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Rhodium-Catalyzed Carbocyclization and Chlorosulfonylation of 1,6-Enynes
with Sulfonyl Chlorides
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The transition-metal catalyzed cyclization of enyne has
been one of the most efficient methods for the synthesis of
various types of cyclic compounds.[1] The metal-catalyzed ad-
dition–carbocyclization reactions[2] of 1,6-enyne with re-
agents containing interheteroatom X�Y bonds [X�Y=

metal–metal reagent (B, Si, Ge, Sn, etc.),[3] metal–H re-
agent,[4] dihalogen[5]] constitute synthetically highly versatile
processes, which furnish the formation of a new C�C bond
along with C�X and C�Y bonds in a one-step fashion and
represent a facile route to carbocyclic and heterocyclic ring
systems (Scheme 1 a). Although related reactions have been

extensively investigated recently, their power and scope is
ultimately impeded by the limitation of the above-men-
tioned linkers; no other type of s-bond linkers, to the best
of our knowledge, have been reported. Therefore, the devel-
opment of novel linkers for the addition–carbocyclization
reactions, especially under the guidance of novel reaction
mechanism(s), is still highly desirable.

Recent discoveries have heralded a renaissance for sulfon-
yl chlorides as readily available, inexpensive, and versatile
reagents for metal-catalyzed transformations.[6] It occurred
to us that sulfonyl chlorides might serve as a novel linkers
for catalytic addition–carbocyclization reactions. In fact, the
addition of sulfonyl chlorides across terminal alkynes has
been successfully achieved with the assistance of Cu or Fe
complexes,[7] demonstrating their similar potential[2] as for
the above mentioned element–element linkers. As part of

our continuous research on the catalytic cyclization of 1,6-
enynes,[8] we herein report the first example of the RhI-cata-
lyzed carbocyclization and chlorosulfonylation of 1,6-enynes
with sulfonyl chlorides as a linker, in which three different
bonds, C�Cl, C�C, and C�S, are efficiently formed with
high regioselectivity and stereoselectivity (Scheme 1 b).

We started our investigation by screening different metal
catalysts for the carbocyclization and chlorosulfonylation re-
action of 1,6-enyne 1 a (1 equiv) with TsCl 2 a (1.5 equiv).[9]

Whereas most of the tested catalysts, including CuCl, [Fe-ACHTUNGTRENNUNG(acac)2], and [Ru ACHTUNGTRENNUNG(PPh3)2Cl2], showed no activity for the at-
tempted transformation and substrate 1 a was recovered,
Wilkinson�s catalyst [Ru ACHTUNGTRENNUNG(PPh3)3Cl] (10 mol %) was found to
enable the complete consumption of 1 a, although a compli-
cated reaction resulted (Table 1, entry 1). Fortunately, com-

pound 3 aa was indeed obtained, albeit only in 6 % yield
after very careful chromatography. The structure of 3 aa was
unambiguously determined by X-ray diffraction analysis
(Figure 1, left).[10] The (E)-configuration of exo-double bond
in 3 aa implied that the chloride might attack the triple bond
of 1 a from the opposite direction of alkyne–rhodium com-
plex (see below). Indeed, the addition of LiCl–H2O
(1 equiv) significantly improved the reaction performance,
leading to the isolation of 3 aa in 43 % yield (Table 1,
entry 2). These promising results promted us to test the
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Table 1. Optimization of reaction conditions.[a]

Entry x [Rh] L Additive Yield[b]

[%]

1 1.5 [Rh ACHTUNGTRENNUNG(PPh3)3Cl] –[c] –[c] 6
2 1.5 [Rh ACHTUNGTRENNUNG(PPh3)3Cl] –[c] LiCl–H2O

[d] 43
3 1.5 [Rh ACHTUNGTRENNUNG(cod)Cl] DPPF LiCl–H2O 77
4 1.5 [Rh ACHTUNGTRENNUNG(cod)Cl] DPPE LiCl–H2O 42
5 1.5 [Rh ACHTUNGTRENNUNG(cod)Cl] DPPP LiCl–H2O 26
6 1.5 [Rh ACHTUNGTRENNUNG(cod)Cl] DPPB LiCl–H2O 30
7 2.0 [Rh ACHTUNGTRENNUNG(cod)Cl] DPPF LiCl–H2O 83
8 2.5 [Rh ACHTUNGTRENNUNG(cod)Cl] DPPF LiCl–H2O 92

[a] Reaction conditions: enyne 1 (0.2 mmol), catalyst precursor
(0.02 mmol), ligand (0.022 mmol), 3 mL dioxane. [b] Yield of isolated
product. [c] Without ligand or additive. [d] 1.0 equiv LiCl–H2O was used.

Scheme 1. Metal-catalyzed addition–cyclization of 1,6-enyne.
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effect of ligand on the reaction performance with the use of
[Rh ACHTUNGTRENNUNG(cod)Cl] (cod= cyclooctadiene) as a catalyst precursor
and LiCl–H2O as an additive. When 1,1’-bis(diphenylphos-
phino)ferrocene (DPPF) ligand was used, the yield of 3 aa
was further increased to 77 % (Table 1, entry 3). We further
examined a variety of ligands, such as 1,2-bis(diphenylphos-
phino)ethane (DPPE), 1,3-bis(diphenylphosphino)propane
(DPPP), and 1,4-bis(diphenylphosphino)butane (DPPB),
which did not exhibit any superior performance over DPPF
(Table 1, entries 4–6). To our delight, when 2 equivalents of
TsCl was used the reaction performance was significantly
improved, providing 3 aa in 83 % yield (Table 1, entry 7).
The use of 2.5 equivalents of TsCl could further increase the
yield to 92 % (Table 1, entry 8).

After establishing the optimized reaction conditions, we
surveyed the synthetic scope of the reaction with various
1,6-enynes (Table 2). In general, a wide range of 1,6-enynes
reacted well with TsCl 2 a to afford the corresponding prod-
ucts in moderate to excellent yields. The reaction of 1 b with
ethyl substitution on the alkene moiety gave 3 ba in 62 %
yield, whereas in the case of 1 c with phenyl substitution, the
corresponding yield of 3 ca dropped to 41 %. The depend-
ence of the yield upon substitution partners likely relied on
the corresponding steric hindrance. However, the reaction
of enyne 1 d with single-substituted alkene was somewhat
complicated, affording the desired product 3 da in 45 %
yield along with some unidentified byproducts. Similarly,
substitution on the alkyne moiety also strongly affected the
reaction performance. Indeed, enynes 1 f and 1 g with elec-
tron-poor aromatic substitution gave the corresponding

products in lower yields, whereas the reaction of substrate
1 h with a 4-Me-C6H4 group on the alkyne moiety gave a
near-quantitative amount of 3 ha. When the substrates with
electron-poor alkyne moieties, such as 1 i and 1 j, were em-
ployed, the yield was also decreased to around 40 %. We
were pleased to find that the transformation was also appli-
cable to the oxygen-tethered enyne. Indeed, the reaction of
substrate 1 e gave product 3 ea in the yield of 75 %.

The catalytic carbocyclization and chlorotosylation reac-
tion was then extended to other sulfonyl chlorides. As
shown in Table 3, a wide range of sulfonyl chlorides reacted
well with 1,6-enyne 1 a, and generally good yields were ach-
ieved. No reaction was observed in the case of mesitylsul-
fonyl chloride 2 g, likely due to its large steric hindrance.
Notably, the reaction could also be realized for methanesul-
fonyl chloride 2 h, resulting in the isolation of 3 ah in 78 %
yield.

To gain a better understanding of the reaction mechanism,
a series of control experiments were conducted. In a first set
of experiments, compounds 4 and 5 were instead employed
as substrates and subjected to the optimized conditions, re-
spectively [Eq. (1)]. No corresponding chlorotosylation
products were observed and the starting materials were re-
covered nearly quantitatively. These results clearly indicated
that the combination of alkene and alkyne moieties into one
molecule might be essential for this RhI-catalyzed transfor-
mation.

Figure 1. X-ray crystal structures of 3aa (top) and 3aa-I (bottom).

Table 2. The scope of the reactions of enynes with 2a.[a]

1,6-Enyne 1 3, Yield [%][b]

1 a : R =Me, X =NTs 3aa, 92
1 b : R =Et, X =NTs 3ba, 62
1 c : R =Ph, X =NTs 3ca, 41
1 d : R =H, X =NTs 3da, 45[c]

1 e : R =Me, X =O 3ea, 75

1 f : R =4-CN-C6H4 3 fa, 61
1 g : R =4-Ac-C6H4 3ga, 58
1 h : R =4-Me-C6H4 3ha, 98

1 i : R =Ph 3 ia, 47
1 j : R =Bu 3ja, 40

[a] Reaction conditions: enyne 1 (0.2 mmol), TsCl (0.5 mmol), LiCl–H2O
(0.2 mmol), [Rh ACHTUNGTRENNUNG(cod)Cl] (0.02 mmol), DPPF (0.022 mmol), 3 mL dioxane.
[b] Yield of isolated product. [c] With some unidentified byproducts.
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In another set of experiments, the possibility of the corre-
sponding carbocyclization and bromotosylation or iodotosy-
lation was investigated (Scheme 2). To our delight, the bro-

motosylation product 3 aa-Br was readily obtained in 88 %
yield with the use of LiBr–H2O as additive under otherwise
identical conditions. For iodotosylation, the catalyst precur-
sor [RhCl(CO) ACHTUNGTRENNUNG(PPh3)2] and additive KI were found to be
optimal, giving 3 aa-I in 57 % yield (isolated product;
Scheme 2). The structure of 3 aa-I was also determined by
X-ray diffraction analysis.[10] These results further pointed
out that the formation of the C�X bond might arise from an
anti-halo-rhodation process, furnishing the exo-double bond
with (E)-configuration.

In a final set of experiments, we employed the deuterium-
labelled enyne to investigate the chemistry of the C�S bond
formation. Indeed, enyne 1 b-D, with a (Z)-configured termi-
nal olefin, reacted well with 2 a to give product 3 ba-D in
70 % yield without deuterium erosion but with deuterium
scrambling [Eq. (2)].

Apparently, the observation of deuterium scrambling
seems to support the radical-involved reaction mechanism.
However, a control experiment showed that the presence of
the radical inhibitor, butylhydroxytoluene (BHT) or 2,2,6,6-
tetramethylpiperidin-1-yl)oxyl (TEMPO), did not affect the
carbocyclization and chlorotosylation reaction of 1 b with
TsCl and 3 ba was still isolated in around 60 % yield. These
results are particularly interesting because a free-radical,
redox-transfer chain mechanism has been generally accepted
for the metal-catalyzed addition of sulfonyl chloride to ter-
minal alkynes[7] or alkenes[11] .

Although highly speculative, the above results led us to
propose the mechanism depicted in Scheme 3 for the pres-
ent transformation (with 1 b-D and 2 a as substrates). This

could initially involve oxidative addition of TsCl to the RhI

center.[12] Indeed, ESI-MS analysis of the reaction between
[Rh ACHTUNGTRENNUNG(cod)Cl], DPPF, and TsCl (1:1:1) in dioxane solvent al-
lowed us to identify the intermediate [Rh ACHTUNGTRENNUNG(DPPF)-ACHTUNGTRENNUNG(dioxane)TsCl2] according to the high resolution mass data
([C45H43Cl2FeO4P2SRh+ Na]+ calcd 993.0031, found
993.0021). Furthermore, a 31P NMR spectroscopic study on
this reaction indicates the formation of two species. Both
species show doublet signals: 22.98 ppm (JP�Rh = 152 Hz) and
22.58 ppm (JP�Rh =151 Hz).[13] These species might corre-
spond to two RhIII complexes cis-A1 and cis-A2[14] that are

Scheme 2. Carbocyclizative bromotosylation and iodotosylation.
Scheme 3. Mechanistic proposal [(M=RhIII)].

Table 3. The scope of the reactions of 1 a with sulfonyl chlorides.[a]

2 3, Yield [%][b]

2a : R1 =Me 3aa, 92

2b : R1 =OMe 3ab, 90
2c : R1 =H 3ac, 90
2d : R1 =Cl 3ad, 72

2e 3ae, 62

2 f 3af, 47

2g 3ag, 0

2h 3ah, 78

[a] Reaction conditions: 1 a (0.2 mmol), sulfonyl chloride (0.5 mmol),
LiCl–H2O (0.2 mmol), [Rh ACHTUNGTRENNUNG(cod)Cl] (0.02 mmol), DPPF (0.022 mmol),
3 mL dioxane. [b] Yield of isolated product.
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formed by the oxidative addition of TsCl to a RhI-center
(Scheme 3). Therefore, they are likely to be present in solu-
tion and thus potential intermediates in the catalytic cycle.
We speculated that alkyne and alkene of 1 b-D preferential-
ly coordinate to the RhIII center of cis-A2 due to its cationic
character, generating complex B. Subsequently, the activated
alkyne is attacked by external chloride to form the vinyl-
RhIII intermediate C.[15] Afterwards, alkene stereospecifically
inserts into the vinyl–RhIII bond of intermediate C to form
the alkyl-RhIII intermediate D with well-defined stereo-
chemistry,[16] which is followed by reductive elimination of
the alkyl-Rh�S bond to form product 3 ba-D and regenerate
the RhI catalyst. The observation of deuterium scrambling
led us to hypothesize that the reductive elimination might
proceed via two different pathways, SN2-type or direct re-
ductive elimination.[17] Although the proposed mechanism
lacks solid evidence, it does account for the observed chemi-
cal outcome, especially the stereochemistry of the exocyclic
alkene and the formation of the C�S bond. Nevertheless,
the exact catalytic mechanism still needs more investigation.

In summary, we have developed a novel RhI-catalyzed
carbocyclization and chlorosulfonylation of 1,6-enyne with
sulfonyl chloride, which results in the formation of C�Cl,
C�C, and C�S bonds in a one-pot fashion. Sulfonyl chloride
is proved to be an efficient linker in addition–carbocycliza-
tion reactions, which complements the known element–ele-
ment examples. Further work will focus on the mechanistic
investigation and synthetic applications of this reaction.[18]
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