Substitution-Type Thermal 1,2-Rearrangement. Synthesis of Chiral β -Aryl(or Alkenyl) α -Oxo Nitrile Acetal

Yutaka Honda* and Gen-ichi Tsuchihashi*
Department of Chemistry, Faculty of Science and Technology, Keio University,
3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223
(Received March 13, 1987)

Synopsis. Title compound was synthesized via a substitution-type thermal 1,2-rearrangement accompanied by introduction of a cyano group, and derived into the corresponding aldehyde, alkanoic acid, and amide.

In the last five years, we have studied on 1.2-rearrangement accompanied by introduction of hydroxide, 1-3) hydride, 4) alkanide, and alkynide anion5) to give chiral α -substituted alkanoic ester, aldehyde acetal, and ketone acetal, respectively. They were promoted by elimination of sulfonyloxy group caused by heating or activation with Lewis acids (Eq. 1).

$$\begin{array}{c|c}
RO & OR \\
Z & & Me \\
\hline
OSO_2Me & Nu=OH,H,alkyl,alkynyl
\end{array}$$
(1)

Now, we report a new thermal rearrangement accompanied by introduction of a cyano group.

Results and Discussion

Since cyanide anion is a strong nucleophile compared with hydroxide anion, cyano group was expected to be introduced even when chiral α -sulfonyloxy ketone acetal (1) is treated with sodium cyanide in aqueous solution. In practice, however, the corresponding alkanoic ester (3, Fig. 1) was formed quantitatively instead of the desired β -substituted α -oxo nitrile acetal (2). Under reflux conditions in anhydrous methanol, 2 was yielded in

11%, but the main product was also 3. It is concluded that the attack of a large excess of methanol has occurred predominantly. As the results, 1 was treated with two equivalents of sodium cyanide in anhydrous dimethyl sulfoxide to yield chiral α -oxo nitrile acetal (2) in a good yield (Eq. 2, Table 1).

Obtained 2 was sensitive to light. Many by-products were generated in Entries 1—3, because the rate of migration of a phenyl group was extremely low. Taking into consideration of the reaction temperature and time, the migratory aptitudes are enhanced by the migrating groups in the order alkenyl $\geq p$ -methoxyphenyl>phenyl and by the acetal groups in the order dimethyl>trimethylene>2,2-dimethyltrimethylene.

 α -Oxo nitrile acetal (2) can be transformed into the variety of the corresponding derivatives. At first 2 was treated with DIBAL (*i*-Bu₂AlH) to give an imino derivative quantitatively, 6) and then with oxalic acid dihydrate to give α , α -dialkoxy aldehyde (4) (Eq. 3,

$$Z \xrightarrow{\text{RO}_{2}} \xrightarrow{\text{CN}} \xrightarrow{\text{1) DIBAL}} Z \xrightarrow{\text{RO}_{4}} \xrightarrow{\text{CHO}} (3)$$

Table 1. Introduction of a Cyano Group

Entry	Z	R	R'	Temp/°C	Time/h	Yield/%	$[\alpha]_D$ /° $(t/^\circ$ C, c , in CHCl ₃)
1	Ph-	$\overline{}$	Me	130	54	38	+ 7.5 (24, 0.77)
2	"		"	"	48	29	+ 5.8 (22, 0.89)
3	"	Me	$Br-C_6H_4-$	"	24	43	+ 7.4 (22, 0.82)
4	${ m MeO-C_6H_4-}$	$\overline{}$	Me	"	18	90	+ 5.6 (24, 1.00)
5	"		"	"	16	85	+10.9 (21, 1.06)
6	"	Me	"	110	12	86	- 2.3 (21, 1.06)
7	Ph/\\/	$\overline{}$	"	130	9	84	+68.8 (17, 1.20)
8	"		"	120	20	93	+69.2 (17, 1.34)
9	"	Me	"	120	4	75	+38.0 (17, 1.13)
10	Ph\\	\rightarrow	"	130	11	76	+ 4.8 (20, 0.92)

Fig. 1.

Table 2. Synthesis of α,α-Dialkoxy Aldehyde (4)

Z	R	Yield/%	$[\alpha]_{\mathrm{D}}/^{\circ}$ $(t/^{\circ}\mathrm{C}, c, \text{ in CHCl}_{3})$
MeO-C ₆ H ₄ -	$\overline{}$	81	-15.7 (21, 1.00)
"	_>	71	-16.8 (20, 0.71)
"	Me	78	- 7.0 (21, 0.99)
Ph/\//	\rightarrow	80	+17.5 (22, 0.74)
"	_>	75	+ 9.3 (21, 0.97)
"	Me	78	+15.3 (21, 0.84)

Table 3. Synthesis of α,α -Dialkoxy Carboxylic Acid (5)

Z	R	Yield/%	$[\alpha]_D/^\circ$ $(t/^\circ C, c, in CHCl_3)$
MeO-C ₆ H ₄	\overline{X}	95ª)	-19.1 (24, 0.79)
,	\rightarrow	91ª)	-16.1 (22, 0.68)
Ph^\/	\rightarrow	79 ^{b)}	+35.7 (21, 0.74)
a) KMnO -10	0/ KO	H b)	CrO -H SO -Acetone

a) KMnO₄-10% KOH. b) CrO₃-H₂SO₄-Acetone.

Table 2), which would be capable to be a useful building block for acyclic stereoselective synthesis of chiral compounds.

Aldehyde (4) was easily oxidized by treatment with $KMnO_4$ - $KOH^{7)}$ or Jones reagent in acetone to yield α, α -dialkoxy carboxylic acid (5) (Eq. 4, Table 3).

$$Z \xrightarrow{\text{CN}} CN \longrightarrow Z \xrightarrow{\text{RO}} COOH \longrightarrow C4$$

The absolute configuration of **2** was determined to be S from the sign of the specific rotation of the corresponding dithioacetal (**6**); $[\alpha]_D^{21} = -20.7^{\circ}$ (c 0.34, CHCl₃), prepared from **5** in 88% yield by treatment with 1,3-propanedithiol in the presence of catalytic amount of BF₃·OEt₂ in dichloromethane at rt. An authentic **6**; $[\alpha]_D^{21} = -21.3^{\circ}$ (c 0.35, CHCl₃), was prepared from (S)-aldehyde acetal (**7**)*) by dithioacetalization, followed by lithiation and carboxylation with CO₂ (Fig. 2).

Table 4. Synthesis of α,α -Dialkoxy Amide (8)

R	Yield/%	$[\alpha]_D/^\circ$ $(t/^\circ C, c, in CHCl_3)$			
$\overline{}$	95	-54.9 (22, 0.81)			
Me	62	+ 8.8 (23, 0.64)			

The enantiomeric excess was determined to be over 98 % by HPLC analysis⁸⁾ of α , α -dimethoxy amide (8), which was prepared from 2 (R = CH₂CMe₂CH₂, Z = MeOC₆H₄) in 95 % yield by treatment with 30 % H₂O₂-NaOH in ethanol⁹⁾ (Eq. 5, Table 4).

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Consequently, it was concluded that the optical purity of the starting material, ethyl (S)-lactate, 10) was remained through the rearrangement and the following derivation.

Experimental

General Synthetic Procedure of α -Oxo Nitrile Acetal (2). Under an argon atmosphere, 1 (1.00 mmol) was dissolved in anhydrous dimethyl sulfoxide (10 ml) containing sodium cyanide (2.00 mmol) in a sealed tube. The mixture was heated in dark, and allowed to cool to rt. It was poured into a vigorously stirred ice-water, and extracted with ethyl acetate (30 ml \times 2). The residual syrup was purified by using silica-gel column chromatography (hexane-ethyl acetate-pyridine) to give 2 as a colorless oil.

(S)-3-(p-Methoxyphenyl)-2-oxobutanenitrile 2,2-Dimethyltrimethylene Acetal: IR (film) $\nu = 2230 \text{ cm}^{-1}$; ¹H NMR (CCl₄) $\delta = 0.78$ (s, 3H), 0.99 (s, 3H), 1.42 (d, J = 7.2 Hz, 3H), 3.05 (q, J = 7.2 Hz, 1H), 3.46 (d, J = 11.4 Hz, 2H), 3.72 (d, J = 11.4 Hz, 2H), 3.73 (s, 3H), 6.69 (d, J = 9.0 Hz, 2H), 7.58 (d, J = 9.0 Hz, 2H) ppm. HRMS; Found: m/z 275.1539. Calcd for C₁₆H₂₁NO₃: M⁺, m/z275.1522.

(3*S*,4*Z*)-3-Methyl-2-oxo-8-phenyl-4-heptenenitrile 2,2-Dimethyltrimethylene Acetal: IR (film) $\nu = 2230 \text{ cm}^{-1}$; ¹H NMR (CCl₄) $\delta = 0.83$ (s, 3H), 1.10 (d, J = 6.3 Hz, 3H), 1.17 (s, 3H), 1.5—2.2 (m, 4H), 2.58 (t, J = 7.5 Hz, 2H), 2.83 (dq, J = 8.3 Hz, J = 6.3 Hz, 1H), 3.48 (d, J = 10.8 Hz, 2H), 3.76 (d, J = 10.8 Hz, 2H), 5.1—5.7 (m, 2H), 6.9—7.3 (m, 5H) ppm. HRMS; Found: m/z313.2018. Calcd for C₂₀H₂₇O₂N: M^+ , m/z313.2043.

General Synthetic Procedure of α , α -Dialkoxy Aldehyde (4). Into a solution of α -oxo nitrile acetal (2, 1.00 mmol) in toluene (10 ml), DIBAL (1.20 mmol, in hexane) was added at -78 °C. After 30 min, THF (10 ml) and oxalic acid dihydrate (5 mmol) were added at 0 °C. The mixture was extracted with ethyl acetate (30 ml×2). Obtained residue was purified by using silica-gel column chromatography to give 4 as a colorless oil.

$$\begin{array}{c} & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Fig. 2. Determination of the absolute configuration of 2.

- (S)-5,5-Dimethyl-2-formyl-2-[2-(p-methoxyphenyl)-propyl]-1,3-dioxane: IR (film) $\nu=1740~{\rm cm^{-1}};$ ¹H NMR (CCl₄) $\delta=0.65$ (s, 3H), 1.04 (s, 3H), 1.32 (d, $J=7.2~{\rm Hz}$, 3H), 2.89 (q, $J=7.2~{\rm Hz},$ 1H), 3.43 (m, 4H), 3.73 (s, 3H), 6.65 (d, $J=9.0~{\rm Hz},$ 2H), 7.08 (d, $J=9.0~{\rm Hz},$ 2H), 9.20 (s, 1H) ppm. HRMS; Found: m/z 278.1515. Calcd for $C_{16}H_{22}O_4$, M^+ : m/z 278.1519.
- (S)-5,5-Dimethyl-2-formyl-2-[(Z)-1-methyl-6-phenyl-2-hexenyl]-1,3-dioxane: IR (film) $\nu=1735~{\rm cm}^{-1};$ ¹H NMR (CCl₄) $\delta=0.68$ (s, 3H), 1.00 (d, $J=7.2~{\rm Hz},$ 3H), 1.17 (s, 3H), 1.4—2.2 (m, 4H), 2.59 (t, $J=7.5~{\rm Hz},$ 2H), 2.66 (dq, $J=9.5~{\rm Hz},$ $J=7.2~{\rm Hz},$ 1H), 3.2—3.5 (m, 4H), 5.1—5.5 (m, 2H), 6.9—7.3 (m, 5H), 9.36 (s, 1H) ppm. HRMS; Found: m/z316.2026. Calcd for $C_{20}H_{28}O_3,$ M^+ : m/z316.2036.
- (S)-2-Carboxy-5,5-dimethyl-2-[2-(p-methoxyphenyl)-propyl]-1,3-dioxane (5): Colorless oil: IR (film) $\nu=1729~{\rm cm^{-1}};$ H NMR (CCl₊) $\delta=0.67$ (s, 3H), 0.96 (s, 3H), 1.32 (d, J=7.2 Hz, 3H), 3.43 (br m, 4H), 3.73 (s, 3H), 6.65 (d, J=8.4 Hz, 2H), 7.12 (d, J=8.4 Hz, 2H), 10.17 (br s, 1H) ppm. HRMS; Found: m/z 249.1502. Calcd for $C_{15}H_{21}O_3$, M^+-COOH : m/z249.1491.
- (S)-2-Carboxy-5,5-dimethyl-2-[(Z)-1-methyl-6-phenyl-2-hexenyl]-1,3-dioxane (5): Colorless oil: IR (film) $\nu = 3070, 1715 \text{ cm}^{-1}; ^1\text{H NMR (CCl}_4) \delta = 0.70 \text{ (s, 3H), } 1.04 \text{ (d, } J = 6.9 \text{ Hz, 3H), } 1.19 \text{ (s, 3H), } 1.4—2.2 \text{ (m, 4H), } 2.55 \text{ (t, } J = 7.5 \text{ Hz, 2H), } 2.86 \text{ (dq, } J = 9.0 \text{ Hz, } J = 6.9 \text{ Hz, } 1\text{H), } 3.2—3.7 \text{ (m, 4H), } 5.1—5.5 \text{ (m, 2H), } 6.9—7.3 \text{ (m, 5H), } 10.92 \text{ (br s, 1H) ppm. HRMS; Found: } m/z 287.1998. Calcd for $C_{19}H_{27}O_2$, $M^+ COOH: $m/z 287.2009$.}$
- (S)-2-Carboxy-2-[2-(p-methoxyphenyl)propyl]-1,3-dithiane (6): Colorless oil: IR (film) $\nu=1720~{\rm cm}^{-1}$; ¹H NMR (CDCl₃) $\delta=1.57$ (d, J=7.2 Hz, 3H), 1.8-2.2 (m, 2H), 2.5-2.9 (m, 2H), 2.9-3.3 (m, 2H), 3.53 (q, J=7.2 Hz, 1H) 3.79 (s, 3H), 6.83 (d, J=9.0 Hz, 2H), 7.33 (d, J=9.0 Hz, 2H), 10.23 (br s, 1H) ppm. HRMS; Found: m/z 253.0715. Calcd for C₁₃H₁,OS₂, M⁺-COOH: m/z 253.0722.
 - (S)-2-Carbamoyl-5,5-dimethyl-2-[2-(p-methoxyphen-

yl)propyl]-1,3-dioxane (8): Colorless oil: IR (film) $\nu = 1685 \text{ cm}^{-1}$, ¹H NMR (CDCl₃) $\delta = 0.68$ (s, 3H), 1.01 (s, 3H), 1.40 (d, J = 6.9 Hz, 3H), 3.00 (q, J = 6.9 Hz, 1H), 3.77 (s, 3H), 5.86 (br s, 1H), 6.02 (s, 1H), 6.76 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H) ppm. HRMS; Found: m/z 249.1517. Calcd for $C_{15}H_{21}O_3$, $M^+ - \text{CONH}_2$: m/z 249.1491.

References

- 1) G. Tsuchihashi, S. Mitamura, K. Kitajima, and K. Kobayashi, *Tetrahedron Lett.*, 23, 5427 (1982).
- 2) The detail of the general synthetic procedure of chiral α-arylalkanoic ester had been reported; Y. Honda, A. Ori, and G. Tsuchihashi, *Bull. Chem. Soc. Jpn.*, **60**, 1027 (1987).
- 3) Synthesis of chiral α -methyl- β -alkenoic esters had been reported; Y. Honda, A. Ori, and G. Tsuchihashi, *Chem. Lett.*, **1986**, 13.
- 4) Y. Honda, M. Sakai, and G. Tsuchihashi, *Chem. Lett.*, 1985. 1153.
- 5) Y. Honda, E. Morita, and G. Tsuchihashi, *Chem. Lett.*. 1986, 277.
- 6) J. A. Marshall, N. H. Andersen, and J. W. Schlicher, *J. Org. Chem.*, **35**, 858 (1970).
- 7) J. A. Marshall and J. L. Belletire, *Tetrahedron Lett.*, 1971, 871.
- 8) Chiralcel OB offered from Daicel Chemical Industries, LTD. was used; MeOH/H₂O=9/1 (v/v), flow rate 0.4 ml min⁻¹, k'_5 =8.10, $\alpha = k'_R/k'_S$ =1.64.
- 9) J. G. Wallace, "Hydrogen peroxide in organic chemistry", E. I. Du Pont Co., 42 (1962).
- 10) Determined to be over 98% ee by HPLC measurement of the corresponding (R)-MTPA ester by using Develosil (Nomura Chemical Co., LTD.); hexane/dichloromethane/methanol=6/1/0.007 (v/v/v), flow rate 0.4 ml min⁻¹, $k\zeta$ = 3.24, $\alpha = k_R'/k_S'=1.21$. Methyl (R)-lactate is also available (Aldrich, >98% ee), which can be converted into (R)-2.