SYNTHESIS AND ANTIFUNGAL ACTIVITY OF 3-ARYL-6,7-DIHYDRO-5H-PYRROLO[1,2-a]IMIDAZOLES

A. M. Demchenko, V. G. Sinchenko,

UDC 615.282:547.759].012.1

N. G. Prodanchuk, V. A. Kovtunenko,

V. K. Patratii, A. K. Tyltin,

and F. S. Babichev

It is generally known that imidazole derivatives, such as Clotrimazole [2], Myconazole [3], and Ketoconazole [6], are effective antifungal preparations. We therefore undertook a search for compounds with antifungal activity among condensed heterocyclic compounds with an imidazole nucleus, particulary among the series of the 6,7-dihydro-5H-pyrrolo [1,2-a]-imidazoles.

It has been established earlier [4] that the $2-(R-amino-)-\Delta^1$ -pyrrolines are formed as a result of nucleophilic displacement by appropriate primary amines in $2-alkoxy-\Delta^1$ -pyrrolines. We have shown that when α -aminoacetophenone hydrochlorides are used as the primary amines in a condensation reaction with 2-methoxy- Δ^1 -pyrroline the resultant products are salts of N-(4,5-dihydro-3H-pyrrole-2-yl)- α -aminoacetophenones (IIIa-f).

The structure of the synthesized salts IIIa-f was confirmed by PMR and IR spectral data. Thus, the PMR spectra of the synthesized compounds exhibjt pyrrolidine ring proton signals in the form of two triplets and a multiplet (groups $4-CH_2$) as well as a diproton doublet of the methylene group in the residue of the corresponding phenacylamine.

Our study of the properties of the IIIa-f salts showed that when they are boiled in 0.1 N HCl they are cyclized to hydrochlorides of 3-aryl-6,7-dihydro-5H-pyrrolo[1,2-a]imidazole (IVa-f). When the latter are treated with aqueous solutions of alkali the corresponding bases (Va-f) are obtained at a high yield.

R = H(IIa - Va), $OCH_3(IIb - Vb)$, Cl(IIc - Vc), Br(IId - Vd), Ph(IIe - Ve), $NO_2(IIf - Vf)$

The structure of the IVa-f salts and the Va-f bases was confirmed by spectral analysis of the cyclization production and the IR and PMR spectra of the starting quaternary IIIa-f salts. The IR spectra of compounds IVa-f and Va-f were lacking in absorption bands in the regions 3290-3000, 1735-1695, and 1685-1665 cm⁻¹ which is characteristic for the starting salts IIIa-f and are related to $\nu_{\rm NH}$, $\nu_{\rm C=0}$, and $\nu_{\rm C=N}$ respectively. The PMR spectra of the cyclic products are lacking in methylene group NH-CH₂-CO signals in the region 5.05-4.20 ppm that were observed in the case of compounds IIIa-f, but those spectra did exhibit imidazole ring proton signals at 7.06-7.65 ppm.

T. G. Shevchenko Kiev University. Chernovtsy Medical Institute. Translated from Khimiko-farmatsevticheskii Zhurnal, Vol. 21, No. 11, pp. 1335-1338, November, 1987. Original article submitted August 29, 1986.

TABLE 1. Properties of Compounds IIIa-f, IVa-f, and Va-f

Com- pound	Yield, %	°C mp,	Found, %		Empirical famula	Calculated, 9	
			CI	N	Empirical formula	Cl	N
IIIa IIIb IIIc IIId IIIe IIVa IVVa IVVC IVVC IVVC VVC VVC VVC VVC VVC VVC	78 69 83 72 65 62 83 80 75 79 57 68 91 85 88	192—193 196—197 194—195 204—206 224—226 195—197 216—218 218—220 222—224 222—223 236—238 113—115 145—146 144—146 156—157 202—203 190—191	15,0 13,5 26,0 — 11,5 12,2 16,0 13,9 27,8 — 11,7 13,2 — 16,5 —	11,4 10,2 10,4 8,76 8,75 15,1 12,4 11,0 10,8 9,29 9,11 15,5 13,4 12,6 10,5 11,0	C ₁₂ H ₁₅ ClN ₂ O C ₁₃ H ₁₇ ClN ₂ O ₂ C ₁₄ H ₁₄ Cl ₂ N ₂ O C ₁₂ H ₁₄ BrClN ₂ O C ₁₂ H ₁₄ BrClN ₂ O C ₁₂ H ₁₄ ClN ₂ O C ₁₂ H ₁₄ ClN ₂ O C ₁₂ H ₁₃ ClN ₂ C ₁₂ H ₁₃ ClN ₂ C ₁₂ H ₁₂ Cl ₂ N ₂ C ₁₂ H ₁₂ ClN ₂ C ₁₂ H ₁₂ ClN ₂ C ₁₄ H ₁₇ ClN ₂ C ₁₄ H ₁₇ ClN ₃ O ₂ C ₁₂ H ₁₂ ClN ₃ O ₂ C ₁₄ H ₁₄ N ₂ O C ₁₄ H ₁₄ N ₂ O C ₁₂ H ₁₁ ClN ₂ C ₁₄ H ₁₆ N ₂ C C ₁₄ H ₁₁ ClN ₂ C C ₁₄ H ₁₁ ClN ₂ C C ₁₄ H ₁₁ ClN ₂ C C ₁₅ H ₁₁ ClN ₂ C C ₁₆ H ₁₁ ClN ₂ C C ₁₇ H ₁₁ ClN ₂ C C ₁₈ H ₁₄ N ₂ O C ₁₇ C ₁₈ H ₁₆ N ₂ C C ₁₈ H ₁₆ N ₂ C C ₁₈ H ₁₁ N ₃ O ₂	14,9 13,2 26,0 — 11,3 12,5 16,1 14,2 27,8 — 11,9 13,3 — 16,2 — — —	11,7 10,4 10,3 8,82 8,90 14,8 12,7 11,2 11,0 9,35 9,44 15,2 13,1 12,8 10,7 10,8

Note. Compounds IIIa-d, IVa, and IVb were recrystallized from 2-propanol; compounds IIIe, f, IVc, d from ethanol; VIe, f from methanol; Vb-d from heptane; Ve, f from benzene. Va was purified by vacuum sublimation.

TABLE 2. Antifungal Activity of IIIa-f, IVa-f

Compound	M. canis		T. mentagrophytes var. gyps.		T. rubrum		C. albicans	
	111	IA	III	IV	111	ΙV	111	IV
a b c d e f	500 500 500 500 62,5 62,5	500 250 500 500 500 500	500 500 500 500 62,5 62,5	500 250 500 125 125 500	500 500 500 500 250 500	500 250 500 250 500 500	500 500 500 500 500 500	250 250 125 62,5 500 500

Note. Listed values are minimal inhibiting concentrations (in $\mu g/ml$).

EXPERIMENTAL (CHEMICAL)

IR spectra of the synthesized compounds were recorded on a Specord IR-71 instrument (GDR) in KBr pellets. PMR spectra were recorded on a tKR-60 (60 MHz) instrument. The solvents were CF_3COOH and $CDCl_3$. Chemical shifts are given in a δ scale with reference to TMS.

The starting reagent 2-methoxy- Δ^1 -pyrroline I was obtained by method [4], and the hydrochlorides of α -aminoacetophenones IIa-f were prepared by the standard methods [1-5].

N-(4,5-Dihydro-3H-pyrrole-2-yl) α -amino(p-R-acetone) Hydrochlorides (IIIa-f). A mixture composed of 9.9 g (0.1 mole) of I and 0.1 mole of the corresponding hydrochloride of α -amino-acetophenone IIa-f in 150 ml of absolute ethanol was stirred for 24 h at 20°C. The precipitate was then filtered off, washed with ether, and recrystallized from the polar solvent. Data on compounds IIIa-f are given in Table 1.

3-Aryl-6,7-Dihydro-5H-pyrrolo[1,2-a]imidazole Hydrochlorides (IVa-f). A solution of 0.05 mole of the appropriate salt of IIIa-f in 50 ml of 0.1 N HCl was boiled for 5 h. The reaction mixture was then cooled to 0°C and the precipitate was filtered off, washed with water, and dried. Data on compounds IVa-f are given in Table 1.

3-Aryl-6,7-Dihydro-5H-pyrrolo[1,2-a]imidazoles (Va-f). A 20 ml portion of a 10% NaOH solution was added to a solution of 0.01 mole of the appropriate IVa-f compound in 100 ml of water. The resultant precipitate was filtered off, washed with water, and dried. Data on compounds Va-f are given in Table 1.

EXPERIMENTAL (PHARMACOLOGICAL)

Antifungal activity against pathogenic fungi (M. canis, T. mentagrophytes var. gypseum T. rubrum, and C. alibicans) was tested by the double series dilution method in a liquid Sabouraud medium (pH 6.8) at an incoculum denisty of $1\cdot10^6$ fungal bodies per 1 ml.

The pharmacological tests showed that compounds IIIa-f and IVa-f exhibit moderate antifungal activity. A comparison of the antifungal activity of compounds IIIa-d to that of their IVa-d cyclization products allows us to conclude that the cyclization of N-(4,5-dihydro-3H-pyrrole-2-yl)- α -amino (p-R-acetophenones) to derivatives of 3-aryl-6,7-dihydro-5H-pyrrolo-[1,2-a]imidazole results in greater antifungal activity. An opposite relationship was observed for compounds IIIe-f in which case their activity against the pathogenic fungi M. canis and T. mentagrophytes var. gypseum was almost ten times that of compounds IVe-f (Table 2).

Thus, the fact that the synthesized compounds exhibit antifungal activity holds promise for the further study of both the 3-aryl-6,7-dihydro-5H-pyrrolo[1,2-a]-imidazole derivatives and the salts of N-(4,5-dihydro-3H-pyrrole-2-yl)- α -amino(p-R-aceto-phenones) as potential antifungal agents.

LITERATURE CITED

- 1. H. E. Baumgarten and J. M. Petersen, J. Am. Chem. Soc., 82, No. 2, 459-463 (1960).
- 2. K. H. Buchel, W. Draber, E. Reger, and M. Plempel, Arzneim.-Forsch., 22, No. 8, 1260-1272 (1972).
- 3. A. L. Costa, A. Valenti, L. E. Loteta, and S. Midili, Mykosen, 20, No. 11, 431-440 (1977).
- 4. A. Etienne and Y. Correia, Bull. Soc. Chim. France, No. 10, 3704-3712 (1969).
- 5. C. Mannich and F. L. Hahn, Berichte, 1542-1552 (1911).
- 6. J. Van Vutsen, Am. J. Med., 74, No. 1B, 9-15 (1983).