-Monomorine I [ (+)-l] has been isolated from the cosmopolitan ant Monomorium 

pharaonis (L. )l as a major component having attractant and trail-initiating activity. 2 The 

absolute configuration of (+)-1 has been established recently as 3%,53,9S. 3 While several 

syntheses of monomorine I in racemic form4 and a chiral synthesis of the nonnatural (-)- 

enantiomer3 have been reported, synthesis of the natural (+) -enantiomer remains unexplored. 

In this communication we report the first asymmetric synthesis of (+)-1. 

Our approach to (t)-monomorine I was initiated by 1,2-asymmetric induction based on 

hydride addition to acyclic a, B-dialkoxy ketones in a predictable and controlled manner. 596 

Thus the ketone 2 bearing the methoxymethyl (MOM) ethers at a and I3 positions was initially 

prepared from diethyl L-tartrate in 6 steps according to published method.7 Reduction of 2 

with Zn(BH4)2 provided high anti selectivity of >99:1 (by 400-MHz ‘H NMR) yielding the 

alcohol 3 (95%) ,8 [a1201, -25.7O (c 0.27, MeOH). Compound 3 was converted to the aldehyde 

4, Ict124D -ll.l” (c 1 .Ol, CHC13), by the Mitsunobu reaction with phthahmide followed by 

debenzylation (H 2, Pd/C) and Swern oxidation in 41% overall yield. Subsequent Grignard 

reaction and Swern oxidation afforded tile ketone 5, [a] 20 D -16.4O (c 0.28, MeOH), in 78% 

overall yield. On reduction of 5 with L-Selectride (THF, -78 “C) the alcohol 6 (83%),8 

Ia120D -28.5’ (c 2.24, CHC13), was obtained with high syn selectivity (syn:anti = 98:2). 

Syn selectivity (syn:anti = 97: 3) was also observed when LS-Selectride (THF, -78 OC) was 

used as the reducing agent, affording 6 (67%) .8 

The syn ,syn,syn alcohol 6 thus prepared via twofold diastereoselective hydride addition 

was subjected to removal of the phthaloyl group followed by N-benzyloxycarbonylation to 

give 7 (80% from 6). Compound 7 underwent mesylation and subsequent base-induced 

cyclization (I-BuOK, THF, r. t. > to exclusively afford the (2S,5&)-pyrrolidine 8, [a] 20 D 

-15.6’ (c 1.05, MeOH), with complete inversion of the C-6 configuration (R to 5) in 83% 

yield. Cleavage of the MOM ether (coned. HCl, MeOH) and treatment of resulting 9 with 

triiodoimidazole and PPh3 afforded the epoxide 10 (82% from 8), which was deoxygenated’ by 

treatment with PPh3 and zinc in refluxing toluene to yield the 3-pyrroline derivative 11 

(93%), ]a]201, +8.6O (c 0.36, MeOH). Site selective oxidation of the terminal olefin via 

Wacker process (02, PdC12, CuC12) gave 12 (81%), [a]221, t7.2O (c 0.57, MeOH), which on 

hydrogenation over Pd/ C in methanol exclusively provided (t)-monomorine I [ (t)-l] (76%)) 

Ial22 D +34.3” (c 1.02, hexane). 10 This material had identical spectra (400-MHz ‘H and 13C 

NMR and mass) with the corresponding spectra of both authentic ( -)-1 and (f)-1. 4f 
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(a) mfid;; (;I Z”p’~,HCQ2, Etp, -20 OC; (c) phthalimide, Ph3P, (NC02Et)2, THF, 0 OC + 
r.t.; 
CH2=CH(CH2)$gBr, TkF, 

MeOH; (e) (COCl)%, Me2S0, Et3N, CH2C12, -78 ‘C; (f) 
-78 =‘C; (g) LiBH(=-Bu)3, THF, -78 OC; (h) (NH2)2*H20, 

EtOH, refl; (i) PhCH20COC1, aq. Na2C03, CH2C12, 0 ‘C; (j) MsCl, Et3N, CH2C12, 0 ‘C; 
(k) i-BuOK, THF, r.t.; (1) coned. HCl, MeOH, refl; (m) imidazole, triiodoimidazole, Ph3P, 
toluene, refl; (n) Ph3P, Zn, toluene, refl; (0) 02, PdC12, CuC12, DMF-H20, 70 OC. 
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