THE C-ALKYLATION OF NITROALKANE ANIONS BY 1-SUBSTITUTED-2-<u>t</u>-BUTYL-4-PHENYL-AND -2,4-DIPHENYL-5,6-DIHYDROBENZO[h]QUINOLINIUM CATIONS.

ALAN R. KATRITZKY*, M. AKRAM KASHMIRI, AND DIETER K. WITTMANN

Department of Chemistry, University of Florida, Gainesville, Fl. 32611, USA

(Received in UK 3 January 1984)

Abstract - The N-substituents are transferred from the title cations to the C-atom of nitroalkane anions in high yield at $25-80^{\circ}$ C in DMSO solution. The title cations are readily available from the appropriate pyrylium cations and primary amines of types RCH_NH₂ and RR'CHNH₂, allowing a general 2-step method for the preparation of higher nitroalkanes. Spectral properties of a variety of nitroalkanes are discussed.

We recently disclosed¹ the first general method for the C-alkylation of nitroalkane anions: this utilised N-substituent transfer from N-primary-alkyl-, N-secondary-alkyl- and N-benzyl-2,4,6-triphenylpyridinium cations. Extensive investigations^{2,3} of the mechanism of this nonchain radicaloid process have led to the development of 2-<u>t</u>-butyl-5,6-dihydro-4-phenylbenzo[<u>h</u>]quinoline as a superior leaving group for C-alkylation by primary alkyl groups. We now report preparative reactions under milder conditions than used previously, which proceed selectively and in high yield, even for the transfer of primary alkyl groups to the nitromethane and nitroethane anions which gave poor results by the earlier technique. For the transfer of secondary alkyl groups, 5,6-dihydro-2,4-diphenylbenzo[h]quinoline is a good leaving group.

<u>Preparation of Salts.</u> The appropriate pyrylium salt (see Experimental) and amine reacted smoothly to give the pyridinium compounds 2a-f (Table 1) and 3a-d, which were characterised spectrally. The ¹H NMR spectra (Table 2) show all the peaks expected for these compounds⁴; the C (3)-H proton appears as a singlet at 7.8-7.9 ppm, the other aromatic protons give a complex multiplet in the range of 6.9-8.4 ppm. The four protons at C (5) and C (6) resonate at 2.70-2.85, the <u>t</u>-butyl group shows a sharp singlet at 1.75-1.80 ppm, whereas the C_a-protons of the N-substituent appear at 6.45 ppm (N-benzyl) and 5.2-5.3 ppm (N-alkyl). The assignments of the ¹³C NMR spectra (Table 3) were according to those made in a previous study⁵, where a discussion of the chemical shifts of <u>2a</u> compared with <u>2c</u>, representing the N-alkyl substituted series, is given.

$$\overset{4}{\sim} \overset{a}{\sim} \overline{}^{c}(CH_3)_2NO_2, \underbrace{b}{}^{c}CH(CH_3)NO_2, \underbrace{c}{}^{c}CH_2NO_2, \underbrace{d}{}^{NO_2}$$

<u>Preparation of Nitroalkanes</u>. Reactions were carried out in DMSO solution at $25-60^{\circ}$ C, using pyridinium salt and nitroalkane anion in the ratio of 1:3. We found that nitromethane, nitroethane, and 2-nitropropane could all be C-alkylated with primary alkyl groups from compounds 2a-f in this manner in 65-98% yield (Table 4). The good yields obtained from nitromethane and nitroethane contrast with the difficulty formerly encountered¹ in the alkylation of the anions using N-alkyl-2,4,6-triphenylpyridinium salts.

Compounds of type 2 carrying a N-secondary alkyl substituent are not accessible⁴, but we found that the compounds 3_0 , c transferred their secondary alkyl groups readily at 60-80°C to the anions of 2-nitropropane, nitroethane and nitrocyclohexane (Table 4).

<u>IR Spectra of Nitroalkanes</u>. The symmetrical and asymmetrical NO₂ stretching modes are characteristic⁶, and are shown in Table 5. If the NO₂-group is attached to a carbon atom also carrying a methyl group, now mixing occurs between the methyl C-H s-bend and the NO₂ asymmetric stretch. As reported by previous workers⁷, for MeC-NO₂ this results in two bands at 1400 and

ধ্য ধ্য	сн ₂ Рћ		E	3	(<u>)</u>	Solvent	Ŭ	H	N	Formula	ပ	н	N
ধঃ		BF4	4	72	149-151	EtOH	73.	.3 6.1	2.8	C30 ^H 30 ^{BF} 4 ^N	73.2	2 6.2	2.
	Pr ⁿ	cF ₃ s0 ₃	Ŷ	11	181-182	EtOH	64	.1 6.0	2.8	C27 ^H 30 ^F 3 NO.	3 ⁵ 64.1	1 6.0	2.(
<u>3</u> c	Bun	BF4	9	72	141-142 ⁵	EtOH	70.	1.7 6.	3.1	C ₂₇ H ₃₂ BF ₄ N	20.9	1.1	"
<u>2</u> d	СН ₃ (СН ₂) ₄	BF4	80	73	109-110	Me ₂ CO/Et ₂ O	п.	.3 7.3	3.0	C ₂₈ H ₃₄ BF ₄ N	ייג	3 7.3	3.1
<u>3</u> e	сн ₃ (сн ₂) ₅	BF 4	10	72	103-104	=	1	.8 7.5	2.9	C ₂₉ H ₅₆ BF ₄ N	71.8	3 7.5	2.
<u>3</u> £	сн ₃ (сн ₂) ₆	BF4	12	20	93-94	=	72.	.2 7.7	2.8	^C 30 ^H 38 ^{BF} 4	72.2	2 7.7	2.
Table 2 ¹ H	a All compound MMR ⁸ Spectra of	ls cryste 	llised	l as ne	edles. <u>b</u> butyl)-5,	Lit. ¹⁷ m.p	. 145 pheny	9–152 ⁰ C. 152 ⁰ C.	L1 2	t. ¹⁷ m.p. 136 11nium Salts.	-137°C.		
Quinolinium	1-Substituent	Anion	Aro	matic		N	-Subs	tituent			Bult	CH, CH,	ے ا
Salt			(H) (H) (H) (H) (H) (H) (H) (H) (H) (H)		3	ಶ		β.Υ	(m)	СН3	(H6,8)	(m ,4H	<u>ل</u>
			Ŷ	H	(s,1H)	β	¥	40	H	(t,3H,J=6Hz)			
2.8	сн ₂ Рh	BF4	6.9-8	1.4 14	7.32	6.45 2	8	ł	ı	I	1.80	2.7	
ধ্য	Pr ⁿ	CF ₃ S0 ₃	7.5-8	.3 9	7.83	5.2-5.3 2	8	0.7-1.5	5	0.71	1.76	2.8	Ś
36	Bu ⁿ	BF4	7.6-8	.4 9	7.82	5.2-5.3 2	e	0.7-1.5	4	0.70	1.76	2.8	5
24	сн ₃ (сн ₂)4	BF4	7.6-8	.3 9	7.82	5.2-5.3 2	Ħ	0.7-1.6	9	0.69	1.76	2.8	5
26	сн ₃ (сн ₂) ₅	BF4	7.5-8	.4 9	7.81	5.2-5.3 2	E	0.7-1.6	80	0.68	1.76	2.8	5
2£	сн ₃ (сн ₂) ₆	BF4	7.6-8	e E.	7.81	5.2-5.3 2	E	0.7-1.5	10	0.68	1.76	2.8	5

1370 cm⁻¹. For Me₂C-NO₂ a highly characteristic pattern of four bands at 1400, 1370, 1350 and 850 cm⁻¹ is observed, little affected by the nature of the fourth substituent, whereas compounds of the type cyclo-C₆H₁₀(R)NO₂ show three absorptions at 1370, 1345, and 840 cm⁻¹.

Table 3. ¹³C NMR Spectra[®] of 1-Substituted-2-(<u>t</u>-buty1)-5,6-dihydro-4-phenylbenzo[<u>h</u>]quinolinium Salts.

Quinolinium	1-Substituent	Anion		Py	ridinium	Ring	_
Salt			C-2	C-3	C-4	C-4 a	С-10Ъ
<u>2a</u>	CH ₂ Ph	BF ₄	165.4	124.7	156.6	127.4	156.6
<u>2</u> b	Pr ⁿ	CF3SO3	164.4	125.6	155.5	127.9	156.4
2c	Bu ⁿ	BF4	164.2	125.6	156.2	127.9	155.2
2d	сн ₃ (сн ₂)4	BF4	164.3	125.8	155.7	128.0	155.9
2e	сн ₃ (сн ₂)5	BF4	164.2	125.6	155.2	127.8	156.3
2£	сн ₃ (сн ₂)6	BF4	164.2	125.6	155.2	127.9	156.3

Quinolinium	Quinolinium α,β -Dihydronaptho Salt				1-Subs	tituent			
	C-5	C-6	C-1'	C-2'	C-3'	C-4'	C-5'	C-6'	C-7'
2a	29.7	27.8	60.6 <u>c</u>	-	-	-	-	-	-
2b	28.2	26.9	58.7	24.9	10.4	-	-	-	-
29	28.3	26.6	57.1	33.3	19.2	12.9	-	-	-
2 <u>d</u>	28.4	26.5	57.4	38.8	31.1	21.5	13.4	-	-
2e	28.3	26.7	57.2	38.7	31.3	25.6	21.8	13.5	-
2f	28.4	26.8	57.3	38.7	31.2	26.7	25.9	22.1	13.7

^a In CDCl₃ solution; chemical shift in ppm; all the compounds showed also $C(CH_3)_3$: 38.9 (s), 31.4 (q). ^b Phenyl carbons appear in the range of 125.7 - 141.5. ^c Benzylic carbon.

¹<u>H NMR Spectra of Nitroalkanes</u>. The proton NMR spectra (Table 6) show the expected signals¹. Chemical shifts depend on the position relative to the nitro group: α-protons absorb at 4.2-4.6 ppm the β -CH₂ and -CH groups at 1.8-3.3 ppm, and the β -CH₃ group at 1.5-1.7 ppm.

 $\frac{13}{\text{C}}$ NMR Spectra of Nitroalkanes. The nitroalkanes were further characterised by 13 C NMR (Table 7). α -Carbons in the nitroalkanes resonate at 95.4-79.3 ppm, with β -methyl-carbons appearing at 28.7-22.7 ppm and 29.9-19.1 ppm for tertiary and secondary α -carbons respectively. The chemical shifts of β -methylene carbons appear at 52.6-36.5 ppm when attached to tertiary α -carbons and at 41.9-32.8 ppm when linked to a secondary α -carbon. An increasing upfield shift is observed for the carbons of the increasing <u>n</u>-alkyl chain of the nitroalkanes. Previous work⁸, has shown that α -carbons of nitrocyclohexane, 2-nitrobutane, 2-nitropropane and 1-nitroTable 4 Preparation of Nitroalkanes by the Reactions of 1-Substituted-2-(t-buty1-4-pheny1-and-2,4-dipheny1)-5,6-dihydro-4-phenylbenzo[h]quinolinium Salts with Simple Nitronate Anions in DMSO

Quino- línium	1-Substit-	Nitro- nate		Rea Con Yield	action nditio Time	n ons Temp	B.p.	Lit. b.p.	Lit.
Salt	uent	Anion	Nitroalkane [#]	(%)	(h)	(°C)	(°C/mmHg)	(°C/mmHg)	ref.
2a	CH ₂ Ph	4a	PhCH ₂ C(CH ₃) ₂ NO ₂	93	0.5	25	98-101/2	99-102/2	1
2 ⊾	Pr ⁿ	4a	Pr ⁿ C(CH ₃) ₂ NO ₂	83	3	50	69-72/6	-	-
		4b	Pr ⁿ CH(CH ₃)NO ₂	75	5	50	58-60/20	148-149/760	9
		4d	cyclo-C6H10(Pr ⁿ)NO2	95	2	50	80-85/0.5	-	-
2c	Bu ⁿ	4a	Bu ⁿ C(CH ₃) ₂ NO ₂	82	5	50	56-62/2	55-60/2	1
		4b	Bu ⁿ CH(CH ₃)NO ₂	75	6	50	62-64/20	64-66/20	10
		4c	Bu ⁿ CH ₂ NO ₂	62	8	60	50-52/20	90/100	11
		4d	cyclo-C6 ^H 10 ^{(Buⁿ)NO} 2	97	2	50	110-115/0.5	i –	-
2d	сн ₃ (сн ₂)4	4a	CH ₃ (CH ₂) ₄ C(CH ₃) ₂ NO ₂	85	3	50	72-75/1	-	-
		4₺	$\operatorname{CH}_{3}(\operatorname{CH}_{2})_{4}\operatorname{CH}(\operatorname{CH}_{3})\operatorname{NO}_{2}$	78	5	50	85-90/1	95/25	n
		4c	CH ₃ (CH ₂) ₄ CH ₂ NO ₂	63	8	60	60-61/1	91/50	11
		4d	cyclo-C6H10[(CH2)4CH3]NO	2 ⁹⁸	2	50	120-121/0.6	-	-
2e	сн ₃ (сн ₂)5	4a	сн ₃ (сн ₂) ₅ с(сн ₃) ₂ № ₂	85	3	50	93-95/0.5	95-98/0.5	1
		4b	сн ₃ (сн ₂) ₅ сн(сн ₃) № ₂	78	5	50	81-83/4	102-105/23	10
		4c	CH ₃ (CH ₂) ₅ CH ₂ NO ₂	64	8	60	69-71/1	91/25	11
2f	^{СН₃(СН₂)6}	4a	сн ₃ (сн ₂) ₆ с(сн ₃) ₂ ^{NO} 2	86	3	50	100-140/0.	i -	-
		4b	CH ₃ (CH ₂) ₆ CH(CH ₃)NO ₂	75	5	50	87-89/1	-	-
		4c	сн ₃ (сн ₂) ₆ сн ₂ № ₂	64	9	60	76-78/1	106/20	11
3 <u>a</u>	CH3(CH2)2	4a	CH ₃ (CH ₂) ₅ C(CH ₃) ₂ NO ₂	60	3	80	138-140/5	95-98/0.5	1
3b	Pr ¹	4a	Pr ¹ C(CH ₃) ₂ NO ₂	50	24	65	70/15	42-43/5	1
		4b	Pr ⁱ Ch(CH ₃)NO ₂	36	15	75	50-52/20	88/100	11
		4d	cyclo-C ₆ H ₁₀ (Pr ¹)NO ₂	69	2.5	75	105-107/6	-	12
રેદ	cyclo-C6 ^H 11	4a	(cyclo-C6H11)C (CH3)2NO2	53	24	60	110-112/5	82-84/1	1
3वे	neo-C5 ^H 11	4a ~~	(neo-C ₅ H ₁₁)C(CH ₃) ₂ NO ₂	25	48	75	92-93/20	54/3	13

 $\frac{a}{1}$ All new compounds gave satisfactory elemental analysis: C ($\pm 0.3\%$), H ($\pm 0.25\%$) and N ($\pm 0.15\%$).

pentane appear at 84.7, 85.0, 78.7 and 76.1 ppm respectively in SO_2CIF at $-60^{\circ}C$. As expected these chemical shifts are quite close to those found in the present work in $CDCI_3$.

<u>Mass Spectra of Nitroalkanes</u>. The mass spectra of aliphatic nitro compounds usually lack any discernible molecular ions, with the notable exception of nitromethane¹⁴. Loss of NO₂ with subsequent decomposition of the alkyl cation constitutes the most important fragmentation mode¹⁵. However, a moderate peak at m/e =30 and a weaker peak at m/e =46 corresponding to NO⁺ and NO₂⁺ are also characteristic of nitroalkanes⁶. Table 5. IR^a Spectra of Nitroalkanes

	VNO.		
Nitroalkane	asym.	vsym.	Other Absorptions
(CH ₃) ₃ CNO ₂	1535 s	1377m	1355m, 855m
4-N02C6H4CH2C(CH3)2N02	1550 s	1367m	1380s, 1350w, 860m
PhCH ₂ C(CH ₃) ₂ NO ₂	1540 a	1370m	1380s, 1350w, 857m
Pr ⁿ C(CH ₃) ₂ NO ₂	15328	1372m	1401w, 1351m, 853m
рг ^п сн(сн ₃) NO ₂	15428	1362m	1380m
cyclo-C6H10 ^{(Prⁿ)NO2}	1530s	1370sh	1342m, 835w
Bu ⁿ C (CH ₃) 2 ^{NO} 2	1539a	1375m	1400m, 1350s, 860w
Bu ⁿ CH(CH ₃)NO ₂	1545s	1363m	1400m
Bu ⁿ CH ₂ NO ₂	15498	1377m	1440 w
cyclo-C ₆ H ₁₀ (Bu ⁿ)NO ₂	1532s	1375m	1345m, 840m
сн ₃ (сн ₂) ₄ с(сн ₃) ₂ NO ₂	1532 s	1378m	1405m, 1355s, 865w
CH ₃ (CH ₂) ₄ CH(CH ₃)NO ₂	154 1 8	1368m	1340w
сн ₃ (сн ₂) ₄ сн ₂ № ₂	1550в	1377m	143 8 w
cyclo-C 6 ^H 10 ^{[(CH} 2)4 ^{CH} 3 ^{]NO} 2	15358	1376m	1346m, 840w
CH ₃ (CH ₂) ₅ C(CH ₃) ₂ NO ₂	1535s	1375m	1400m, 1350m, 855w
сн ₃ (сн ₂) ₅ сн(сн ₃) NO ₂	1550s	1360m	1390s
сн ₃ (сн ₂) ₅ сн ₂ NO ₂	1549s	1378m	1435w
CH ₃ (CH ₂) ₆ C(CH ₃) ₂ NO ₂	1535s	1370m	1395m, 1345m, 855m
сн ₃ (сн ₂) ₆ сн(сн ₃) ^{NO} 2	15478	1365m	1322w
сн ₃ (сн ₂) ₆ сн ₂ № ₂	1550s	1378m	1435w
Pr ¹ C(CH ₃) ₂ NO ₂	1540 s	1373m	1400m, 1348m, 850m
Pr ¹ CH(CH ₃)NO ₂ ^b	1535s	1380m	1358m
cyclo-C ₆ H ₁₀ (Pr ¹)NO ₂	1525s	1370m	1343m, 840m
(cyclo-C6H11)C(CH3)2NO2	1530s	1372m	1395m, 1340m, 848m
$(\text{neo-C}_{5}\text{H}_{11})C(C\text{H}_{3})_2\text{NC}_2^{\underline{b}}$	15458	1365m	1455m, 1340m, 845w

 $\frac{a}{b}$ Neat; s = strong, m = medium, w = weak, sh = shoulder. $\frac{b}{b}$ In CHBr₂

In line with this previous work, we observed no molecular ion peaks, but did see weak peaks at m/e =30 and 46. As expected, major fragment ions were derived by loss of NO₂ (Table 8), but an interesting feature of the mass spectra of the nitroalkanes was the fission of the $C_{\alpha}-C_{\beta}$ bond in compounds $RCH_2CH_2CMe_2NO_2$, with simultaneous migration of a proton to yield $C_{3}H_7NO_2^+$, probably as $(CH_3)_2C=NOOH^+$ with elimination of an olefin. This type of fragmentation was previously observed in the mass spectrum of nitrobutane¹⁵. Accurate masses of the main fragments were determined (Table 8).

T able	6 .	1 ^H	NMR	Spectra ^a	of	Nitroalkanes

		α			ß (C	H ₃)		β (C	н ₂)		γ		ω	(CH)
Nitroalkane	6 <u>b</u>	нc	<u>µ</u> d∙e	δ	нр	м _с	δ <u>Þ</u>	H _C	Mq	6 <u>b</u>	H	<u>c</u> <u>M</u> d	<u>б</u> <u>ь</u>	H	Mq
(CH ₃) ₃ CNO ₂	-	-	-	1.58	9	8	-	-	-	-	-	-	-	-	-
4-N02C6H4CH2C(CH3)2N02	-	-	-	1.62	6	8	3.28	2	8	7.50	4	tu	-	-	-
PhCH ₂ C(CH ₃) ₂ NO ₂	-	-	-	1.60	6	8	3.25	2	8	7.30	5	8	-	-	-
$Pr^{n}C(CH_3)_2NO_2$	-	-	-	1.52	6	8	1.90	2	m	1.26	2	ħ	0.97	3	t
Pr ⁿ CH(CH ₃)NO ₂	4.50	1	m	1.54	3	d	2.25	2	12	1.25	2	m	0.85	3	t
cyclo-C ₆ H ₁₀ (Pr ⁿ)NO ₂	-	-	-	-	-	-	2.32	2	m	0.90-2.0 ^{<u>f</u>}	12	m	0.85	3	t
Bu ⁿ C(CH ₃) ₂ NO ₂	-	-	-	1.51	6	8	1.98	2	m	1.18-2.0	6	11	0.83	3	t
Bu ⁿ CH(CH ₃)NO ₂	4.45	1	m	1.50	3	ď	2.2	2	m	1.19-2.0	6	m	0.79	3	t
Bu ⁿ CH ₂ NO ₂	4.63	2	t	-	-	-	2.02	2	m	1.10-1.94	4	m	0.92	3	t
$cyclo-C_6H_{10}(Bu^n)NO_2$	-	-	-	-	-	-	2.32	2	m	0.98-2.0 ^f	14	m	0.91	3	t
CH ₃ (CH ₂) ₄ C(CH ₃) ₂ NO ₂	-	-	-	1.55	6	8	2.0	2	m	1.19-1.85	6	m	0.85	3	t
CH ₃ (CH ₂) ₄ CH(CH ₃)NO ₂	4.45	1	m	1.56	3	d	2.29	2	m	1.18-2.08	6	m	0.84	3	t
CH ₃ (CH ₂) ₄ CH ₂ NO ₂	4.62	2	t	-	-	-	2.01	2	m	1.69-2.0	6	m	0.93	3	t
cyclo-C6H10[(CH2)4CH3]NO2	-	-	-	-	-	-	2.35	2	m	0.97-2.0 <u>f</u>	16	m	0.89	3	t
CH ₃ (CH ₂) ₅ C(CH ₃) ₂ NO ₂	-	-	-	1.61	6	8	2.0	2	æ	1.18-1.95	8	m	0.79	3	t
сн ₃ (сн ₂) ₅ сн(сн ₃) NO ₂	4.46	1	m	1.59	3	d	2.29	2		1.13-2.0	8	m	0.78	3	t
CH ₃ (CH ₂) ₅ CH ₂ NO ₂	4.49	2	t	-	-	-	2.09	2	m	1.10-2.0	8	m	0.79	3	t
сн ₃ (сн ₂) ₆ с(сн ₃) ₂ NO ₂	-	-	-	1.59	6	8	2.0	2	Ħ	1.12-1.89	10	m	0.77	3	t
CH3(CH2)6CH(CH3)NO2	4.45	1	m	1.57	3	d	2.29	2	m	1.17-2.09	10	m	0.76	3	t
сн ₃ (сн ₂) ₆ сн ₂ №2	4.43	2	t	-	-	-	2.13	2	m	1.05-2.0	10		0.79	3	t
Pr ¹ C(CH ₃) ₂ NO ₂ ^g	-	-	-	1.5	6	8	-	-	-	0.95	6	d	-	-	-
$Pr^{1}CH(CH_{3})NO_{2}^{\underline{B}}$ 4	.15-4.6	0		1.5	3	d	-	-	-	1.00	6	d	-	-	-
cyclo-C ₆ H ₁₀ (Pr ⁱ)NO ₂ ^{<u>h</u>}	-	-	-	-	-	-	-	-	-	1.05-2.65	10	n	-	-	-
										0.95	6	d			
(cyclo-C6H11)C(CH3)2NO2	-	-	-	1.5	6	8	-	-	-	0.65-2.3	11	m	-	-	-
(neo-C ₅ H ₁₁)C(CH ₃) ₂ NO ₂	-	-	-	1.65	6	8	2.0	2	s	-	-	-	0.95	9	8
a In CDC1, sol	lution.	b	δ =	chemi	cal	shii	ft in	ррш.	. 4	H=numul	ber	of pr	otons.		
<u>d</u> M = multipli	city:	8 =	singl	et,	d = d	loub]	let,	t= t	rig	olet, and	m =	multi	plet .		
<u>e</u> The coupling	g const	ante	s of a	11 do	uble	ts a	and tr	iple	ets	was 7 Hz.	<u>f</u>	This	multi	ple	t
also contains	proton	s of	the	cyclo	hexa	ne 1	ing w	hick	1 01	verlap with	h th	e pro	tons o	f	
<u>n</u> -alkyl chain.	£β	(СН)	at 1	.95-2	.65	(m).	<u>h</u>	β(CE	i) e	it 1.8-2.3	(m)	•			

Nitroalkane	C-1	с-2 (СН ₃)	С-2 (СН ₂ , СН)	C-3	C-4	C-5	C-6	C-7	C-8	C-ab	с-ь <u></u>	С-с <u></u>
PhCH ₂ C(CH ₃) ₂ NO ₂ ^C	88.4	25.2	46.4	-	-	-	-	-	_	-	-	
Pr ⁿ C(CH ₃) ₂ NO ₂	88.3	25.7	43.1	17.5	13.9	-	-	-	-	-	-	-
Pr ⁿ CH(CH ₃)NO ₂	83.3	25.7	41.9	17.2	14.0	-	-	-	-	-	-	-
cyclo-C ₆ H ₁₀ (Pr ⁿ)NO ₂	91.4	-	42.7	16.4	13.8	-	-	-	-	34.0	22.3	24.8
Bu ⁿ C(CH ₃) ₂ NO ₂	88.2	25.5	41.9	23.2	19.8	13.7	-	-	-	-	-	-
Bu ⁿ CH(CH ₃)NO ₂	83.4	27.6	34.7	22.0	19.0	13.6	-	-	-	-	-	-
Bu ^B CH ₂ NO ₂	79.3	-	30.5	22.3	19.3	13.9	-	-	-	-	-	-
cyclo-C ₆ H ₁₀ (Bu ⁿ)NO ₂	91.5	-	40.3	22.4	22.3	13.6	-	-	-	34.0	22.0	24.8
сн ₃ (сн ₂) ₄ с(сн ₃) ₂ № ₂	88.0	25.4	40.7	31.4	23.5	22.1	13.6	-	-	-	-	-
сн ₃ (сн ₂) ₄ сн(сн ₃) №2	83.5	29.5	33.5	22.9	22.3	16.8	13.2	-	-	-	-	-
сн ₃ (сн ₂) ₄ сн ₂ №2	79.7	-	29.7	23.2	21.9	17.1	14 .1	-	~	-	-	-
cyclo-C ₆ H ₁₀ [(CH ₂) ₄ CH ₃]NO ₂	91:1.	-	40.3	23.7	22.4	22.0	13.4			33.7	22.0	24.6
сн ₃ (сн ₂) ₅ с(сн ₃) ₂ NO ₂	88.2	25.6	40.9	31.3	29.0	23.9	22.3	13.8	-	-	-	-
сн ₃ (сн ₂) ₅ сн(сн ₃) NO ₂	83.4	29.7	33.0	23.5	22.9	21.9	15.9	12.9	-	-	-	-
сн ₃ (сн ₂) ₅ сн ₂ NO ₂	79.6	-	29.6	23.8	22.5	21.8	16.2	14.2	-	-	-	-
сн ₃ (сн ₂) ₆ с(сн ₃) ₂ № ₂	88.1	25.6	40.8	31.5	29.3	28.8	23.9	22.4	13.8	-	-	-
сн ₃ (сн ₂) ₆ сн(сн ₃) №2	83.7	29.9	32.9	27.9	26.0	22.7	20.6	14.8	12.6	-	-	-
сн ₃ (сн ₂)6сн ₂ NO2	79.8	-	29.9	26.6	25.9	22.3	19.6	15.1	14.1	-	-	-
pr ¹ C(CH ₃) ₂ NO ₂	92.0	22.7	36.5	17.1	-	-	-	-	-	-	-	-
Pr ¹ CH(CH ₃)NO ₂	89.0	19.1	32.8	16.0 17.8	-	-	-	-	-	-	-	-
cyclo-C6H10(Pr ⁱ)NO2	95.4	-	37.4	17.2	-	-	-	-	-	31.0	22.3	24.9
(cyclo-C ₆ H ₁₁)C(CH ₃) ₂ NO ₂	92.1	22.9	46.8	-	-	-	-	-	-	27.4	26.1	25.9
(neo-C ₅ H ₁₁)C(CH ₃) ₂ NO ₂	87.3	28.1	52.6	31.4	30.2	-	-	-	-	-	-	-

Table 7. ¹³C NMR Spectra^a of Nitroalkanes

 $\frac{a}{b}$ In CDCl₃; chemical shift in ppm $\frac{b}{b}$ Carbons of cyclohexane ring.

c Aromatic carbons appear at 134.8, 129.8, 128.2 and 127.1 ppm

EXPERIMENTAL

M.ps. were determined with a "Hot Stage" apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer 283B spectrophotometer. ¹H NMR spectra were recorded on a Varian EM 360L spectrometer, ¹³C NMR on a Jeol FX-100 spectrometer, and mass spectra (MS) on a AEI MS30 mass spectrometer.

The following compounds were prepared by the literature method quoted: $2-(\underline{t}-buty1)-5,6-dihydro-4-phenylbenzo[\underline{h}]chromenylium tetrafluoroborate (la), m.p. 178-180°C (lit.¹⁶, m.p. 175-176°C); <math>2-(\underline{t}-buty1)-5,6-dihydro-4-phenylbenzo[\underline{h}]chromenylium trifluoromethanesulphonate (lb), m.p. 205-207°C (lit.¹⁷, m.p. 203°C); 5,6-dihydro-2,4-diphenylbenzo[\underline{h}]chromenylium tetrafluoro-borate (lc), m.p. 268-270°C (lit.¹⁷, m.p. 270°C); 1-benzy1-2-(\underline{t}-buty1)-5,6-dihydro-4-phenyl-$

Table 8 Mass Spectra of Nitroalkanes

					Accurate	Mass
Nitroalkane	Molecular Formula	Molecular Weight	Fragment (Intensi	Ion ty X)	Calculated m/e	Found m/e
Pr ⁿ C(CH ₃) ₂ NO ₂	^С 6 ^Н 13 ^{NO} 2	131.17	с ₃ н ₇ № ⁺	(73)	89.048	89.048
			с ₆ я ⁺	(65)	85.102	85.102
Bu ⁿ C(CH ₃) ₂ NO ₂	^С 7 ^Н 15 ^{NO} 2	145.20	с ₃ н ₇ ю ⁺ 2	(72)	89.048	89.048
			с ₇ н ₁₅ +	(68)	99.197	99.196
сн ₃ (сн ₂) ₄ с(сн ₃) ₂ NO ₂	^C 8 ^H 17 ^{NO} 2	159.23	с ₃ н ₇ № ⁺ 2	(76)	89.048	89.048
			с ₈ н ₁₇ +	(64)	113.133	113.133
сн ₃ (сн ₂) ₅ с(сн ₃) ₂ NO ₂	C10H21NO2	187.28	с ₃ н ₇ № ⁺ 2	(75)	89.048	89.048
			C10 ^H 21	(69)	141.164	141.164
PhCH ₂ C(CH ₃) ₂ NO ₂ ^b	C10H13NO2	179.21	^C 10 ^H 13	(80)	133.102	133.101
cyclo-C ₆ H ₁₀ (Pr ¹)NO ₂	^C 9 ^H 17 ^{NO} 2	171.24	с ₉ я ₁₇ +	(87)	125.133	125.133

^a Other characteristic peaks of nitroalkanes were observed for N^d (m/e =30) (7%), N^d₂ (m/e = 46) (2%) and $C_3 \dot{H}_7$ (m/e =43) (100%, last example 19.8%). ^b Additional peak for PhCH₂ (m/e=91) (100%) was also observed.

benzo[<u>h</u>]quinolinium tetrafluoroborate (2a), m.p. 149-151°C (lit.⁴, m.p. ^{145-147°C}); $1-(\underline{n}-buty1)-2-(\underline{t}-buty1)-5,6-dihydro-4-phenylbenzo[<u>h</u>]quinolinium tetrafluoroborate (2c), m.p. 141-142°C (lit.⁴, m.p. 142-144°C); 1-cyclohexy1-5,6-dihydro-2,4-diphenylbenzo[<u>h</u>]quinolinium tetrafluoroborate (3c), m.p. 133-135°C (lit.¹⁸, m.p. 136-139°C); 1-neopenty1-5,6-dihydro-2,4-diphenylbenzo[<u>h</u>]quinolinium tetrafluoroborate (3d), m.p. 225-227°C (lit.¹⁹, m.p. 228-230°C).$

<u>General procedure for the preparation of</u> 2b, 2d-f. To a suspension of the chromenylium salt (10 mmol) in CH_2Cl_2 (20 ml) the appropriate amine (20 mmol) was added dropwise at 25°C. The reaction mixture was stirred for the time given (Table 1), then EtOH (10 ml) was added and the product precipitated with cold Et_2^{0} . Recrystallisation from EtOH (2b) or Me_2CO/Et_2^{0} (2d-f) afforded the quinolinium salts as needles.

<u>1-n-Hexyl- and -1-isopropyl-5,6-dihydro-2,4-diphenylbenzo[h]quinolinium tetrafluoroborate</u> 3a,b. To a suspension of the chromenylium salt (10 mmol) in CH_2CI_2 (20 ml) the appropriate amine (10 mmol) was added at 25°C, followed by NEt₃ (10 mmol). After 3 h, HOAc (10 mmol) was added, and the reaction mixture stirred for another 5 h. The product was precipitated with $Et_2O/EtOH$ (30:1) and recrystallised from $EtOH/Et_2O$ to give the title salts. [Compound 3a as light yellow prisms (74%); m.p. 129-131 °C: Found: C, 73.6; H, 6.4; N, 2.7: $C_{31}H_{32}BF_4N$ requires C, 73.7; H, 6.4; N, 2.8]: v_{max} . (CHBr₃) 1610, 1595, 1040 cm⁻¹ (BF₄⁻); ¹H NMR & (CDCl₃) 0.5-1.6 (11 H,m), 2.95 (4 H,s), 5.20 (2 H,t), 7.5-8.6 (15 H,m). Compound 3b as light yellow plates (62%); m.p. 140°C (dec.); Found: C, 72.7: H, 5.7: N, 3.0: $C_{28}H_{26}BF_4N$ requires: C, 72.6; H, 5.7:

A. R. KATRITZKY et al.

N, 3.0%; v_{max} (CHBr₃) 1605, 1595, 1040 cm⁻¹ (BF₄⁻): ¹H NMR & (CDCl₃) 1.45 (6 H, d, J=7Hz, 2.90 (4 H, B), 5.55 (1 H, b, J=7Hz), 7, 2=8.1 (15 H, m)].

<u>General procedure for the preparation of nitroalkanes</u>. Sodium hydride (0.72 g, 30 mmol) was dissolved in MeOH (10 ml), and the appropriate nitroalkane (30 mmol) was added with stirring. After removal of the solvent in vacuo, the resulting white solid was mixed with the quinolinium salt (10 mmol) and suspended in DMSO (25 ml). The mixture was flushed with nitrogen and stirred for the time and at the temperature given (Table 4). On cooling down, the quinoline separated partially and was filtered off. The filtrate was added to H_2O (50 ml), extracted with Et_2O (3 x 25 ml) and the extract dried over anhydrous $MgSO_4$. Dry HCl gas was passed to remove residual quinoline from the solution, the salt was filtered off, Et_2O was removed and the crude prodouct distilled in vacuo, yielding the pure nitroalkanes.

<u>Acknowledgements</u>. One of us (D.K.W.) thanks the German Academic Exchange Service for a grant, and the Technical University of Munich for leave of absence.

REFERENCES

- 1. Katritzky, A.R., De Ville, G. and Patel, R.C., <u>Tetrahedron</u>, 1981, <u>37</u>, <u>Supplement 1</u>, 25.
- 2. Katritzky, A.R., Kashmiri, M.A., De Ville, G. and Patel, R.C.; J. Am. Chem. Soc., 1983, 105, 90.
- 3. Katritzky, A.R., and Kashmiri, M.A., unpublished results.
- 4. Katritzky, A.R., LLoyd, J.M., and Patel, R.C., J. Chem. Soc., Perkin Trans. 1, 1982, 117.
- 5. Katritzky, A.R., LLoyd, J.M., and Patel, R.C., Chemica Scripta, 1981, 18, 256.
- Pavia, L.D., Lampman, M.G., and Kriz, S.G., "Introduction to Spectroscopy", 1979. W.P. Saunders Company, Philadelphia, 278.
- 7. Brown, J.F., J. Am. Chem. Soc., 1955, 77, 6341.
- 8. Olah, G.A., Fung, A.P. and Rawdah, T.N., J. Org. Chem., 1980, 45, 4149.
- 9. G.D. Buckley, U.S. 2 408 607. Chem. Abs. 41, P 12321 (1947).
- 10. "Dictionary of Organic Compounds", Vol. 4, Oxford University Press, New York, 1965, p. 2457, 2473.
- 11. Iffland, D.C., and Yen, T.F., J. Am. Chem. Soc., 1954, 76, 4083.
- Topchiev, A.V., Mekhtiev, S.D., and Novruzova, A.S., <u>Dokl. Akad. Nauk. S.S.S.R.</u>, 1957, <u>115</u>, 931.
- 13. Kornblum, N., Clutter, R.J., and Jones, W.J., J. An. Chem. Soc., 1956, 78, 4003.
- Aplin, R.T., Fischer, M., Becher, D., Budzikiewicz, H. and Djerassi, C., <u>J. Am. Chem. Soc.</u>, 1965, <u>87</u>, 4888.
- Budzidiewicz, H., Djerassi, C. and Williams, D.H., "Mass Spectrometry of Organic Compounds", 1967, Holden-Day Inc., San Francisco, p. 512.
- Katritzky, A.R., El-Mowafy, A.M., Musumarra, G., Sakizadeh, K., Sana-Ullah, C., El-Shafie, M.M. and Thind, S.S., <u>J. Org. Chem.</u>, 1981, <u>46</u>, 3823.
- 17. Thind, S.S., Ph.D. Thesis, University of East Anglia, 1979.
- Katritzky, A.R., Marquet, J., Lloyd, J.M. and Keay, J.G., <u>J. Chem. Soc. Perkin Trans. II</u>, 1983, 1435.
- 19. Katritzky, A.R. and Singh, J.N., Ind. J. Chem., in press.

1510