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Colloidal solutions of metal nanoparticles are currently among the most studied substrates for
sensors based on surface-enhanced Raman scattering �SERS�. However, such substrates often suffer
from not being cost-effective, reusable, or stable. Here, we develop nanoporous Au as a highly
active, tunable, stable, biocompatible, and reusable SERS substrate. Nanoporous Au is prepared by
a facile process of free corrosion of AgAu alloys followed by annealing. Results show that
nanofoams with average pore widths of �250 nm exhibit the largest SERS signal for 632.8 nm
excitation. This is attributed to the electromagnetic SERS enhancement mechanism with additional
field localization within pores. © 2006 American Institute of Physics. �DOI: 10.1063/1.2260828�

Surface-enhanced Raman scattering �SERS� spectros-
copy probes bond vibrations of molecules in the proximity of
metallic nanostructures.1 This technique has regained consid-
erable interest in recent years stimulated by an explosive
development of nanotechnology1 and superior sensitivity of
SERS, in some cases possibly approaching the single mol-
ecule detection limit.2,3

Despite numerous previous reports demonstrating the
SERS effect for different molecules and substrates, there is
still an ongoing search for better substrates for SERS-based
chemical sensors.1 Indeed, colloidal solutions of Au or Ag
with particle sizes in the submicron range are currently
among the most studied SERS-active substrates. However,
such substrates are not reusable and, hence, not cost-
effective. This fact and the limited stability and reproducibil-
ity of metal colloids often hamper their practical use.1

In this letter, we report on the development of nano-
porous Au �np-Au� as a highly active, stable, tunable, bio-
compatible, reusable, and affordable �particularly when used
as a thin nanoporous Au film on a low-cost substrate� SERS
substrate. Additional attractiveness of np-Au comes from the
fact that it is compatible with well-studied self-assembled
monolayers of thiols, which can be used as linking layers in
advanced sensor applications. We show that the largest SERS
enhancement factors, with crystal violet as a test molecule
and 632.8 nm laser excitation, are observed for np-Au with
an average pore width of �250 nm.

Nanoporous Au samples, �5.0�5.0�0.3 mm3 in size,
were prepared by free corrosion of a Ag0.7Au0.3 starting alloy
in 70% HNO3 for 48 h at room temperature. Such a proce-
dure results in selective dissolution of Ag and the surface-
diffusion-limited self-assembly of the remaining Au atoms
into np-Au with a relative density of �30% and an open-cell
spongelike morphology with elongated pores with an aver-
age width of �25 nm �see a scanning electron microscopy
�SEM� image in Fig. 1�a��.

Ligament and pore sizes were tuned by thermal anneal-
ing of as-dealloyed foams in an Ar atmosphere for 2 h in the
temperature range of 100–600 °C, as illustrated in SEM im-
ages of the surfaces of np-Au in Fig. 1 �for selected anneal-
ing temperatures. The dependence of the average pore width,

obtained from statistical analysis of SEM images such as
illustrated in Fig. 1, on annealing temperature is shown in
Fig. 2. It is seen from Figs. 1 and 2 that, with increasing
annealing temperature above �400 °C, the size of pores and
ligaments rapidly increases. In addition, the aspect ratio of
the pores intersecting the sample surface decreases with in-
creasing annealing temperature �i.e., pores and ligaments be-
come less elongated�. The inset in Fig. 2 illustrates a rela-
tively wide pore size distribution for a sample annealed at
450 °C, which is representative of all the other samples stud-
ied here and is consistent with a previous report.4

Raman scattering was studied in Jobin Yvon Raman
spectrometer �model HR800� equipped with a He–Ne
�632.8 nm� laser as an excitation source. Crystal violet �CV�
10B was used as a test molecule with methanol as a solvent.
After a linear background subtraction, all spectra were nor-
malized to the intensity of a methanol-related Raman band
centered on �1035 cm−1. Both �exterior� sample surfaces
and cross sections �prepared by simple fracturing since
np-Au is macroscopically brittle� revealed overall the same
data trends. Hence, in this letter, we will show data from the
surfaces only.

Figure 3 shows typical SERS spectra from np-Au an-
nealed at different temperatures. These Raman spectra con-
sist of a methanol-related peak centered on �1035 cm−1 and
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FIG. 1. Typical SEM images �primary electron energy is 5 keV� illustrating
the surface morphology of as-dealloyed np-Au �a� and np-Au annealed for
2 h at 300 °C �b�, 450 °C �c�, and 550 °C �d�. The scale bar is 1 �m in all
four images.
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a series of CV-related SERS bands. Note that no measurable
SERS signal was observed from flat Au surfaces �Au depos-
ited on glass slides� even for the largest CV concentration
used �a 10−5 M molar methanolic solution�. It is seen from
Fig. 3 that the SERS enhancement strongly depends on the
annealing temperature and, hence, on the average size of
pores and/or ligaments �see Figs. 1 and 2�. In particular,
samples annealed at temperatures around 500 °C exhibit the
maximum SERS signal.

To better correlate SERS signal enhancement with the
morphology of np-Au, Fig. 4 shows the dependence of SERS
intensity on the average pore �Fig. 4�a�� or ligament �Fig.
4�b�� width. Note that, in Figs. 4�a� and 4�b�, different data
points for the same pore or ligament size5,6 represent Raman
spectra taken from different areas of the same sample. Figure
4 clearly illustrates the effect of average pore and ligament
sizes on SERS intensity, the range of average pore and liga-
ment sizes studied, and the scatter of data points for different
spots on the same sample. Figure 4�b� reveals no clear cor-
relation between SERS intensity and the average ligament
size. For the same set of nanofoams as in Fig. 4�b�, however,
Fig. 4�a� shows that SERS intensity is maximum for foams
with an average pore width of �250 nm. With this pore size,
we could readily detect a SERS signal from 10−7 M molar
methanolic solutions of CV. Note that the length scale depen-
dence revealed by Fig. 4 suggests that np-Au could be a
tunable SERS substrate when the SERS response is opti-
mized for any given excitation source by adjusting the pore
width in a straightforward thermal annealing step.

Data from Fig. 4 provide clear evidence that SERS en-
hancement better correlates with the average pore size rather

than with the ligament size. Hence, we attribute efficient
SERS from np-Au to the well-established electromagnetic
SERS enhancement mechanism related to an efficient exci-
tation and trapping of surface plasmons,1 but with an addi-
tional effect of field localization in the pore regions. Our
experimental finding is, qualitatively, consistent with several
previous experimental1,3,7–11 and theoretical1,12–18 reports on
the additional SERS enhancement resulting from electro-
magnetic field localization in regions between nanoparticles
or in surface cavities/pores �with negative curvature�.
However, the specific optimal pore size of �250 nm, re-
vealed in the present study, is unexpected. For example, sev-
eral previous experimental observations8,10 and theoretical
calculations8,14 for isolated �but electromagnetically coupled�
nanoparticles have suggested that SERS enhancement gener-
ally increases with decreasing average interparticle distance.
Such results for nanoparticles, however, cannot be directly
applied for a complex coupled system such as np-Au. Some-
what more relevant calculations for a two-dimensional lattice
of buried spherical voids recently reported by Teperik et al.17

have shown that there are optimal conditions for the most
favorable light-plasmon coupling which depend on the prop-
erties of the metal, the dielectric filling the pores, as well as
the size, shape, and geometrical arrangement of nanovoids.
Hence, theoretical studies taking into account the specific
morphology of np-Au �illustrated in Fig. 1� are currently
needed in order to explain the pore size dependence reported
here.

It should be noted that the scatter in effective SERS
enhancement factors for different areas of the same sample,
as clearly illustrated in Fig. 4, is not unexpected. Indeed,
most of the signal from np-Au appears to originate from the
so called hot spots whose size, according to a very recent
report by Dixon,19 is comparable with the laser beam spot
size used in our experiments �ideally, �2 �m, estimated
based on the parameters of the microscope objective used�.
The appearance of such hot spots is also consistent with a
relatively wide pore size distribution in np-Au �see the inset

FIG. 2. Dependence of the average pore width on annealing temperature of
np-Au. The inset shows the distribution of pore widths in np-Au annealed at
450 °C.

FIG. 3. �Color online� Representative SERS spectra �for a 10−6M solution of
crystal violet� from np-Au annealed at different temperatures, as indicated.
Spectra are offset for clarity. A methanol-related peak is labeled “MeOH.”

FIG. 4. Dependence of SERS intensity �defined as the integral intensity of
the band centered on �1175 cm−1� on the average pore �a� or ligament �b�
width. Different data points for the same pore or ligament size represent
spectra taken from different areas of the same sample. All data are for a
10−6M solution of crystal violet.
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of Fig. 2� and the fact that the irregular, nanoscale morphol-
ogy of the np-Au surface could result in complex patterns of
electromagnetic field enhancement.1

Finally, SERS cross sections and, hence, SERS enhance-
ment factors can be estimated by comparing the intensities of
the methanol Raman peak at �1035 cm−1 and a CV SERS
band at �1175 cm−1. In such estimations, we take into ac-
count that all methanol molecules from the probed volume
�whose minimum bound of �60 fl is estimated as the vol-
ume of a cylinder with the length equal to the depth of field
and the diameter equal to the ideal beam spot size� contribute
to the methanol Raman peak, while CV molecules from only
a thin layer of thickness h of the solution on the np-Au
surface contribute to the SERS signal.20 Assuming that h is
�300 nm �which is a very conservative assumption based on
experiments of Murray et al.,21 suggesting that h could be
�10 nm�, one obtains enhancement factors of �109–1011

for data from Fig. 4. These numbers, however, should be
viewed as a lower bound for the enhancement factors given
our conservative assumptions and the existence of hot-spot
effects in the SERS response of np-Au.19

In conclusion, we have demonstrated nanoporous Au as
a highly active, tunable SERS substrate. Although as-
dealloyed np-Au shows a weak SERS signal, subsequent
thermal processing, increasing the average pore width to
�250 nm, dramatically improves the SERS response. This
has been attributed to effects of plasmon trapping and elec-
tromagnetic field localization within pores.
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