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The transition-metal catalyzed cyclization of enyne has
been one of the most efficient methods for the synthesis of
various types of cyclic compounds.['! The metal-catalyzed ad-
dition—carbocyclization reactions® of 1,6-enyne with re-
agents containing interheteroatom X—Y bonds [X-Y=
metal-metal reagent (B, Si, Ge, Sn, etc.),”] metal-H re-
agent, dihalogen”'] constitute synthetically highly versatile
processes, which furnish the formation of a new C—C bond
along with C—X and C-Y bonds in a one-step fashion and
represent a facile route to carbocyclic and heterocyclic ring
systems (Scheme 1a). Although related reactions have been
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Scheme 1. Metal-catalyzed addition—cyclization of 1,6-enyne.

extensively investigated recently, their power and scope is
ultimately impeded by the limitation of the above-men-
tioned linkers; no other type of o-bond linkers, to the best
of our knowledge, have been reported. Therefore, the devel-
opment of novel linkers for the addition—carbocyclization
reactions, especially under the guidance of novel reaction
mechanism(s), is still highly desirable.

Recent discoveries have heralded a renaissance for sulfon-
yl chlorides as readily available, inexpensive, and versatile
reagents for metal-catalyzed transformations.®! It occurred
to us that sulfonyl chlorides might serve as a novel linkers
for catalytic addition—carbocyclization reactions. In fact, the
addition of sulfonyl chlorides across terminal alkynes has
been successfully achieved with the assistance of Cu or Fe
complexes,” demonstrating their similar potential® as for
the above mentioned element-element linkers. As part of
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our continuous research on the catalytic cyclization of 1,6-
enynes,®l we herein report the first example of the Rh'-cata-
lyzed carbocyclization and chlorosulfonylation of 1,6-enynes
with sulfonyl chlorides as a linker, in which three different
bonds, C—Cl, C—C, and C-S, are efficiently formed with
high regioselectivity and stereoselectivity (Scheme 1b).

We started our investigation by screening different metal
catalysts for the carbocyclization and chlorosulfonylation re-
action of 1,6-enyne 1a (1 equiv) with TsCl 2a (1.5 equiv).”)
Whereas most of the tested catalysts, including CuCl, [Fe-
(acac),], and [Ru(PPh;),Cl,], showed no activity for the at-
tempted transformation and substrate la was recovered,
Wilkinson’s catalyst [Ru(PPh;);Cl] (10 mol %) was found to
enable the complete consumption of 1a, although a compli-
cated reaction resulted (Table 1, entry 1). Fortunately, com-

Table 1. Optimization of reaction conditions."!
Ph

o Ph 15
‘M 10mol% R /%M
j/ + TsCl 11mol %L e
L 2a (x equiv) dioxaigfjlrt;ﬁ;x, 36h N
S Ts
1a (1 equiv) 3aa
Entry x [Rh] L Additive Yield™®
[%]
1 15  [Rh(PPh),Cl]  —© e 6
2 15  [Rh(PPh),Cl] - LiICLH,0¢ 43
3 15 [Rh(cod)Cl] DPPF  LiC-H,O 77
4 15 [Rh(cod)Cl] DPPE  LiCl-H,0 )
5 15  [Rh(cod)Cl] DPPP  LiCl-H,0 26
6 15 [Rh(cod)Cl] DPPB  LiC-H,0 30
7 20 [Rh(cod)Cl] DPPF  LiCI-H,O 83
8 25 [Rh(cod)Cl] DPPF  LiCl-H,0 92

[a] Reaction conditions: enyne 1 (0.2mmol), catalyst precursor
(0.02 mmol), ligand (0.022 mmol), 3 mL dioxane. [b] Yield of isolated
product. [c] Without ligand or additive. [d] 1.0 equiv LiCI-H,O was used.

pound 3aa was indeed obtained, albeit only in 6% yield
after very careful chromatography. The structure of 3aa was
unambiguously determined by X-ray diffraction analysis
(Figure 1, left).l""! The (E)-configuration of exo-double bond
in 3aa implied that the chloride might attack the triple bond
of 1a from the opposite direction of alkyne-rhodium com-
plex (see below). Indeed, the addition of LiCl-H,O
(1 equiv) significantly improved the reaction performance,
leading to the isolation of 3aa in 43% yield (Table1,
entry 2). These promising results promted us to test the
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Figure 1. X-ray crystal structures of 3aa (top) and 3aa-I (bottom).

effect of ligand on the reaction performance with the use of
[Rh(cod)Cl] (cod=cyclooctadiene) as a catalyst precursor
and LiCI-H,O as an additive. When 1,1’-bis(diphenylphos-
phino)ferrocene (DPPF) ligand was used, the yield of 3aa
was further increased to 77% (Table 1, entry 3). We further
examined a variety of ligands, such as 1,2-bis(diphenylphos-
phino)ethane (DPPE), 1,3-bis(diphenylphosphino)propane
(DPPP), and 1,4-bis(diphenylphosphino)butane (DPPB),
which did not exhibit any superior performance over DPPF
(Table 1, entries 4-6). To our delight, when 2 equivalents of
TsCl was used the reaction performance was significantly
improved, providing 3aa in 83% yield (Table 1, entry 7).
The use of 2.5 equivalents of TsCl could further increase the
yield to 92 % (Table 1, entry 8).

After establishing the optimized reaction conditions, we
surveyed the synthetic scope of the reaction with various
1,6-enynes (Table 2). In general, a wide range of 1,6-enynes
reacted well with TsCl 2a to afford the corresponding prod-
ucts in moderate to excellent yields. The reaction of 1b with
ethyl substitution on the alkene moiety gave 3ba in 62 %
yield, whereas in the case of 1¢ with phenyl substitution, the
corresponding yield of 3ca dropped to 41 %. The depend-
ence of the yield upon substitution partners likely relied on
the corresponding steric hindrance. However, the reaction
of enyne 1d with single-substituted alkene was somewhat
complicated, affording the desired product 3da in 45%
yield along with some unidentified byproducts. Similarly,
substitution on the alkyne moiety also strongly affected the
reaction performance. Indeed, enynes 1f and 1g with elec-
tron-poor aromatic substitution gave the corresponding
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Table 2. The scope of the reactions of enynes with 2a.l

R 10mol %[Rhcod)cll ~ R' Ts
11mol % DPPF__ o4 R

RZ
I SOl e quiv LiCH0
dioxane, reflux, 36h
1 3
1,6-Enyne 1 3, Yield [%]™
Ph la: R=Me, X=NTs 3aa, 92
1b: R=Et, X=NTs 3ba, 62
Il Rj/ le: R=Ph, X=NTs 3ca, 41
X 1d: R=H, X=NTs 3da, 451
le: R=Me, X=0 3ea, 75
R 1f: R=4-CN-CH, 3fa, 61
| | 1g: R=4-Ac-C¢H, 3ga, 58
\/]/ 1h: R=4-Me-C,H, 3ha, 98
N
Ts
1li: R=Ph 3ia, 47
1j: R=Bu 3ja, 40

Ly

[a] Reaction conditions: enyne 1 (0.2 mmol), TsCl (0.5 mmol), LiCI-H,O
(0.2 mmol), [Rh(cod)Cl] (0.02 mmol), DPPF (0.022 mmol), 3 mL dioxane.
[b] Yield of isolated product. [c] With some unidentified byproducts.

products in lower yields, whereas the reaction of substrate
1h with a 4-Me-C¢H, group on the alkyne moiety gave a
near-quantitative amount of 3ha. When the substrates with
electron-poor alkyne moieties, such as 1i and 1j, were em-
ployed, the yield was also decreased to around 40%. We
were pleased to find that the transformation was also appli-
cable to the oxygen-tethered enyne. Indeed, the reaction of
substrate 1e gave product 3ea in the yield of 75 %.

The catalytic carbocyclization and chlorotosylation reac-
tion was then extended to other sulfonyl chlorides. As
shown in Table 3, a wide range of sulfonyl chlorides reacted
well with 1,6-enyne 1a, and generally good yields were ach-
ieved. No reaction was observed in the case of mesitylsul-
fonyl chloride 2g, likely due to its large steric hindrance.
Notably, the reaction could also be realized for methanesul-
fonyl chloride 2h, resulting in the isolation of 3ah in 78 %
yield.

To gain a better understanding of the reaction mechanism,
a series of control experiments were conducted. In a first set
of experiments, compounds 4 and 5 were instead employed
as substrates and subjected to the optimized conditions, re-
spectively [Eq. (1)]. No corresponding chlorotosylation
products were observed and the starting materials were re-
covered nearly quantitatively. These results clearly indicated
that the combination of alkene and alkyne moieties into one
molecule might be essential for this Rh'-catalyzed transfor-
mation.
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Table 3. The scope of the reactions of 1a with sulfonyl chlorides.!

Oy
o 10 mol % [Rh{cod)ClI] Ph ‘sfo
12 4+ al 11mol % DPPF__ cl—\ R
R-S-Cl —/————————>
I 1 equiv LiCI-H,O
dioxane, reflux, 36 h N
2 Ts 3
2 3, Yield [%]"
Q
R1@§-CI 2a: R'=Me 3aa, 92
o]
2b: R'=0OMe 3ab, 90
2¢:R'=H 3ac, 90
2d: R'=Cl 3ad, 72
0
1]
()5
O o) 2e 3ae, 62
s @
Uﬁ-Cl 2t 3af, 47
o]
Q
S-Cl 2g 3ag, 0
o]
Me—S-Cl 2h 3ah, 78

[a] Reaction conditions: 1a (0.2 mmol), sulfonyl chloride (0.5 mmol),
LiCI-H,0O (0.2 mmol), [Rh(cod)Cl] (0.02 mmol), DPPF (0.022 mmol),
3 mL dioxane. [b] Yield of isolated product.

In another set of experiments, the possibility of the corre-
sponding carbocyclization and bromotosylation or iodotosy-
lation was investigated (Scheme 2). To our delight, the bro-

10 mol % Cat. X ph Ts

1a + 24 _ 11mol % DPPF ’%

dioxane, reflux, 36 h
1 equiv additive !I\"s
3aa-X
Cat. Additive X 3aa-X/Yield [%]

[Rh(cod)CI] LiB-H,O  Br 3aa-Br/ 88
[RhCI(CO)PPhs),]  KI I 3aa-l /57

Scheme 2. Carbocyclizative bromotosylation and iodotosylation.

motosylation product 3aa-Br was readily obtained in 88 %
yield with the use of LiBr-H,O as additive under otherwise
identical conditions. For iodotosylation, the catalyst precur-
sor [RhCI(CO)(PPh;),] and additive KI were found to be
optimal, giving 3aa-I in 57% yield (isolated product;
Scheme 2). The structure of 3aa-I was also determined by
X-ray diffraction analysis."”! These results further pointed
out that the formation of the C—X bond might arise from an
anti-halo-rhodation process, furnishing the exo-double bond
with (E)-configuration.
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In a final set of experiments, we employed the deuterium-
labelled enyne to investigate the chemistry of the C—S bond
formation. Indeed, enyne 1b-D, with a (Z)-configured termi-
nal olefin, reacted well with 2a to give product 3ba-D in
70% yield without deuterium erosion but with deuterium
scrambling [Eq. (2)].

0,
Ph phEt 1o 38%
Et imi G\
H 2 D 4 2a optimized ) DD(H) @
\ conditions D)
N NN
Ts 78% Ts 40%
(Z)-1b-D 3ba-D

Apparently, the observation of deuterium scrambling
seems to support the radical-involved reaction mechanism.
However, a control experiment showed that the presence of
the radical inhibitor, butylhydroxytoluene (BHT) or 2,2,6,6-
tetramethylpiperidin-1-yl)oxyl (TEMPO), did not affect the
carbocyclization and chlorotosylation reaction of 1b with
TsCl and 3ba was still isolated in around 60 % yield. These
results are particularly interesting because a free-radical,
redox-transfer chain mechanism has been generally accepted
for the metal-catalyzed addition of sulfonyl chloride to ter-
minal alkynes!”! or alkenes!"l.

Although highly speculative, the above results led us to
propose the mechanism depicted in Scheme 3 for the pres-
ent transformation (with 1b-D and 2a as substrates). This

c s LiCl
1 N7
l\l'\M i 1b-D

N
Ts B

Scheme 3. Mechanistic proposal [(M=Rh'")].

could initially involve oxidative addition of TsCl to the Rh’
center.”” Indeed, ESI-MS analysis of the reaction between
[Rh(cod)Cl], DPPF, and TsCl (1:1:1) in dioxane solvent al-
lowed us to identify the intermediate [Rh(DPPF)-
(dioxane)TsCl,] according to the high resolution mass data
([C4sHy;3CLFeOP,SRh+Na]*  caled  993.0031, found
993.0021). Furthermore, a *'P NMR spectroscopic study on
this reaction indicates the formation of two species. Both
species show doublet signals: 22.98 ppm (Jp_g, =152 Hz) and
22.58 ppm (Jp_py =151 Hz).'¥! These species might corre-
spond to two Rh™ complexes cis-Al and cis-A2" that are
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formed by the oxidative addition of TsCl to a Rh'-center
(Scheme 3). Therefore, they are likely to be present in solu-
tion and thus potential intermediates in the catalytic cycle.
We speculated that alkyne and alkene of 1b-D preferential-
ly coordinate to the Rh™ center of cis-A2 due to its cationic
character, generating complex B. Subsequently, the activated
alkyne is attacked by external chloride to form the vinyl-
Rh'"! intermediate C.""! Afterwards, alkene stereospecifically
inserts into the vinyl-Rh™ bond of intermediate C to form
the alkyl-Rh™ intermediate D with well-defined stereo-
chemistry,"® which is followed by reductive elimination of
the alkyl-Rh—S bond to form product 3ba-D and regenerate
the Rh' catalyst. The observation of deuterium scrambling
led us to hypothesize that the reductive elimination might
proceed via two different pathways, Sy2-type or direct re-
ductive elimination."”? Although the proposed mechanism
lacks solid evidence, it does account for the observed chemi-
cal outcome, especially the stereochemistry of the exocyclic
alkene and the formation of the C—S bond. Nevertheless,
the exact catalytic mechanism still needs more investigation.
In summary, we have developed a novel Rh'-catalyzed
carbocyclization and chlorosulfonylation of 1,6-enyne with
sulfonyl chloride, which results in the formation of C—ClI,
C—C, and C—S bonds in a one-pot fashion. Sulfonyl chloride
is proved to be an efficient linker in addition—carbocycliza-
tion reactions, which complements the known element—ele-
ment examples. Further work will focus on the mechanistic
investigation and synthetic applications of this reaction.!'®!
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