

Bioorganic & Medicinal Chemistry Letters 10 (2000) 2403-2406

1-Oxacephem-Based Human Chymase Inhibitors: Discovery of Stable Inhibitors in Human Plasma

Yasunori Aoyama,^{a,*} Masaaki Uenaka,^a Toshiro Konoike,^{b,*} Yasuyoshi Iso,^a Yasuhiro Nishitani,^a Akiko Kanda,^a Noriyuki Naya^c and Masatoshi Nakajima^c

^aShionogi Research Laboratories, Shionogi & Co., Ltd, Fukushima-ku, Osaka 553-0002, Japan ^bShionogi Research Laboratories, Shionogi & Co., Ltd, Amagasaki, Hyogo 660-0813, Japan ^cShionogi Research Laboratories, Shionogi & Co., Ltd, Futaba-cho, Toyonaka, Osaka 561-0825, Japan

Received 29 June 2000; accepted 9 August 2000

Abstract—1-Oxacephem derivatives were evaluated as a novel series of chymase inhibitors. The structure–activity relationship studies of 1-oxacephems led to compounds 15, which exhibited 27 nM inhibition of human chymase and improvement of stability in human plasma ($t_{1/2}$ 1.5 h). © 2000 Elsevier Science Ltd. All rights reserved.

Introduction

In the preceding paper,¹ we reported a novel series of 1oxacephem-based human chymase inhibitors as potential therapeutic agents for cardiovascular diseases and chronic inflammation following fibrosis such as cardiac, renal, and pulmonary fibrosis.² 1-Oxacephem derivative 1 exhibited potent and selective inhibition against human chymase. However, in vivo evaluation of candidate 1 (IC₅₀ 6 nM) was limited by its lability in human plasma $(t_{1/2} < 10 \text{ min})$. The results of in vivo assay of non-peptidyl chymase inhibitors³ have been scarcely reported, and one reason is their lability in human plasma. In order to find a drug candidate, it is essential to enhance the stability of the active compound in human plasma. We thus studied to improve stability in human plasma while maintaining high activity against human chymase.

^{*}Corresponding author Tel.: +81-6-6458-5861; fax: +81-6-6458-0987; e-mail: yasunori.aoyama@shionogi.co.jp, toshiro.konoike@shionogi. co.jp

Chemistry

1-Oxacephem derivatives 1 and 7–13 were prepared by the same synthetic route as described in the preceding paper.¹ 1-Oxacephems 14–19 bearing 4-carboxyphenylmethyl ester at the 4-position were prepared starting from 3 (Scheme 1). Amine 3¹ was treated with a variety of benzoyl chlorides 2a–f to give 7β-amides 4a–f. 4-Diphenylmethyl esters 4a–f were deprotected by AlCl₃ and anisole to yield acids 5a–f. Compounds 6a–f were obtained by esterification of Na salt of 5a–f with diphenylmethyl 4-bromomethylbenzoate, which was prepared by treatment with 4-bromomethylbenzoic acid and diphenyldiazomethane. Deprotection of diphenylmethyl esters 6a–f (TFA, anisole, CH₂Cl₂) provided 1oxacephem derivatives 14–19.

Results and Discussion

Two paths may be suggested for the destruction of 1oxacephems in human plasma. One is a simple hydrolysis of the 4-ester, and the other is cleavage of the β lactam ring shown in Figure 1. We assumed the latter was the major destruction path, because our preliminary investigation showed that no carboxylic acid was detected when oxacephem ester was treated in human plasma. Figure 1 shows that a nucleophile such as the hydroxy group in a serine residue in various proteins in human plasma attacks the β -lactam carbonyl of 1-oxacephem, leading to cleavage of the β -lactam ring and suggests inhibition against human chymase and destruction in

0960-894X/00/\$ - see front matter \odot 2000 Elsevier Science Ltd. All rights reserved. PII: S0960-894X(00)00489-3

Scheme 1. Reagents and conditions: (a) pyridine, CH₂Cl₂; (b) AlCl₃, anisole, CH₂Cl₂; (c) (i) NaHCO₃, H₂O–MeOH; (ii) BrCH₂C₆H₄-4-CO₂CHPh₂, DMF; (d) TFA, anisole, CH₂Cl₂.

Figure 1. Proposed mechanism for destruction of 1-oxacephems in human plasma.

Table 1. Effects of modifications at the 3'-, 4- and 7 β -positions

Compound	Х	Y	Z	Stability (%) ^a	IC50 (µM)
1	C ₆ H ₄ -2-OMe	OCH ₂ C ₆ H ₄ -3-Me	Α	11	0.006
7	CH ₂ C ₆ H ₄ -4-OH	$OCH_2C_6H_4$ -3-Me	Α	5	0.072
8	CH ₂ C ₆ H ₄ -4-OH	$OCH_2C_6H_4$ -3-Me	В	10	0.050
9	CH ₂ C ₆ H ₄ -4-OH	$OCH_2C_6H_4$ -3-Me	С	13	0.077
10	CH ₂ C ₆ H ₄ -4-OH	$OCH_2C_6H_4$ -3-Me	Н	59	> 10
11	CH ₂ C ₆ H ₄ -4-OH	OCHPh ₂	В	40	0.25
12	$CH_2C_6H_4$ -4-NMe ₂	OCHPh ₂	В	53	0.41
13	Č ₆ H ₄ -2-OMe	OCHPh ₂	В	73	0.55
14	C ₆ H ₄ 2-OMe	OCH ₂ C ₆ H ₄ -4-CO ₂ H	В	26	0.019

^aThe percent of test compounds remaining in human plasma after 30 min was observed.

human plasma via the same mechanism as cleavage of β -lactam ring. Accordingly, increase of potency is considered to be inversely proportional to improvement of stability in human plasma. In considering this problem, we investigated the enhancement of stability without drastic decrease of the potency by modifications at the 3'-, 4- and 7 β -positions (Tables 1 and 2).^{4,5}

First, we investigated the substituent effect at the 3'position of oxacephem as shown in Table 1. When substituent Z was not the leaving group, the stability improved (10 versus 7, 8 and 9). This result is in accordance with our proposed destruction mechanism of 1oxacephems in human plasma (Fig. 1). However, compound 10 showed no significant inhibition against human chymase. Consequently, modifications at the 3'position did not lead to enhancement of stability with maintenance of the potency, and we guessed that modifications at 3'-position were not suitable for achieving our purpose.

Next, 4-substituents were evaluated. 4-Ester 1 was much less stable in human plasma than the corresponding 4sodium carboxylate. The electronegative effect of the 4ester group has been known to increase reactivity at the β -lactam carbonyl group and we think this is the reason for the poor stability of compound 1. The 4-ester group is needed to increase the potency as shown in the preceding report.¹ We next investigated a variety of 4-esters and found that the diphenylmethyl ester group enhanced stability (8 versus 11, 12 and 13). However, these compounds 11, 12 and 13 displayed 40–90-fold less potency than benzyl ester 1 presumably owing to steric hindrance. Further investigation showed 4-para-carboxyphenylmethyl ester 14 to be effective for improvement of stability, although this ester was not as good as diphenylmethyl ester as a stabilizing group. Compound 14 was only threefold less potent than compound 1.

Finally, a substituent at the 7 β -position was optimized for 4-*para*-carboxyphenylmethyl ester oxacephems (Table 2). In order to enhance the stability of **14**, we modified *ortho*-alkoxy substituents. Ethoxy derivative **15** possessed good potency and stability in human plasma ($t_{1/2}$ 1.5 h). Because there are only minor differences between compounds **14–19** as regards the inhibitory activity against human chymase, we supposed that *ortho*-substituents especially play an important role in stability in human plasma.

Additional enzymatic work showed that compound **15** was a selective inhibitor, displaying weak or no inhibition of several other serine proteases (Table 3).⁴

Table 2. Modification at 7β-position

Compound	R	Stability (%) ^a	IC ₅₀ (µM)
14	OMe	26	0.019
15	OEt	87 (1.5 h) ^b	0.027
16	OPr-n	26	0.024
17	OPr-iso	42	0.037
18	OBu-iso	39	0.026
19	OPh	63	0.057

^aThe percent of test compounds remaining in human plasma after 30 min was observed.

^bThe number in parentheses represents the half-life period.

A model for the inhibition of compound **15** of human chymase, using atomic coordinates from the published X-ray structure of the enzyme,⁶ is shown in Figure 2.^{7,8} In this model, the inhibitor **15** is bound to the active site of the enzyme with hydroxy of Ser195 and the resulting hemiketal oxygen is in the oxyanion hole formed by the backbone amide NH of Ser195 and Gly193. The benz-amide substituent at the 7 β -position is fully enclosed by the residues of the S1 pocket and capped with the side chain of Phe191. The benzylester substituent at the 4-position occupies the hydrophobic prime site region

 Table 3.
 Selectivity of 15 as an inhibitor of human chymase compared to other serine proteases

Enzyme IC_{50} (µM) Enzyme IC_{50} (µ	
	μM)
Chymase0.027Trypsin2.1α-Chymotrypsin0.16Elastase9.5Cathepsin G0.28Plasmin>10Thrombin3.62.6	; 0

(a)

Figure 2. Docking model of inhibitor 15 into human chymase. (a) Surface representation. (b) Schematic drawing.

(S1') of the enzyme. The terminal carboxylic acid electrostatically interacts with the side chain of Lys40. This model accounts for the potency of compound **15** against human chymase.

Conclusion

We described here the discovery of 1-oxacephem-based human chymase inhibitors with both high inhibitory activities and moderate stability in human plasma. As a compromise between potency and stability, 4-*para*-carboxyphenylmethyl ester was found to be optimum. Compound **15** was found to possess high potency against human chymase (IC₅₀ 27 nM) and stability in human plasma ($t_{1/2}$ 1.5 h), and accordingly, is a promising candidate for in vivo assay.

Acknowledgements

We wish to thank Prof. M. Miyazaki, Osaka Medical College, for the kind gift of human chymase.

References and Notes

1. Aoyama, Y.; Uenaka, M.; Konoike, T.; Iso, Y.; Nishitani, Y.; Kanda, A.; Naya, N.; Nakajima, M. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 2397.

2. (a) Shiota, M.; Fukamizu, A.; Takai, S.; Okunishi, H.; Murakami, K.; Miyazaki, M. J. Hypertens. **1997**, 15, 431. (b) Hamada, H.; Terai, M.; Kimura, H.; Hirano, K.; Oana, S.; Niimi, H. Am. J. Respir. Crit. Care. Med. **1999**, 160. 1303. (c) Takai, S.; Yuda, A.; Jin, D.; Nishimoto, M.; Sakaguchi, M.; Sasaki, S.; Miyazaki, M. FEBS Lett. **2000**, 467, 141. 3. (a) Hayashi, Y.; Iijima, K.; Katada, J.; Kiso, Y. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 199. (b) Groutas, W. C.; Schechter, N. M.; He, S.; Yu, H.; Huang, P.; Tu, J. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 2199. (c) Iijima, K.; Katada, J.; Hayashi, Y. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 413. (d) Fukami, H.; Okunishi, H.; Miyazaki, M. Curr. Pharm. Des. **1998**, *4*. 439 and references therein.

4. See ref 1 for the enzyme assay.

5. The stability assay in human plasma was performed as follows. Test compounds dissolved in DMSO were added at $20 \,\mu\text{g/mL}$ to human plasma and incubated at $37 \,^{\circ}\text{C}$. Aliquots were removed at intervals of $30 \,\text{min}$, quenched with threefold volume of AcOH:MeOH (1:1) or AcOH:MeCN (1:1), and analyzed by reverse-phase HPLC after removing proteins. The disappearance of compound **15** was then monitored for the half-life period and the results fitted a first-order decay curve from which the reported $t_{1/2}$ value was derived.

Pereira, P. J. B.; Wang, Z. M.; Rubin, H.; Huber, R.; Bode,
 W.; Schechter, N. M.; Strobl, S. J. Mol. Biol. 1999, 286, 163.
 (PDB code, 1pjp)

7. The docking study for the binding of cephalosporin ester to human leukocyte elastase was performed at Merck (ref, Finke, P. E.; Ashe, B. M.; Knight, W. B.; Maycock, A. L.; Navia, M. A.; Shah, S. K.; Thompson, K. R.; Underwood, D. J.; Weston, H.; Zimmerman, M.; Doherty, J. B. *J. Med. Chem.* **1990**, *33*, 2522).

8. Molecular modeling was performed using the SYBYL6.6 software package. The three-dimensional model of compound **15** was constructed based on the published X-ray structure of an oxacephem compound (ref, Shiro, M.; Nakai, H.; Onoue, H.; Narisada, M. *Acta Cryst.* **1980**, *B36*, 3137). The model of inhibitor **15** was manually docked into the active site of human chymase on the basis of the structure–activity relationships of oxacephem derivatives against human chymase and the docking study for the binding of cephalosporin ester to human leukocyte elastase.⁷ The resulting hemiketal intermediate (human chymase–**15** complex) was energy-minimized using the Tripos force field.