Imidlactone, 2. Mitt. 1)

N-(2-Phenylethyl)-isochroman-1-imine

Werner Meise und Hans-Jürgen Mika²⁾

Pharmazeutisches Institut der Universität Bonn, Kreuzbergweg 26, D-5300 Bonn 1

Eingegangen am 13. Juli 1988

Aus den N-(2-Phenylethyl)-2-(2-hydroxyethyl)-benzamiden 1 werden in guten Ausbeuten die N-(2-Phenylethyl)-isochroman-1-imine 2 gewonnen. Im Eintopfverfahren lassen sich die aus den δ -Hydroxyamiden 1 gebildeten rohen 6-Ring-Imidlacton-Hydrochloride 2-HCl zu den δ -Hydroxyaminen 3 reduzieren bzw. – anders als in der 5-Ring-Reihe – zu den δ -Chloramiden 5 isomerisieren; unter härteren Bedingungen entstehen die Lactame 4. Die Reaktionswege werden im einzelnen beschrieben.

Imidolactones, II¹⁾: N-(2-Phenylethyl)-isochromane-1-imines

Starting with the N-(2-phenylethyl)-2-(2-hydroxyethyl)-benzamides 1 the N-(2-phenylethyl)-isochromane-1-imines 2 are prepared in good yields. In a one-pot-method the crude 6-membered imidolactone-hydrochlorides 2-HCl formed from the δ -hydroxyamides 1 may be reduced to the δ - hydroxyamines 3 and – contrary to the 5-membered compounds – isomerised to the δ -chloroamides 5; under more vigorous conditions the lactames 4 are formed. These reactions are described in detail.

Umsetzung der aus N-(2-Phenylethyl)-aminen und Isochroman-1-onen leicht zugänglichen δ-Hydroxyamide 1³⁾ unter *Bischler-Napieralski*-Bedingungen führt in Abhängigkeit von Reaktionsdauer und Substituenten zu verschiedenartigen Cyclisierungen⁴⁾. Läßt man 1 bei Raumtemp. in verdünnter Lösung mit POCl₃ oder mit SOCl₂ reagieren, so bilden sich unabhängig von den Substituenten die N-(2-Phenylethyl)isochroman-1-imine 2. Wegen der Zersetzlichkeit der rohen Hydrochloride wurden die Imidlactone 2 zunächst als Hydrobromide isoliert; später konnten auch reines 2cund 2d-Hydrochlorid gewonnen werden. Die Ausbeuten

Н

OCH₃

Н

betragen bei Verwendung von POCl₃ in Benzol 40-45, mit SOCl₂ in Chloroform wegen der günstigeren Aufarbeitung 70-80% d. Th. Diese δ -Imidlacton-Synthese ist schonender und vielseitiger als die Cyclodehydratisierung von δ -Hydroxyamiden^{5,6)}, da letztere nur mit konz. H₂SO₄ und nur bei Amiden mit Dialkyl- oder Phenyl-Substitution in α -Stellung zur Hydroxy-Gruppe gelingt.

Auch die aus den Salzen freigesetzten Isochroman-1imine sind gegen Hydrolyse erheblich empfindlicher als die entspr. 5-Ring-Verbindungen¹⁾. Nur bei sehr vorsichtigem Arbeiten in der Kälte und nach raschem Umkristallisieren lassen sich die reinen Imidlactone 2 erhalten.

Schon die Basizität und die ¹H-NMR-Spektren (z.B. die Bande von $\delta = 4.21$ ppm für -CH₂-O- im Imidlacton-Ring von 2a gegenüber 3.77 für -CH₂-N<4) im Heterocyclus von 4a; s. a. Lit. 1,7) schließen die früher⁵⁾ angenommene Struktur der isomeren Lactame 4 für unsere Produkte aus. Auch hinsichtlich der sauren Hydrolyse und der Umsetzung mit NaBH₄ verhalten sich die Isochroman-1-imine 2 bzw. deren Salze den bereits beschriebenen 1,3-Dihydro-isobenzofuran-1-iminen und deren Salzen¹⁾ analog: Beim Erwärmen mit 3 N H₂SO₄ bildet sich jeweils das entspr. N-(2-Phenylethyl)-amin und das Isochroman-1-on. Behandlung mit NaBH₄ liefert die δ- Hydroxyamine 3, die als Hydrochloride und als Basen isoliert und charakterisiert wurden; da die Reduktion hier im Gegensatz zu den 5-Ring-Imidlactonen¹⁾ nahezu quantitativ erfolgt, ergibt sich ein schonendes Eintopfverfahren zur Überführung der δ-Hydroxyamide 1 in die δ -Aminoalkohole 3.

Die Möglichkeit einer thermischen Zersetzung bzw. Isomerisierung wurde am Beispiel 2a untersucht: Nach 1/2stdg. Erhitzen bei 150°C lieferte 2a·HBr das Lactam 4a. Das rohe 2a·HCl reagierte dagegen unter denselben Bedingungen zum δ-Chloramid 5a. 4a bildete sich auch aus 2a·HCl sowie aus 5a nach 1/2stdg. Erhitzen auf 200°C. Die freie Base 2a konnte demgegenüber unter keiner der genannten Bedingungen zum Lactam 4a isomerisiert werden;

a H

b

OCH₃

OCH₄

246 Meise und Mika

$$2a \cdot HBr$$

$$Aa; 4b (R^1, R^2 \text{ s. Formelbild 1})$$

$$5a \quad 30 \text{ min } 150 \text{ °C}$$

$$Cl \quad 30 \text{ min } 150 \text{ °C}$$

$$der \quad 1 \text{ h. CH}_3\text{CN}/\Delta$$

$$SOCl_2/\text{CHCl}_3$$

$$5a; b; c (R^1, R^2 \text{ s. Formelbild 1})$$

$$5a \quad POCl_3/\Delta$$

$$5a; b; c (R^1, R^2 \text{ s. Formelbild 1})$$

$$5a \quad POCl_3/\Delta$$

$$Cl \quad 40$$

$$R^2$$

$$Socl_2/\text{CHCl}_3$$

$$Socl_$$

es trat lediglich Zersetzung unter Bildung von Amin und Lacton auf. Auch 2b·HCl ließ sich analog in das Chloramid 5b und in das Lactam 4b überführen.

Da das δ -Chloramid 5a ein denkbares Zwischenprodukt der Umsetzung des δ -Hydroxyamids 1a zum δ -Imidlacton 2a darstellt – die Gewinnung einiger γ -Imidlactone und eines δ -Imidlactons aus den entsprechenden ω -Halogenamiden ist beschrieben⁸⁾ –, behandelten wir 5a wie 1a mit $SOCl_2$ bei Raumtemp.: Das Chloramid wurde zurückgewonnen.

Präparativ lassen sich die Chloramide 5a,b,c durch einstdg. Erhitzen der aus 1 erhaltenen rohen Imidchlorid-Hydrochloride 2·HCl in Acetonitril in einem Eintopfverfahren gewinnen. 2d·HCl blieb unter diesen Bedingungen unverändert; selbst 24stdg. Erhitzen, auch in Dioxan oder Ethanol, brachte nur geringfügige Umsetzung. Auch Erwärmen in Gegenwart von LiCl, ZnCl₂ oder Aliquat 336, einem quartären Ammoniumchlorid, zur Erhöhung der Chlorid-Konzentration führte lediglich zu teilweiser Zersetzung in Amin und Lacton, desgleichen Schmelzen bis zu 200°C. Das Mißlingen der *Pinner*-Spaltung bei 2d·HCl muß mit der stabilisierenden Wirkung der Methoxy-Gruppen im Lactonteil erklärt werden (vgl. auch Lit.⁴⁾).

Nach diesen Befunden lassen sich die Reaktionen der Hydroxyamide 1 und ihrer Folgeprodukte folgendermaßen interpretieren:

Die Bildung der Imidlactone 2 aus 1 erfolgt nicht über die Chloramide 5 als Zwischenstufen. Vielmehr bleibt das Sauerstoff-Atom in der Seitenkette erhalten und greift den Carbonyl-Kohlenstoff bzw. den durch das Kondensationsmittel "aktivierten" Chlormethyleniminium-/Chloraminocarbenium-/(Nitrilium-?)Kohlenstoff (vgl. Formelbild 6a) nucleophil unter Bildung des Isochroman-Systems an: In Gegenwart von SOCl₂ ist die Cyclisierungstendenz größer als die Geschwindigkeit des Austauschs der Hydroxy-Gruppe gegen Chlor. Bei der erwähnten, mit den Hydroxyamiden 1 nicht durchführbaren Herstellung von Isochroman-1-iminen mit H₂SO₄^{6,8)} wird dagegen der alkoholische Sauerstoff nach Protonierung abgespalten, und der Carbonamid-Sauerstoff schließt den Ring.

Erhitzen des Hydrochlorids von 2a führt zunächst zu der einer *Pinner*-Spaltung analogen Umsetzung zum Chloramid 5a; diese Reaktion wurde bisher bei N-substituierten Imidestern nicht beobachtet⁹. Bei höherer Temp. bildet sich anschließend das Lactam 4a, d.h. der Amid-Stickstoff wird durch die Chlorethyl-Seitenkette intramolekular alkyliert. Auf eine *Chapman*-Umlagerung¹⁹) kann die Lactambildung nicht zurückgehen, da sich die freie Base 2a nicht isomerisieren läßt.

Möglicherweise entsteht aus 2a-Hydrobromid ebenfalls zunächst das entspr. Halogenamid, das jedoch wegen seiner reaktiveren Bromethyl-Seitenkette so schnell weiterreagiert, Imidlactone 247

daß es nicht nachweisbar ist. Ob die in Lit.¹⁾ beschriebene Lactambildung aus den analogen 2-Hydroxymethyl-benzamiden bzw. aus den entspr. 5-Ring-Imidlactonen ebenfalls über Chloramide verläuft, kann noch nicht entschieden werden, da letztere auf Grund ihrer Benzylchlorid-Struktur ebenfalls instabiler sind und unter den von uns angewandten Bedingungen bisher nicht gefaßt werden konnten.

Für die bereits beschriebene Umsetzung der Hydroxyamide 1 unter *Bischler-Napieralski*-Bedingungen^{3,4)}, d.h. beim Erhitzen in POCl₃ ergibt sich folgendes: Die unmittelbar nach Reagenzzugabe bereits bei Raumtemp. entstehenden Imidlactonhydrochloride 2·HCl sind für den weiteren Reaktionsverlauf ohne Bedeutung; denn sie wandeln sich unter *Pinner*-Spaltung in die entspr. 2-(2-Chlorethyl)-benzimidchlorid-Salze 7¹¹⁾ um. Erst von deren Reaktivität ist dann der weitere Reaktionsverlauf abhängig⁴⁾.

Experimenteller Teil

Allgemeine Angahen: Die Lösungsmittel wurden jeweils bei 40°C i. Vak. abgedampft, die Endprodukte für Spektren und Analysen bei 60°C i. Hochvak. (2a, 2b, 3a und 3c bei Raumtemp.) über P₄O₁₀ getrocknet. — Schmp.: Heiztisch-Mikroskop nach Opfer-Schaum oder nach Kofler-Weygand, nicht korr. — Elementaranalysen: Analytische Laboratorien Prof. Dr. H. Malissa & G. Reuter, Gummersbach 1 Elbach. — IR (KBr; 2b als Film): Beckmann IR 33. — UV (EtOH): Perkin-Elmer 550 S. - ¹H-NMR: Varian EM 360-A, TMS als inn. Stand.

N-(2-Phenylethyl)-isochroman-1-imine 2 und ihre Salze

Allgemeine Arbeitsvorschrift: Die Lösung von 10 mmol Hydroxyamid 1 in 20 ml CHCl₃ wird mit 10 ml frisch destilliertem SOCl₂ versetzt. Nach 5 min Stehen bei Raumtemp. engt man bis auf etwa 1/10 des Volumens ein, verdünnt nacheinander dreimal mit je 20 ml CHCl₃ und dampft zweimal auf etwa 1/10, schließlich bis zur Gewichtskonstanz ein (→,,rohes 2·HCl"). Der Rückstand wird in 20 ml 33proz. HBr/Essigsäure aufgenommen. Nach 5 min Rühren bei Raumtemp. dampft man i. Vak. bei 60°C ein, nimmt in 50 ml Benzol auf und dampft wiederum ein. Der feste, gelbliche Rückstand gibt nach Umkristallisieren aus dem in Tab. 1 aufgeführten Lösungsmittel farblose Kristalle. Im Falle 2c und 2d lassen sich durch rasches Umkristallisieren der Rohprodukte aus den in Tab. 1 angegebenen Lösungsmitteln analysenreine Hydrochloride gewinnen.

Zur Herstellung der Basen werden jeweils 10 mmol rohes **2·HCI** mit 30 ml Wasser versetzt. Dreimaliges Extrahieren mit je 10 ml Essigsäureethylester liefert wenig Chloramid **5**. Zu der klaren wäßrigen Lösung fügt man unter Eiskühlung und Umschwenken langsam 10 ml 2 N NaOH hinzu. Fünfmaliges Ausschütteln mit je 20 ml Essigsäureethylester, Trocknen über MgSO₄ und Eindampfen bei 20°C ergibt in der Regel chromatographisch reine Basen **2**, die aus wenig Ethanol vorsichtig umkristallisiert werden. – Ausbeuten (bezogen auf 1), Schmelzpunkte, Elementaranalysen und spektroskopische Daten s. Tab. 1 und 2.

$N-(2-Phenylethyl)-2-(2-hydroxyethyl)benzylamine {\it 3}$ und ihre Salze

Allgemeine Arbeitsvorschrift: 10 mmol Hydroxyamid 1 werden mit SOCl₂ wie bei 2 beschrieben zu rohem 2·HCl umgesetzt. Man löst in 50 ml Methanol, versetzt im Verlauf von 1.5 h unter Rühren und Eiskühlung portionsweise mit 3.8 g (100 mmol) NaBH₄, kocht die Suspension 30 min unter Rückfluß, dampft die Hauptmenge des Methanols ab, nimmt in 50 ml Wasser auf und schüttelt 3 x mit je 50 ml Essigsäureethylester aus. Abdampfen des Lösungsmittels, Aufnehmen der Rohbasen in 10 ml Ethanol,

Versetzen mit 10 ml 2 N HCl und erneutes Eindampfen liefert die zumeist schon de reinen Hydrochloride 3·HCl, die zur Analyse aus Ethanol umkristallisiert werden.

Durch Lösen von jeweils 5 mmol reinem 3·HCl in 30 ml Wasser, Versetzen mit 10 ml 2 N NaOH, 3 x Ausschütteln mit je 30 ml CHCl₃ und Eindampfen erhält man die Basen 3. Während 3c bei Zugabe von wenig Petrolether (40-60°C) und 3d mit etwas Ethanol kristallisieren, konnten die beiden anderen Amine nicht direkt zur Kristallisation gebracht werden. Destillation der Rohbasen i. Feinvak. lieferte die analysenreinen Produkte 3a (Sdp_{-0.45} 176-177°C, erstarrt, Schmp. 44-46°C) bzw. 3b (Sdp_{-0.27} 194-196°C, n_D²¹ 1.5710). – Lösungsmittel zum Umkristallisieren, Schmelzpunkte, Ausbeuten, Elementaranalysen und spektroskopische Daten s. Tab. 3 und 4

N-(2-Phenylethyl)-3,4-dihydroisochinolin-1(2H)on(4a)

a) 3.3 g (10 mmol) **2a·HBr** werden 30 min im Ölbad auf 150°C erhitzt. Nach dem Erkalten nimmt man in 200 ml Essigsäureethylester auf, filtriert, schüttelt je 3 x mit 30 ml 2 N HCl und mit 30 ml 2 N NaOH aus, trocknet über MgSO₄, dampft ein und destilliert: 1.3 g (52%) farbloses Öl vom Sdp._{0.15} 180°C, das innerhalb kurzer Zeit kristallisiert. Schmp. 75°C, unverändert nach Umkristallisation aus Diethylether/Petrolether (60-80°C) (Lit. ¹³⁾ 76-77°C, ⁴⁾ 75°C); spektroskopische Daten s. Lit. ⁴⁾).

- b) Das aus 2.69 g (10 mmol) 1a gewonnene rohe 2a·HCl wird 30 min im Ölbad auf 200°C erhitzt. Aufarbeitung wie bei a): 1.8 g (72%) 4a.
- c) 2.88 g (10 mmol) 5a liefern nach 30 min bei 200°C 1.8 g (72%) 4a.

N-[2-(4-Methoxyphenyl)-ethyl]-3,4-dihydroisochinolin-1(2H)-on(4b)

Herstellung analog Vorschrift b) für 4a. Ausbeute 2.14 g (76%), Daten s. Lit.⁴⁾.

N-(2-Phenylethyl)-2-(2-chlorethyl)-benzamid(5a)

Das aus 2.69 g (10 mmol) 1a gewonnene rohe 2a·HCl wird 30 min im Ölbad auf 150°C erhitzt. Lösen in Essigsäureethylester und Ausschütteln wie unter a) gibt nach Eindampfen einen festen Rückstand, der aus Diisopropylether umkristallisiert wird: 2.5 g (86%), Schmp. 111°C. S. a. untenstehende allgemeine Vorschrift.

N-[2-(4-Methoxyphenyl)-ethyl]-2-(2-chlorethyl)-benzamid(5b)

Herstellung analog **5a**, jedoch Umkristallisation aus Cyclohexan, Ausb. 2.45 g (77%), Schmp. 123-124°C. Vgl. a. untenstehende Vorschrift.

$N\hbox{-}(2\hbox{-}Phenylethyl)\hbox{-}2\hbox{-}(2\hbox{-}chlorethyl)\hbox{-}benzamide\,{\bf 5}$

Allgemeine Arbeitsvorschrift: 10 mmol Hydroxyamid 1 werden mit SOCi₂ wie bei 2 beschrieben zu rohem 2·HCl umgesetzt. Man löst in 10 ml Acetonitril, erhitzt 1 h unter Rückfluß, dampft zur Trockne ein und kristallisiert um. Lösungsmittel, Schmelzpunkte, Ausbeuten, Elementaranalysen und spektroskopische Daten s. Tab. 5 und 6.

Saure Hydrolyse der Imidlacton-Salze 2a·HBr und 2d·HCI

5 mmol des Imidlacton-Salzes werden in 50 ml 3 N H₂SO₄ 12 h unter Rückfluß erhitzt. Nach dem Erkalten extrahiert man 3 x mit je 30 ml Essigsäureethylester. Trocknen der vereinigten org. Phasen über MgSO₄ und Eindampfen bei 60°C liefert 0.70 g (96%) Isochroman-1-on, dessen dc-, IR- und ¹H-NMR-Eigenschaften mit den Werten einer authentischen Probe übereinstimmen, bzw. 1.01 g (97%) 6,7-Dimethoxyisochroman-1-on vom Schmp. 139-140°C (Lit. ¹²⁾: 139-140°C). Die wäßrigen Phasen werden mit 20proz. NaOH alkalisch gemacht und 3 x mit je 30 ml Diethylether extrahiert. Trocknen und Eindampfen der vereinigten org. Phasen liefert 0.30 g (49%) 2-Phenylethylamin bzw. 0.37 g (46%) 2-(3,4-Dimethoxyphenyl)-

140. I. A	usvenien, sen	140. 1. Ausbeuten, Schmetzpunkie, Eiemenuarunarysen, IN- und		OV-Daten del Imidiacione & wia intel saise	me im	Identic			37100							
Produkt	Ausb. [g]	Schmp. [°C]	Summenformel	Elemer	Elementaranalyse	/se			IR [KBr]	Ŧ	ر د د					
	(% d. I.n.)	(Losungsmittel)	(Moimasse)	Ber. Gef.	С	Н	Hal	z	T HN	C=N	λ _{max} [nm] (lg ε)				į	
<u>2a</u>	9.1 (77)	40-42 (Ethanol)	C ₁₇ H ₁₇ NO (251.3)		81.2	6.82		5.6		1645	251 (4.13)	$\sim 300(sh)$ (3.02)				
2a·HBr	2.7 (71)	148 (Methanol/Essig- säureethylester)	C ₁₇ H ₁₇ NO·HBr (332.2)		61.5	5.46	24.1	4.2	2700	1640	~253	~287(sh) (3.57)	~303(sh) (3.24)			
2b	2.1 (75)	72-74 (Ethanol)	C ₁₈ H ₁₉ NO ₂ (281.4)		76.8 76.7	6.81		5.0		1650	223 (4.17)	243 (4.15)	$\sim 274 (sh)$ (3.68)	~281(sh) (3.53)		
2b HBr	2.6 (72)	136 (Ethanol/Essig- säureethylester)	C ₁₈ H ₁₉ NO ₂ · HBr (362.3)		59.7 59.5	5.56	22.1 22.0	3.9	2820	1650	224 (4.12)	255 (4.13)	284(sh) (3.62)			
35	2.2 (71)	58-60 (Ethanol)	C ₁₉ H ₂₁ NO ₃ (311.4)		73.3 73.2	6.79		4.5		1655	233 (4.17)	~251(sh) (4.05)	~276(sh) (3.75)	~284(sh) (3.58)		
2c-HCI	2.1 (60)	133-135 ^{a)} (Acetonitril/ Diethylether	C ₁₉ H ₂₁ NO ₃ · HCl (347.8)		65.6 65.2	6.38	10.2	4.0	2660	1655	232 (4.12)	254 (4.15)	~283(sh) . (3.69)	~300(sh) (3.12)		
2c·HBr	2.9 (74)	149 (Ethanol/Essig- säureethylester)	C ₁₉ H ₂₁ NO ₃ · HBr (392.3)		58.2	5.65	20.4	3.5	2820	1670	233 (4.11)	254 (4.13)	~284(sh) (3.65)	~300(sh) (3.08)		
7 q	1.5 (79)	94-96 (Ethanol)	C ₂₁ H ₂₅ NO ₅ (371.4)		67.9	6.78		3.8		1640	222 (4.33)	265 (4.22)	287(sh) (3.93)	(3.90)	309(sh) (3.83)	
2d·HCl ¹²⁾	3.3 (81)	164-166 (Ethanol)	C ₂₁ H ₂₅ NO ₅ · HCl (407.9)		61.8	6.43 6.50	8.7	3.4	2820	1640	228 (4.23)	266 (4.23)	288(sh) (3.90)	298 (3.86)	310(sh) (3.80)	
2d·HBr	3.2 (70)	193-196 (Ethanol/Essig-säureethylester)	C ₂₁ H ₂₅ NO ₅ · HBr (452.3)		55.8	5.79	17.7	3.1	2820	1640	~231(sh) (4.29)	~265 (4.14)	285(sh) (4.05)	306 (3.93)	~325(sh) (3.66)	, and a second

¹⁾ bei schnellem Erhitzen auf der Kofter-Bank; bei normalem Erhitzen auf dem Heiztisch-Mikroskop 115-120°; beim Liegen auf der Kofter-Bank bei 120° Schmelzen innerhalb 10 min unter Zersetzung zu 5c.

Tab. 2: ¹H-NMR-Daten der Imidlactone 2 und ihrer Salze: § [ppm]^{o)} (Multiplizität; Kopplungskonstante(n) [Hz])

Produkt NH ^{⊕b)}	NH@p)	ArH: H an C				-CH ₂ -O-	CH ₃ O-			-CH ₂	-CH ₂ -N= bzw. -CH ₂ -N= [⊕]	-CH ₂ -N= bzw. 2 x Ar-CH ₂ - -CH ₂ -N= [⊕]
2a		8.13: 8(dd; 7/3),	8.13: 8(dd; 7/3), 7.4-7.0: 5 6 7(m),	7.28: 2'-6'(s)		4.21(t; 6)				3.65(3.65(dd; 8/3)	3.1-2.7(k)
2a-IIBr	2a-IIBr 12.5-11.0(br)		9.00: 8(dd; 7/2), 7.75-7.1: 5 6 7(m),	7.23: 2'-6'(s)		4.40(t; 6)				3.97(3.97(t ⁺ ; 7)	3.55-2.85(k)
2b		8.14: 8(dd; 6/3),	8.14: 8(dd; 6/3), 7.8-7.15: 5 6 7(m),	7.25: 2'6'(dd; 8/2),	6.83; 3'5'(dd; 8/2) 4.23(t; 6)	4.23(t; 6)	3.80			3.65(3.65(dd; 7/3)	3.05-2.65(k)
2b·HBr	12.8(v)	8.98: 8(dd; 7/3),	7.75-7.35: 5 6 7(m),	7.20: 2'6'(d ⁺ ; 8),	6.77: 3'5'(d ⁺ ; 8)	4.47(t; 6)	3.77			4.15	4.15-3.7(verd)	3.35-2.9(k)
2с		8.15: 8(dd; 7/3),	8.15: 8(dd; 7/3), 7.5-7.0: 5 6 7(m),	6.84: 2'5'6'(s,v)		4.23(t; 6)	3.89			3.68(3.68(dd; 7/2)	3.1-2.7(k)
2c-HCl	14.0(v)	9.08: 8(dd; 7/2),	7.75-7.5: 5 6(m), 7.5-7.2: 7(m),	6.82: 2'5'6'(s)		4.43(t; 6)	3.82	3.75		4.1-3	4.1-3.7(verd)	3.3-2.8(k)
2c·HBr	12.8(v)	9.03: 8(dd; 7/2),	7.8-7.5: 5 6(m), 7.5-7.2: 7(m),	6.80: 2'5'6'(s,v)		4.47(t; 6)	3.81	3.75		4.2-3	4.2-3.65(verd)	3.35-2.85(k)
2d		7.71: 8(s),	6.56: 5(s),	6.75: 2'5'6'(s)		4.21(t ⁺ ; 6)	3.94	3.88	3.81 3.	3.79 3.8-3	3.8-3.5(verd)	3.0-2.7(k)
2d·HCI	13.4(v)	8.52: 8(s),	6.78: 5(s),	6.88: 2'5'6'(s)		4.42(t ⁺ ; 6)	4.25	4.03	3.90 3.	3.85 4.0-3	4.0-3.6(verd)	3.4-2.7(k)
2d·HBr	12.9(v)	8.52: 8(s),	6.75	6.75: 5 2'5'6'(v)		4.37(t ⁺ ; 6)	4.20	3.92	3.83 3.	3.77 4.2-3.6(verd)	3.6(verd)	3.4-2.8(k)

a) in CDCl₃; die Intensitäten entsprechen den vorgeschlagenen Zuordnungen. v = verbreitertes, br = breites Signal, + = durch sekundäre Aufspaltung verbreitert, k = komplexe Signalgruppe, verd =

teilweise verdeckt.

^{b)} mit D₂O austauschbar.

Tab. 3: Ausbeuten, Schmelzpunkte, Elementaranalysen, IR- und UV-Daten der Aminoalkohole 3 und ihrer Hydrochloride

Produkt	Ausb.[g]	Schmp. [°C]	Summenformel	Elemer	Elementaranalyse	 e			IR (KBr)			ΛΛ				
:	(% d.Th.)	(Lösungs- mittel)	(Molmasse)	Ber. Gef.	, ,	н	Ü	z	[cm ⁻¹] OH, NH			λ _{max} [nm] (lg ε)	; ;			
3a	0.92 (72)	46-47 (Petrolether 40/60°)	C ₁₇ H ₂₁ NO (255.4)		80.0	8.29 8.26	1	5.5	3240	3065	3020	245(sh) (2.52)	252(sh) (2.61)	257 (2.67)	264(sh) (2.54)	
3a-HCi	2.0 (68)	154-156 (Ethanol)	C ₁₇ H ₂₁ NO·HCl (291.8)		70.0	7.60	12.2	4.8	3070	2750	2440	~245(sh) (2.45)	~253(sh) (2.49)	258 (2.65)	263 (2.65)	270 (2.46)
3b	1.1 (78)	,/.a)	C ₁₈ H ₂₃ NO ₂ (285.4)		75.8 75.6	8.12		4.9	3300	3060	3010 ^{b)}	~220(sh) (3.76)	~268(sh) (3.39)	275 (3.44)	281 (3.36)	
3b·HCI	2.3 (72)	183-185 (Ethanol)	$C_{18}H_{23}NO_2 \cdot HCI$ (321.8)		67.2 67.2	7.52 7.50	11.0	4,4	3090	2740	2440	~222(sh) (4.10)	~265(sh) (3.12)	~271(sh) (3.20)	276 (3.21)	282 (3.13)
36	1.2 (78)	53-55 (Petrolether 40/60°)	C ₁₉ H ₂₅ NO ₃ (315.4)		72.4 72.4	7.99		4.4	3250	3060		~228(sh) (3.95)	~269(sh) (3.38)	278 (3.46)	~284(sh) (3.37)	
3c-HCl	2.7 (76)	147-149 (Ethanol)	C ₁₉ H ₂₅ NO ₃ · HCl (351.9)		64.9	7.45	10.1	4.0	3090	2750	2430	230 (3.93)	~270(2h) (3.37)	279 (3.45)	~285(sh) (3.34)	
3d ¹²⁾	1.5 (80)	114-115 (Ethanol)	$C_{21}H_{29}NO_5$ (375.5)		67.2 67.2	7.78		3.7	3270			216(sh) (4.03)	232 (4.16)	282 (3.72)		
3d·HCl ¹²⁾	3.4 (83)	196-198 (Ethanol)	C ₂₁ H ₂₉ NO ₅ ·HCi (411.9)		61.2	7.34	8.6	3.4	3140	2750	2440	217(sh) (4.15)	234 (4.32)	281 (3.90)		

a) Sdp. s. Text. b) (Film). Imidlactone 251

Tab. 4: ¹H-NMR-Daten der Aminoalkohole 3 und ihrer Hydrochloride: 8 [ppm]²⁾ (Multiplizität; Kopplungskonstante (n) [Hz]

Produkt NHg®t ArH: H an C OHP Ar-CH2-NHg®t CH ₂ OH CH ₂ OH Ar-CH2-NHg®t CH ₂ OH Ar-CH2-NHg®t CH ₂ OH Ar-CH2-NHg bzw. Dzw. Dzw. <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
bzw. bzw. bzw. -OH/-NH-b Ar-CH ₂ -NH- (s) 8.8-7.9(br) 7.4-7.05: 3 - 6. 2' - 6'(m) 3.9-3.6(verd) 3.69(s) 3.83(t; 5.5) 8.8-7.9(br) 7.4-7.05: 3 - 6(m), 7.18: 2'6'(dd, verd; 9/2), 6.82: 3'5'(dd; 9/2) 4.0-3.7(verd) 4.0-3.6(verd) 3.78 3.87(t; 5.5) 9.7(v) 7.5-7.15: 3 - 6(m), 7.12: 2'6'(d*, verd; 9/2), 6.82: 3'5'(dd; 9/2) 4.0-3.7(verd) 4.0-3.6(verd) 3.78 3.87(t; 5.5) 9.3-7.9(br) 7.5-7.15: 3 - 6(m), 6.73: 2'5'6'(s) 4.1-3.7(verd) 3.68(s) 3.85 3.83(r*; 6) 9.3-7.9(br) 7.5-7.1: 3 - 6(m), 6.70: 2'5'6'(s) 4.1-3.7(verd) 3.0-3.75(verd) 3.9-3.75(verd) 3.82 3.75.36(m) 9.3-8.0(br) 7.07: 3 oder 6(s), 6.73: 2'5'6(s,v), 6.50: 6 oder 3(s) 4.2-3.7(verd) 3.67(s) 3.95 4.2-3.7(verd) 9.3-8.0(br) 7.07: 3 oder 6(s), 6.73: 2'5'6(s,v), 6.50: 6 oder 3(s) 4.2-3.7(verd) 3.67(s) 3.95 4.2-3.7(verd) 9.3-8.0(br) 7.07: 3 oder 6(s), 6.73: 2'5'6(s,v), 6.50: 6 oder 3(s) 4.2-3.7(verd) 3.67(s) 3.95 4.2-3.7(verd) 9.3-8.0(br) 7.07: 3 oder 6(s), 6.73: 2'5'6'(s) 4.2-3.7(verd) 3.67(s) 3.95 </th <th>Produkt</th> <th>NH^{@ a)}</th> <th>ArH: H an C</th> <th>(дНО-</th> <th>$Ar-CH_2-NH_2^{\oplus}$-</th> <th>СН3О-</th> <th>-с<u>н</u>₂-он</th> <th>$Ar-C\underline{H}_2-C\underline{H}_2-NH_2^{\mathfrak{g}}-Ar-C\underline{H}_2-CH_2-OH$</th> <th>Ar-CH₂-CH₂-OH</th>	Produkt	NH ^{@ a)}	ArH: H an C	(дНО-	$Ar-CH_2-NH_2^{\oplus}$ -	СН3О-	-с <u>н</u> ₂-он	$Ar-C\underline{H}_2-C\underline{H}_2-NH_2^{\mathfrak{g}}-Ar-C\underline{H}_2-CH_2-OH$	Ar-CH ₂ -CH ₂ -OH
8.8-7.9(br) 7.4-7.05: 3 - 6, 2' - 6'(m) 3.9-3.6(verd) 3.69(s) 3.83(t; 5.5) 8.8-7.9(br) 7.4-7.05: 3 - 6(m), 7.18: 2'6'(dd, verd; 9/2), 6.82: 3'5'(dd; 9/2) 4.0-3.6(verd) 4.03.6(verd) 3.78 3.82(t; 5.5) 9.7(v) 7.5-7.15: 3 - 6(m), 7.12: 2'6'(d+; 8), 6.77: 3'5'(d+; 8) 4.0-3.6(verd) 4.0-3.6(verd) 3.78 3.87(t; 5.5) 9.3-7.9(br) 7.5-7.15: 3 - 6(m), 6.73: 2'5'6'(s) 4.1-3.7(verd) 3.68(s) 3.85 3.83(t+; 6) 9.3-7.9(br) 7.5-7.1: 3 - 6(m), 6.70: 2'5'6'(mc), 6.60: 6 oder 3(s) 4.1-3.7(verd) 3.9-3.75(verd) 3.9-3.75(verd) 3.82 3.75-3.6(m) 9.3-8.0(br) 7.07: 3 oder 6(s), 6.73: 2'5'6(s,v), 6.50: 6 oder 3(s) 4.2-3.7(verd) 3.67(s) 3.95 4.2-3.7(verd) 3.86				bzw. -OH/-NH- ^{b)}	H7-NH-	(s)		bzw. Ar-C <u>H</u> 2-C <u>H</u> 2-NH-	
8.8-7.9(bt) 7.4-7.05: 3 - 6(m), 7.18: 2'6'(dd, verd; 9/2), 6.82: 3'5'(dd; 9/2) 4.0-3.6(verd) 4.0-3.6(verd) 3.78 3.82(t; 5.5) 9.7(v) 7.5-7.15: 3 - 6(m), 7.18: 2'6'(d+; 8), 6.77: 3'5'(d+; 8) 4.0-3.7(verd) 4.06° 3.68(s) 3.85 3.83(t+; 5.5) 7.35-7.05: 3 - 6(m), 6.70: 2'5'6'(s) 4.1-3.7(verd) 3.68(s) 3.85 3.83(t+; 5.5) 9.3-7.9(bt) 7.5-7.1: 3 - 6(m), 6.70: 2'5'6'(mc), 6.60: 6 oder 3(s) 4.1-3.7(verd) 3.67(s) 3.67(s) 3.81 4.1-3.7(verd) 3.68(s) 3.83 4.2-3.7(verd) 3.67(s) 3.81 4.1-3.7(verd) 3.69: 6.8-6.6(6.72): 3 oder 6(s), 6.73: 2'5'6'(mc), 6.50: 6 oder 3(s) 4.2-3.7(verd) 3.67(s) 3.67(s) 3.85 4.2-3.7(verd) 3.89	3a		7.4-7.05: 3 - 6, 2' - 6'(m)	3.9-3.6(verd)	3.69(s)		3.83(t; 5.5)	2.95-2.7(m)	2.89(t; 5.5)
9.7(v) 7.5.7.15: 3 - 6(m), 7.18: 2'6'(dd, verd; 9/2), 6.82: 3'5'(dd; 9/2) 4.0-3.6(verd) 4.06° 3.78 3.87(t; 5.5) 9.7(v) 7.5.7.15: 3 - 6(m), 7.12: 2'6'(d+; 8), 6.77: 3'5'(d+; 8) 4.0-3.7(verd) 4.06° 3.73 3.83(t+; 5.5) 7.35-7.05: 3 - 6(m), 6.73: 2'5'6'(s) 4.1-3.7(verd) 4.05(s) 3.68(s) 3.81 4.1-3.7(verd) 3.83(s) 3.83(t+; 6) 9.3-7.9(br) 7.5-7.1: 3 - 6(m), 6.70: 2'5'6'(mc), 6.60: 6 oder 3(s) 3.9-3.75(verd) 3.67(s) 3.67(s) 3.82 3.75(verd) 3.83 4.2-3.7(verd) 3.67(s) 3.83 4.2-3.7(verd) 3.83 6.2 3.75(verd) 3.75(ve	3a·HCl	8.8-7.9(br)	7.4-7.0: 3 - 6, 2'- 6'(m)	4.0-3.7(verd)	4.03(s)		3.82(t; 5.5)	3.15-2.85(m)	2.77(t; 5.5)
9.7(v) 7.5-7.15: 3 - 6(m), 7.12: 2'6'(d ⁺ ; 8), 6.77: 3'5'(d ⁺ ; 8) 4.0-3.7(verd) 4.06° 3.68 (s) 3.85(r ⁺ ; 5.5) 7.35-7.05: 3 - 6(m), 6.73: 2'5'6'(s) 4.1-3.7(verd) 3.68(s) 3.83 (r ⁺ ; 6) 3.83(r ⁺ ; 6) 9.3-7.9(br) 7.5-7.1: 3 - 6(m), 6.70: 2'5'6'(mc), 6.60: 6 oder 3(s) 3.9-3.75(verd) 3.67(s) 3.81 (r.3.7(verd) 3.82 3.75-3.6(m) 3.9-3.75(verd) 3.82 3.75-3.6(m) 3.9-3.80(br) 7.07: 3 oder 6(s), 6.73: 2'5'6(s,v), 6.50: 6 oder 3(s) 4.2-3.7(verd) 3.67(s) 3.85 (r.3.8)	3b		7.4-7.05: 3 - 6(m), 7.18: 2'6'(dd, verd; 9/2), 6.82: 3'5'(dd; 9/2)	4.0-3.6(verd)	4.0-3.6(verd)	3.78	3.87(t; 5.5)	3.1-2.7(m)	2.87(t; 6)
9.3-7.9(br) 7.35-7.05: 3 - 6(m), 6.73: 2'5'6'(s) 4.1-3.7(verd) 3.68(s) 3.85 3.83(+*; 6) 9.3-7.9(br) 7.5-7.1: 3 - 6(m), 6.70: 2'5'6'(mc), 6.60: 6 oder 3(s) 3.9-3.75(verd) 3.9-3.75(verd) 3.9-3.75(verd) 3.82 3.75-3.6(m) 9.3-8.0(br) 7.07: 3 oder 6(s), 6.73: 2'5'6(s,v), 6.50: 6 oder 3(s) 4.2-3.7(verd) 3.67(s) 3.95 4.2-3.7(verd) 3.89	3b-HCI	9.7(v)	7.5-7.15: $3 - 6(m)$, 7.12: $2'6'(d^+; 8)$, 6.77: $3'5'(d^+; 8)$	4.0-3.7(verd)	$4.06^{c)}$	3.73	3.85(t+; 5.5)	3.1-2.8(m)	2.77(t; 5.5)
9.3-7.9(br) 7.5-7.1: 3 - 6(m), 6.70: 2'5'6'(s) 4.1-3.7(verd) 4.05(s) 3.81 4.1-3.7(verd) 4.05(s) 3.81 4.1-3.7(verd) 4.05(s) 6.8-6.6(6.72): 3 oder 6, 2'5'6'(mc), 6.60: 6 oder 3(s) 4.2-3.7(verd) 3.9-3.75(verd) 3.9-3.75(verd) 3.9-3.75(verd) 3.9-3.75(verd) 3.9-3.76(s,v), 6.50: 6 oder 3(s) 4.2-3.7(verd) 3.67(s) 3.95 4.2-3.7(verd) 3.89	3c		7.35-7.05: 3 - 6(m), 6.73: 2'5'6'(s)	4.1-3.7(verd)	3.68(s)	3.85	3.83(t ⁺ ; 6)	3.0-2.7(m)	2.87(t ⁺ ;6)
6.8-6.6(6.72): 3 oder 6, 2'5'6'(mc), 6.60: 6 oder 3(s) 3.9-3.75(verd) 3.9-3.75(verd) 3.82 3.75-3.6(m) 9.3-8.0(br) 7.07: 3 oder 6(s), 6.73: 2'5'6(s,v), 6.50: 6 oder 3(s) 4.2-3.7(verd) 3.67(s) 3.89 3.89 3.86	3c-HCl		7.5-7.1: 3 - 6(m), 6.70: 2'5'6'(s)	4.1-3.7(verd)	4.05(s)	3.81	4.1-3.7(verd)	3.2-2.9(m)	2.77(t ⁺ ; 5.5)
9.3-8.0(br) 7.07: 3 oder 6(s), 6.73: 2'5'6(s,v), 6.50: 6 oder 3(s) 4.2-3.7(verd) 3.67(s) 3.67(s) 4.2-3.7(verd) 3.89 3.86	3d		6.8-6.6(6.72): 3 oder 6, 2'5'6'(mc), 6.60: 6 oder 3(s)	3.9-3.75(verd)	3.9-3.75(verd)	3.82	3.75-3.6(m)	2.9-2.65(m)	2.78(t ⁺ ;6)
	3d-HCl		7.07: 3 oder 6(s), 6.73: 2'5'6(s,v), 6.50: 6	4.2-3.7(verd)	3.67(s)	3.95 3.89 3.86	4.2-3.7(verd)	3.2-2.8(m)	2.9-2.6(verd)

a) in CDCl₃₅, die Intensitäten entsprechen den vorgeschlagenen Zuordnungen. v = verbreitertes, br = breites Signal, + = durch sekundäre Aufspaltung verbreitert, k = komplexe Signalgruppe, verd =

teilweise verdeckt.

^{b)} mit D₂O austauschbar.

 $^{\rm c)}$ v, mit ${\rm D_2O}$ s.

Tab. 5: Ausbeuten, Schmelzpunkte, Elementaranalysen, IR- und UV-Daten der Chloramide 5

Produkt	Ausbeute [g]	Ausbeute [g] Schmp. [°C]	Summenformel	Elemen	lementaranalys	Ð			IR (KBr)		ΛΩ				
	(%)	(Lösungsmittel)	(Molmasse)	Ber. Gef.	ပ	H	ū	z	[cm ⁻¹] OH, NH	0=0	λ_{max} [nm] (1g ϵ)				
e.	1.90 (66)	110-111 (Cyclohexan)	C ₁₇ H ₁₈ CINO (287.8)		71.0	6.30	12.3	4.9	3295 3020	1630	~215(sh) 4.13	254(sh) 3.05	261(sh) 2.93	266(sh) 2.89	273(sh) 2.63
Sb	2.16 (68)	123-124 (Cyclohexan)	C ₁₈ H ₂₀ CINO ₂ (317.8)		0.89	6.34	11.1	4.4	3300 3040	1635	224 (4.25)	~276 (3.33)	283(sh) (3.21)		
5c	2.50 (72)	(Methanol)	C ₁₉ H ₂₂ CINO ₃ (347.8)		65.6 65.4	6.38	10.2	4.0	3310 3060	1630	~224(sh) (4.19)	275 (3.50)	~284(sh) (3.39)		

Tab. 6: ¹-H-NMR-Daten der Chloramide **5**: δ [ppm]^{a)} (Multiplizität; Kopplungskonstante [Hz])

Produkt	ArH: H an C		-NH- ^{b)}	-CH ₂ -N< -CH ₂ -CI	CH ₃ O-	2 x Ar-CH ₂ -
5a	7.33: 3-6, 2'-6'(s),		6.0(s,v)	4.0-3.55(k)		3.35-2.8(k)
5b	7.1-7.3: 3-6(m),	7.17: 2'6'(d; 9), 6.84: 3'5'(d; 9)	5.9(s,v)	3.95-3.45(k)	3.80(s)	3.35-2.7(k)
5c	7.1-7.35: 3-6(m),	6.72: 2'5'6'(s,v)	5.95(s,v)	4.0-3.5(k)	3.83(s)	3.3-2.7(k)

a) in CDCl₃; die Intensitäten entsprechen den vorgeschlagenen Zuordnungen. v= verbreitert, k = komplexe Signalgruppe.

ethylamin als gelbliche Öle. Zur Identifizierung werden die Amine in Pyridin gelöst und mit 4-Nitrobenzoylchlorid in Tetrahydrofuran in N-(2-Phenylethyl)-4-nitrobenzamid (Schmp. 146°C, Lit¹⁴⁾ 144-145°C) bzw. N-[2-(3,4-Dimethoxyphenyl)ethyl]-4-nitrobenzamid (Schmp. 149°C, Lit.¹⁵⁾ 149°C) überführt.

Literatur

- Mitt.: W. Meise und B. Südkamp, Arch. Pharm. (Weinheim) 320, 1210 (1987).
- 2 Teilweise aus der Dissertation H.-J. Mika, Bonn 1980.
- 3 W. Meise und H.-L. Müller, Synthesis 1976, 719.
- 4 H.-J. Mika und W. Meise, Arch. Pharm. (Weinheim) 318, 168 (1985).
- 5 C.-L. Mao, I.T. Barnish und C.R. Hauser, J. Heterocycl. Chem. 6, 83 (1969).
- 6 D.M. Bailey und C.G. DeGrazia, J. Org. Chem. 35, 4088 (1970).
- 7 J. Lehmann und U. Pohl, Arch. Pharm. (Weinheim) 321, 145 (1988).

- S. Gabriel, Ber. Dtsch. Chem. Ges. 20, 2224 (1887); S. Gabriel und W. Landsberger, Ber. Dtsch. Chem. Ges. 31, 2732 (1898); C.J.M. Stirling, J. Chem. Soc. 1960, 255.
- 9 D.G. Neilson in: S. Patai (Hrsg.), The Chemistry of Amidines and Imidates, S. 414, John Wiley & Sons Inc., London 1975.
- 10 J.W. Schulenberg und S. Archer, Org. Reactions 14, 1 (1965).
- 11 In den entsprechenden Formelbildern 5a,b und 6 der Lit. 4) ist jeweils eine Aromaten-C-Bindung zuviel gezeichnet.
- 12 Dissertation H.-L. Müller, Bonn 1976.
- 13 D.W. Brown, S.F. Dyke, M. Sainsbury und W.G.D. Lugton, Tetrahedron 26, 4985 (1970).
- 14 V.G. Vinokurov, V.S. Troitskaya und V.A. Zagorevskii, Zh. Obshsh. Khim. 31, 2991 (1961); C. A. 56, 15473b (1961).
- 15 S. Rajagopalan und K. Ganapathi, Proc. Ind. Acad. Sci. 15A, 432 (1942); C. A. 37, 11248 (1942).

[Ph 526]

b) mit CF₃COOD austauschbar.