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Abstract: The first oxazol-4-ylboronates were prepared from the
corresponding 4-bromo- and 4-trifluoromethanesulfonyloxy-ox-
azoles. The Suzuki coupling using the resulting boron reagents with
various aryl halides, including benzene, pyridine, oxazole and thia-
zole rings, in the presence of palladium catalyst proceeded to pro-
duce the oxazole-containing biaryl compounds in moderate to good
yields.
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Oxazoles are an important class of heterocyclic com-
pounds due to their occurrence in natural product chemis-
try, medicinal chemistry and materials science. A great
number of literatures for their preparations and reactions
have been reported and reviewed.1 Among them, oxazole-
containing biaryl structure is especially characteristic in
natural product chemistry, where recently unprecedented
natural products such as diazonamide A,2a the
hennoxazoles2b the mycalolides,2c the sulfomycins,2d

telomestatin,2e and YM-2163912f have been isolated and
reported to exhibit a wide variety of biological activities.
With increasing necessity for supplies of biaryl com-
pounds, the transition-metal-catalyzed reaction of metal-
lated heteroaromatic compounds with aromatic halides
has been recognized as a powerful strategy for the biaryl
synthesis.3 In terms of the synthesis of the oxazole-con-
taining biaryl compounds by palladium-catalyzed cross-
coupling reaction using the metallated oxazoles, Dondoni
et al. reported the synthesis of 2-stannyloxazoles and the
Stille reaction of these stannanes to lead to the formation
of 2-(hetero)aryloxazoles.4 Since then, other groups have
proved the efficiency of the stannyloxazoles to synthesize
the (hetero)aryloxazole derivatives.5 On the other hand,
Anderson et al. disclosed the Negishi coupling of oxazol-
2-ylzinc reagents with several aryl halides to produce the
2-substituted oxazoles and applied this methodology to
the synthesis of the oxazole-containing partial ergot alka-
loids.6 In addition, to attain the purpose of establishing the
oxazole-containing biaryl systems, the reaction of ox-
azolyl halides (triflates) with metallated arene derivatives
was also utilized as an alternative method.7 Although

Suzuki coupling8 is currently regarded as a powerful and
general transition-metal-catalyzed cross-coupling reac-
tion for the preparation of biaryl compounds including
heterocyclic rings9 due to their relatively low toxicity,
easily availability, air stability, and wide functional-group
tolerance, to our knowledge, there have been no reports
with respect to the Suzuki coupling reaction using ox-
azolylboron reagents to date. In the course of our synthetic
studies of the natural products containing oxazole rings,
we have demonstrated the first preparation and reaction of
oxazol-4-ylboronates for the biaryl synthesis in this paper
(Scheme 1).

Scheme 1 Suzuki coupling of oxazol-4-ylboronate, leading to the 
oxazole-containing biaryl compound.

We first studied the synthesis of oxazol-4-ylboronates
from the corresponding 4-trifluoromethanesulfonyloxy-
oxazole and 4-bromooxazole as shown in Scheme 2. Ac-
cording to the normal reaction condition,10 we have suc-
ceeded in the synthesis of 2-phenyloxazol-4-ylboronate 2
from the known 2-phenyl-4-trifluoromethanesulfonyl-
oxyoxazole (1).11 Borylation was achieved by treatment
of 1 with 2.5 mol% of Pd2(dba)3 and 15 mol% of PCy3 in
the presence of 1.1 equivalents of bis(pinacolato)diboron
(pinB-Bpin) and 1.5 equivalents of KOAc in refluxing di-
oxane to furnish the desired 2-phenyloxazol-4-ylboronate
2 in 75% yield after recrystallization.12 On the other hand,
lithiation of the known 4-bromo-5-methyl-2-phenyl-
oxazole (3)13 with n-BuLi, followed by borylation with
triisopropyl borate at –78 °C and transesterification with
pinacol afforded the expected 5-methyl-2-phenyloxazol-
4-ylboronate 4 in 55% yield after recrystallization.14

These boron reagents are stable under Ar at room temper-
ature and can be stored for a long time.

With the desired oxazol-4-ylboronates in hand, we turned
our attention to the Suzuki coupling reaction using these
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boron reagents. The reaction conditions were standard-
ized by optimization of the coupling reaction of 2-phenyl-
oxazolylboronate 2 with one equivalent of bromobenzene
in the presence of 5 mol% of Pd(PPh3)4 under various
reaction conditions as summarized in Table 1. In entries
1–6, we initially investigated the base (3 equiv) for the
coupling reaction in refluxing dioxane. Na2CO3 and Et3N
were not effective for the reaction, producing a low yield
of 2,4-diphenyloxazole (5, entries 1 and 2).13 t-BuOK was
strong enough to destroy the boronate to give a complex
mixture (entry 3). In the case of using KF, moderate yield
(41%) of 5 was afforded (entry 4). K2CO3 and K3PO4 were
found to be the most effective base to furnish a 71% yield
of 5 (entries 5 and 6). In testing four solvents (dioxane,
DMF, toluene, and MeCN), it was found that DMF was
the best solvent in this coupling reaction (entry 7), in
which 88% yield of 5 was obtained in a short reaction
time, while other solvents also worked well to produce 5
in 67–78% (entries 6, 8, 9).

Next, we explored the applicability of the Suzuki coupling
of oxazolylboron reagents (2 and 4) with other aromatic
halides, possessing benzene, pyridine, oxazole, and thi-
azole rings, to synthesize the oxazole-containing biaryl
compounds by applying our preliminary reaction condi-
tion [Ar-X (1 equiv), Pd(PPh3)4 (5 mol%), K2CO3 (3
equiv), DMF, 100 °C]15,16 as shown in Table 2. All reac-
tions went to completion within three hours to give rise to
the desired coupling products in moderate to high yields.
When the aryl bromide having electron-withdrawing
group was used (entry 1), the reaction proceeded smooth-
ly to give a good yield of the 2,4-diaryloxazole, however,
the presence of electron-donating or stereocongested sub-
stitutes markedly decreased the yield of the coupling
products due to the slow reaction, which resulted in the
formation of homocoupling product (entries 2 and 3).17

Heteroaromatic (pyridine, oxazole, and thiazole rings) ha-
lides were also coupled with 2 and 4 without any difficulty
(entries 5–7, 9, 10). This single-step reaction to elaborate
the heteroaromatic–oxazole linkage would be especially
useful for the synthesis of natural products possessing the
oxazole-containing biaryl structure. Comparing the
reactivity of 2 with that of 4, the 5-methyl group effected
an increase of the yield (entries 8–10). In addition, the
coupling reaction of 2 with the vinyl bromide derivative
also proceeded to give the corresponding vinyloxazole
(entry 4).

In conclusion, we have successfully synthesized oxazol-
4-ylboronates (2 and 4) from the corresponding 4-bromo
and 4-trifluoromethanesulfonyloxyoxazoles. The palladi-
um-catalyzed Suzuki cross-coupling reaction of these
boronates with several aryl halides, involving benzene,
pyridine, oxazole, and thiazole rings, gave rise to the 4-

Scheme 2 Preparation of oxazol-4-ylboronates (2 and 4).
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Table 1 Reaction of 2-Phenyloxazol-4-ylboronate 2 with Bromobenzene under Various Conditions

Entry Solvent Base Temperature Time (h) Yield (%)a

1 Dioxane Na2CO3 Reflux 24 16

2 Dioxane Et3N Reflux 16 8

3 Dioxane t-BuOK Reflux 16 Complex mixture

4 Dioxane KF Reflux 8 41

5 Dioxane K3PO4 Reflux 1 71

6 Dioxane K2CO3 Reflux 1.5 71

7 DMF K2CO3 100 °C 0.5 88

8 Toluene K2CO3 100 °C 1.0 78

9 MeCN K2CO3 Reflux 1.5 67

a Isolated yields after chromatography.
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aryl- and 4-heteroaryloxazole derivatives. Applying this
method to the synthesis of natural products is currently in
progress, and will be discussed in due course.
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