

Tetrahedron Letters 40 (1999) 8125-8128

TETRAHEDRON LETTERS

Stereoselective coupling of optically active 3-*trans*-cinnamoyl-2-oxazolidinones with acid anhydrides by electroreduction

Naoki Kise,* Yoshihiko Hirata, Takaaki Hamaguchi and Nasuo Ueda Department of Biotechnology, Faculty of Engineering, Tottori University, Tottori 680-0945, Japan

Received 5 August 1999; revised 23 August 1999; accepted 3 September 1999

Abstract

The electroreduction of chiral 3-*trans*-cinnamoyl-2-oxazolidinones with acid anhydrides gave β -acylated products stereoselectively. The products were transformed to optically active *cis*- β , γ -disubstituted- γ -lactones. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: acylation; coupling reaction; electrochemistry; lactones; oxazolidinones; reduction.

The electroreductive β -acylation of α , β -unsaturated esters with acid anhydrides is a useful method for the synthesis of γ -ketoesters.¹ This fact prompted us to investigate the enantioselective β -acylation of α , β -unsaturated acid derivatives for the asymmetric synthesis of γ -ketoacid derivatives employing a chiral auxiliary method. On the other hand, we have recently reported that the stereoselective hydrocoupling of optically active 3-*trans*-cinnamoyl-2-oxazolidinones 1 was conveniently achieved by constant current electrolysis using an undivided cell.² Herein, we report that the stereoselective coupling of 1 with acid anhydrides is effected by the electroreduction under the similar conditions (Scheme 1).³ We also disclose that the β -acylated products 2 and 3 can easily be transformed into the corresponding β , γ -disubstituted- γ -lactones are found in many natural products⁴ and, in addition, have been utilized as chiral building blocks for the synthesis of complex natural compounds.⁵ The present method provides a new route for the preparation of chiral β , γ -disubstituted- γ -lactones.⁶

* Corresponding author. Tel/fax: +00 81 857 31 5636; e-mail: kise@bio.tottori-u.ac.jp

8126

General procedure for the electroreduction is as follows. A solution of 1 (1 mmol), acetic anhydride (0.95 ml, 10 mmol), and Et₄NOTs (1.5 g, 5 mmol) in dry acetonitrile (16.5 mL) was put into a 40 mL beaker (3 cm diameter, 6 cm height) equipped with a lead cathode ($5 \times 5 \text{ cm}^2$) and a platinum anode ($2 \times 2 \text{ cm}^2$). Electricity was passed at a constant current of 0.1 A at room temperature until almost all of 1 was consumed (300-400 C). The mixture was poured into saturated NaHCO₃ aq. (50 mL), stirred for 1 h, and then extracted with CH₂Cl₂. The β -acetylated products **2a**-**f** were isolated as diastereomeric mixtures by column chromatography on silica gel. Major diastereomers of **2a**-**f** could be separated by recrystallization from hexane–ethyl acetate. Similarly, the β -benzoylated products **3a**-**e** were obtained using benzoic anhydride (1.13 g, 5 mmol) in place of acetic anhydride. Each isomer of **3a**-**e** could be separated by column chromatography on silica gel.

Table 1 summarizes the results of the electroreductive coupling of several optically active 3-*trans*cinnamoyl-2-oxazolidinones **1a**-**f** with acetic anhydride or benzoic anhydride. This method afforded β -acetylated products **2a**-**f** (runs 1–7) and β -benzoylated products **3a**-**e** (runs 8–13) in moderate yields

Run	1	R ¹	R ²	R ³	Product	Yield (%) ^a	R:S ^b
1	1a	∔Pr (<i>S</i>)	н	Me	2a	60	80:20
2 ^c	1a	<i>i</i> -Pr (<i>S</i>)	н	Ме	2a	55	83:17
3	1b	<i>i</i> -Bu (<i>S</i>)	н	Ме	2b	58	75:25
4	1c	Bn (<i>S</i>)	н	Me	2c	62	78:22
5	1d	Me (<i>S</i>)	Ph (<i>R</i>)	Me	2d	67	75:25
6	1e	Ph (<i>R</i>)	н	Ме	2e	66	27:73
7	1f	(<i>R</i>) Bornyl	(<i>S</i>)	Ме	2f	54	25:75
8	1a	∔Pr (<i>S</i>)	н	Ph	3a	57	70:30
9 ^c	1a	∔Pr (<i>S</i>)	н	Ph	3a	52	73:37
10	1b	∔Bu (<i>S</i>)	н	Ph	3b	55	67:33
11	1c	Bn (<i>S</i>)	н	Ph	3c	60	70:30
12	1d	Me (<i>S</i>)	Ph (<i>R</i>)	Ph	3d	62	67:33
13	1e	Ph (<i>R</i>)	н	Ph	3e	60	33:67

 Table 1

 Electroreductive coupling of chiral 3-trans-cinnamoyl-2-oxazolidinones with acid anhydrides

^alsolated Yields.

^bDetermined by ¹H-NMR spectra for **2a-f** and by separation of diastereomers for **3a-e**. Melting points and specific rotations ($[\alpha]^{25}_{D}$ in CHCl₃) of the products **2** were as follows. *R***-2a**: 105-107 °C; +343 (c = 1.09). *R***-2b**: 123-125 °C; +316 (c = 1.00). *R***-2c**: 205-207 °C; +296 (c = 1.01). *R***-2d**: 144-146 °C; +213 (c = 0.53). *S***-2e**: 136-138 °C; -341 (c = 1.04). *S***-2f**: 194-196 °C; -263 (c = 1.01). *R***-3a**: paste; +221 (c = 0.91). *S***-3a**: 125-127 °C; -125 (c = 1.08). *R***-3b**: 132-134 °C; +246 (c = 1.00). *S***-3b**: 165-167 °C; -161 (c = 0.55). *R***-3c**: 193-195 °C; +229 (c = 1.03). *S***-3c**: 216-218 °C; -155 (c = 0.46). *R***-3d**: 175-177 °C; +188 (c = 1.13). *S***-3d**: 210-211 °C; -212 (c = 0.54). *R***-3e**: 174-175 °C; +67 (c = 0.31). *S***-3e**: 161-162 °C; -275 (c = 1.00).

^cElectroreduction was carried out in THF containing Bu₄NClO₄.

(54-67%) and diastereoselectivities (34-60% de) using acetonitrile as a solvent.[†] The major by-products were simply reduced 3-(3-phenylpropanoyl)-2-oxazolidinones (20-30\% yields) and the hydrodimers² were obtained in trace amounts. The selectivities were slightly increased using THF as a solvent (runs 2 and 9), though it was difficult to separate the products from the by-products which were mainly monoand di-O-acylated 1,4-butanediols derived from THF.

The obtained 2 were transformed to the corresponding cis- β , γ -disubstituted- γ -lactones 4[‡] in 85–90% cis-selectivities and 50–60% yields by the treatment with Bu₄NBH₄ in CH₂Cl₂ at room temperature for 24–48 h (Scheme 2). The major isomers of the β -benzoylated products **3a–d** and the minor isomer of **3e** were converted to the known cis-(4*R*,5*R*)-4,5-diphenyl- γ -butyrolactone ((4*R*,5*R*)-4**b**).^{6b} Therefore, the absolute configurations were determined to be *R* for the major (minor) isomers of **3a–d** (**3e**) and to be *S* for the minor (major) isomers of **3a–d** (**3e**). It is likely that the major isomers of **2a–d** are also *R*-forms and those of **2e** and **2f** are *S*-forms.

Scheme 2.

We have proposed the hypothesis of the reaction mechanism for the electroreductive hydrocoupling of $1.^2$ Namely, *syn-Z* type anion radical generated from **1a** by a single electron transfer couples each other at the less hindered *Si* face to give the cyclized hydrodimer stereoselectively. On the contrary, the results described above suggest that the reductive β -acylation of **1a** takes place at the *Re* face favorably. In order to explain the reversal of the preferential reaction face, the reaction mechanism as shown in Scheme 3 can be speculated. In the presence of excess amounts of an acid anhydride, *O*-acylation of the anion radical **A** generated from **1a** is much faster than the homo-coupling of **A**. The resultant *O*-acylated radical **B** is subsequently reduced to the anion **C**. In the stage of **B** or **C**, the *syn-Z* form is isomerized to the *anti-Z* form. Consequently, *C*-acylation of the *anti-Z* type anion **C** occurs at the less hindered *Re* face to give the *R*-isomer of **2a** (**3a**) selectively.

Acknowledgements

One of the authors (N.K.) is grateful to the Electric Technology Research Foundation of Chugoku for financial support.

[†] The β -acetylation of 1c afforded 2c in a better yield and a similar diastereomeric excess (run 4), compared with the result obtained by the electroreduction with Mg electrodes.³

[‡] (4*R*,5*S*)-4a: $[\alpha]_D^{25}$ +142 (*c*=0.90, CHCl₃). (4*S*5*R*)-4a: $[\alpha]_D^{25}$ -141 (*c*=0.80, CHCl₃). (4*R*,5*R*)-4b: mp 91–92°C, lit.^{6b} 90–92°C; $[\alpha]_D^{25}$ +58 (*c*=1.0, CHCl₃), lit.^{6b} $[\alpha]_D^{25}$ +48 (*c*=1, CHCl₃). (4*S*,5*S*)-4b: mp 90–91°C; $[\alpha]_D^{25}$ -56 (*c*=0.60, CHCl₃).

Scheme 3. Proposed mechanism for the electroreductive coupling

References

- 1. Shono, T.; Nishiguchi, I.; Ohmizu, H. J. Am. Chem. Soc. 1977, 99, 7396-7397.
- 2. Kise, N.; Mashiba, S.; Ueda, N. J. Org. Chem. 1998, 63, 7931-7938.
- 3. The β -acetylation of (4S)-4-benzyl-3-*trans*-cinnamoyl-2-oxazolidinones with acetic anhydride by electroreduction using Mg as a reactive metal anode (41% yield, 55% de) or Mg-promoted reduction (50% yield, 27% de) has been reported, although the sense of asymmetric induction was unknown: Nishiguchi, I. Reprint of the 3rd International Symposium on Electroorganic Synthesis, Kurashiki, 1997, pp. 9–10.
- 4. (a) Mosandl, A.; Günther C. J. Agric. Food Chem. 1989, 37, 413–418. (b) Petterson, T.; Eklund, A.-M.; Wahlberg, I. J. Agric. Food Chem. 1993, 41, 2097–2103.
- (a) Byström, S.; Högberg, H.-E.; Norin, T. Tetrahedron 1981, 37, 2249–2254. (b) de Azevedo, M. B. M.; Murta, M. M.; Greene, A. E. J. Org. Chem. 1992, 57, 4567–4569. (c) Mutou, T.; Kondo, T.; Ojika, M.; Yamada, K. J. Org. Chem. 1996, 61, 6340–6345.
- For recent reports for the asymmetric synthesis of β, γ-disubstituted-γ-lactones, see: (a) Ito, T.; Okamoto, S.; Sato, F. Tetrahedron Lett. 1990, 31, 6399-6402. (b) Chang, C.; Fang, J.; Liao, L. J. Org. Chem. 1993, 58, 1754-1761. (c) Rojo, J.; Garcia, M.; Carretero, J. C. Tetrahedron 1993, 49, 9787-9800. (d) Pai, Y.-C.; Fang, J.-M.; Wu, S.-H. J. Org. Chem. 1994, 59, 6018-6025. (e) Honda, T.; Kimura, N. J. Chem. Soc., Chem. Commun. 1994, 77-78. (f) Takahata, H.; Uchida, Y.; Momose, T. Tetrahedron Lett. 1994, 35, 4123-4124 and J. Org. Chem. 1995, 60, 5628-5633. (g) Doyle, M. P.; Kalinin, A. V.; Ene, D. G. J. Am. Chem. Soc. 1996, 118, 8837-8846. (h) Amigoni, S.; Schulz, J.; Martin, L.; Le Floc'h, Y. Tetrahedron: Asymmetry 1997, 8, 1515-1518. (i) Pippel, D. J.; Curtis, M. D.; Du, H.; Beak, P. J. Org. Chem. 1998, 63, 2-3.