Letters to the Editor

A preparative synthesis of indole by dehydrogenation of 4,5,6,7-tetrahydroindole over catalysts with a low palladium content

M. A. Ryashentseva

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 117913 Moscow, Russian Federation. Fax: +7 (095) 135 5328

Catalysts containing 0.15–0.5 % of Pd are highly active and selective in the dehydrogenation of 4,5,6,7-tetrahydroindole to indole when γ -Al₂O₃ or Sibunite are used as supports.

Key words: Pd-containing catalysts, tetrahydoindole, indole, dehydrogenation.

Synthetic and catalytic procedures for the preparation of indole from various organic compounds are known. Ref. 1 reports the results of dehydrogenation of the cyclohexene fragment into alkyl- and dialkyl-substituted indoles by boiling in xylene with 10 % Pd/C catalyst in a stationary system for 18 h.

In the present paper active and selective supported catalysts with low palladium content (0.15—0.5 %) for dehydrogenation of 4,5,6,7-tetrahydroindole (THI) and the corresponding reaction conditions for a flow system are found.

The results obtained are presented in Table 1. The catalysts used were $Pd/\gamma-Al_2O_3$, $PdS/\gamma-Al_2O_3$,

and Pd/Sibunite, the latter is pyrocarbon with a specific surface of 590 m²/g, the corresponding catalyst contains 0.15—0.2 % of Pd. They were prepared by impregnation of the corresponding supports with PdCl₂ solution.

The experiments were carried out in a flow apparatus under H_2 . The catalyst (3–6 g) was placed into a quarz reactor (20×380 mm). A solution of THI in toluene (15–20 %) was supplied by means of a liquid pump. Indole was obtained in quantitative yield over Pd catalysts at 350–370 °C and a THI feed rate (ω) of 0.3–0.75 h⁻¹. The liquid products of the catalysis were fractionated *in vacuo*; indole was distilled at 146 °C/35 Torr, its m.p. 52.5 °C, b.p. 254 °C, and mass spectrum² are in agreement with those reported in the literature. The reaction products were analyzed by GLC (5 % OV-225 on Chromaton N 0.125–0.160 mm, 3×2000 mm column, the temperature program was 80 \rightarrow 200 °C at 12 °C/min).

Thus, the results obtained show that active and se-

Catalyst	THI content (%)	Exptl. conditions			Yield	GLC analysis (%)	
		T/°C	ω/h ^{−1}	τ/min	of cataly- sate (%)	THI	Indole
0.25 % Pd/γ-Al ₂ O ₃	20.8	370	0.75	30	100.0	_	100
0.15 % $Pd/\gamma - Al_2O_3$ (H ₂ S)	18.3	365	0.60	25	100.0	_	100
$0.2\% \text{ Pd/}\gamma\text{-Al}_2\text{O}_3$ (H ₂ S)	15.5	350	0.52	74	93.5		100
0.15 % Pd/sibunite	17.0	365	0.32	40	91.5		100
0.5 % Pd/sibunite	18.2	364	0.70	35	95.9	Traces	100

Table 1. Dehydrogenation of 4,5,6,7-tetrahydroindole on Pd catalysts (p = 0.1 mPa, toluene, $V_{\rm H_2} = 3.6$ L h⁻¹)

lective Pd-containing supported catalysts containing small amounts of the metal and conditions were found for the preparative production of pure indole by dehydrogenation of THI in a flow system.

Acknowledgement. The author thanks Prof. B. A. Trofimov and co-workers (Irkutsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk) for providing "chemically pure" THI.

References

- J. O. Madsen and S. O. Lawesson, Bull. Soc. Chim. Belg., 1976, 85, 819.
- N. S. Wulf'son, V. G. Zaikin, and A. I. Mikaya, Mass-Spectrometriya Organicheskikh Soedinenii, Khimiya, Moscow, 1986, 60 [Mass Spectrometry of Organic Compounds (in Russian)].

Received October 21, 1993

¹H, ¹³C NMR spectral data for α -, β -, and γ -lewisites and identification of *cis*, *trans*, *trans*- γ -lewisite as a new isomer

K. F. Koehler, H. Zaddach, A. D. Kuntsevich, V. N. Voznesenskii, I. I. Chervin, and R. G. Kostyanovsky,

^a Gesellschaft fur Beseitigung von Kampfmitteln, Kampfstoffen, Kampfstoffmunition. Dr. Koehler GmbH.

Barbarahof, Kreutzen 17, D-03042 Munster, Germany.

Fax: (49) 050 555 053

^bN. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 ul. Kosygina, 117977 Moscow, Russian Federation. Fax: +7 (095) 938 2156

The ^{1}H and ^{13}C NMR spectral parameters of α -, β -, and γ -lewisites 1—5 were obtained and a new isomer, cis,trans,trans- γ -lewisite 5, was isolated and identified on the basis of chemical shifts, relative intensities of the signals, and the intra-chain $(^{3}J_{\text{HH}}, \, ^{3}J_{\text{CH}})$ and interchain $(^{3}J_{\text{CAsCH}})$ coupling constants.

Key words: lewisite; ¹H, ¹³C NMR spectra, new isomer cis, trans, trans-γ-lewisite.

A set of ¹H and ¹³C NMR parameters for *trans*- α -lewisite¹ and a partial set of ¹H and ¹³C{¹H} spectral data for *trans*- α -, β -, and γ -lewisites² have been described previously.

We have obtained a complete set of NMR parameters for all of the lewisite components (Table 1), synthesized as reported in Ref. 3: 1 + 2, b.p. 55 °C (10 Torr); 3, b.p. 90 °C (10 Torr); 4 + 5, b.p. 130 °C (10 Torr).