Regioselectivity of the Alkylation of Ambident Anionic Species on Alumina or in the Presence of 'Solid Hexamethylphosphoric Triamide'

By Georges Bram, Niall Geraghty, Gérard Nee, and Jacqueline Seyden-Penne* (Groupe de Recherche No. 12 du C.N.R.S., B.P. 28, 94320 Thiais, France)

Summary C-Alkylation of the acetoacetate anions and of sodium naphthoxide is highly favoured on alumina, while O-alkylation of the acetoacetate anion predominates in tetrahydrofuran in the presence of solid hexamethylphosphoric triamide.

The use of inorganic supports^{1,2} and also of some solid organic supports such as solid HMPA³ (polystyrene resinsupported hexamethylphosphoric triamide) has recently been attracting widespread interest in organic synthesis. As the regioselectivity of alkylation of ambident anions is strongly solvent-dependent,⁴ it seemed worthwhile to examine the influence of such media on the C/O ratio in the alkylation of potassium acetoacetate (1) and sodium naphthoxide (5).

For acetoacetate, the observed products [enol ethers (2) and C-alkylated products (3) and (4)] were those expected. In the case of the naphthoxide, O-alkylated (6), mono-C-alkylated (7), di-O,C-alkylated (8), and di-C-alkylated products (9) were obtained. In this latter case, no experiments were carried out with solid HMPA as it had been shown previously⁴ that in the case of naphthoxides, there is only a small change in regioselectivity on going from tetrahydrofuran (THF) to polar aprotic solvents.

Alumina (Merck 90 neutral, 70—230 mesh) was treated with sodium methoxide and then with ethyl acetoacetate or 2-naphthol, as described previously.⁵ Solid HMPA, kindly provided by Dr. Y. Leroux, was used in suspension in THF^{3a} in which solid, preformed potassium ethyl acetoacetate enolate was dissolved. In all cases, equimolar amounts of alkylating agents were used and the results are shown in Tables 1 and 2.

In the alkylation of acetoacetate, sodium methoxide-impregnated alumina and solid HMPA have opposite effects. C-Alkylation predominates on alumina; the effect is more pronounced than in ethanol, but is similar to that observed in Bu^tOH.⁴ In the case of solid HMPA in THF, O-alkylation is preferred when there is more than O-5 equiv. of HMPA/K⁺. The observed selectivity is less than that for pure HMPA (83% O-alkylation) but is comparable with that obtained with NN-dimethylformamide or dimethyl

MeC-CHCO₂Et + EtX
$$\xrightarrow{\text{room}}$$
 MeC=CHCO₂Et $\xrightarrow{\text{(2)}}$ (1) + $\xrightarrow{\text{Et}}$ (2) + MeCocHCO₂Et $\xrightarrow{\text{Et}}$ (3) $\xrightarrow{\text{Et}}$ (4) (3) $\xrightarrow{\text{Co}}$ $\xrightarrow{\text{Na}^{+}}$ X⁻ + $\xrightarrow{\text{R}}$ $\xrightarrow{\text{OR}}$ + $\xrightarrow{\text{R}}$ $\xrightarrow{\text{OR}}$ + $\xrightarrow{\text{R}}$ $\xrightarrow{\text{OR}}$ $\xrightarrow{\text{R}}$ $\xrightarrow{\text{OR}}$ (8)

sulphoxide. This selectivity, and the fact that there is no substantial improvement if more than 0.5 equiv. of solid HMPA is used, argue strongly for the intervention of a K⁺ (polymer associated) acetoacetate species.

Although the fact that a high proportion of C-alkylated product is obtained when naphthoxides react with alkyl halides on sodium methoxide-impregnated alumina is similar to results obtained in protic solvents such as EtOH and CF₃CO₂H,⁶ the high amount of di-C-alkylated product

	IADL	5 I				
Alkylating agent	Medium	Time /days	Yield /%	% (2)	% (3)	% (4)
Et ₂ SO ₄	Al_2O_3	5	76a	2	96	2
EtBr *	Al_2O_3	5	53a	1	97	2
EtI	Al_2O_3	5	52a	<1	97	3
Et ₂ SO ₄	THF	3	85 ^b	5	93	2
Et ₂ SO ₄	THF + 0.2 equiv. of solid $HMPA$	3	$>$ 95 $^{\mathrm{b}}$	58	42	<1
Et ₂ SO ₄	THF $+ 0.5$ or 1 equiv. of solid HMPA	3	$>$ 95 $^{\mathrm{b}}$	69	31	<1
Et_2SO_4	THF $+ 1.5$ equiv. of solid	3	$>$ 95 $^{\mathrm{b}}$	72	28	<1

^a The yields are of isolated products. ^b The yields were determined by g.l.c. and are based on the amount of Et₂SO₄ remaining in the reaction mixture.

J.C.S. CHEM. COMM., 1980

TABLE 2

Alkylating agent	Time /days	Yields /%a	% (6)b	% (7)b	% (8)b	% (9)b
MeI	2	40	16	33	17	33
Me_2SO_4	2	30	>98			
PhCH,Cl	2	53	1.5	40	3	56

^a Yields were determined by n.m.r. spectroscopy and are of alkylated products. Unchanged 2-naphthol may be recovered. ^b Relative yields of alkylated products.

is not typical of these solvents. Compound (9) has been obtained in small yield with PhCH₂Cl as alkylating agent, but was not observed when MeI was used. 6,7 Interestingly it has been obtained8 in small yield from the alumina catalysed reaction of 2-naphthol with methanol at high temperature.

(Received, 21st December 1979; Com. 1330.)

- ¹ A. McKillop and V. W. Young, Synthesis, 1979, 401, 481.

 ² G. Posner, Angew. Chem., Int. Ed. Engl., 1978, 17, 487.

 ³ (a) Y. Leroux and H. Normant, C.R. Hebd. Seances Acad. Sci., Ser. C., 1977, 285, 241; (b) S. Regen, A. Nigam, and J. J. Besse, Tetrahedron Lett., 1978, 2757; (c) M. Tomoi, M. Ikeda, and H. Kakiuchi, ibid., p. 3757.
 - 4 O. A. Reutov and A. C. Kurts, Russ. Chem. Rev., 1977, 46, 1040, and references therein.
- ⁵ (a) G. Bram and T. Fillebeen-Khan, J. Chem. Soc., Chem. Commun., 1979, 522; (b) G. Bram, T. Fillebeen-Khan, and N. Geraghty, Synth. Commun., in the press.

 6 N. Kornblum, R. Seltzer, and P. Haberfield, J. Am. Chem. Soc., 1963, 85, 1148.

 7 S. Akabori and H. Tuji, Bull. Chem. Soc. Jpn., 1978, 51, 1197.

 8 L. H. Klemm, C. E. Klopfenstein, and J. Shabtai, J. Org. Chem., 1970, 35, 1069.