5-{[Aryl or Aryloxy (or thio)]methyl}-3-(1*H*-imidazol-1-ylmethyl)-3-(2-thienyl)-2-methylisoxazolidine Derivatives as Novel Antifungal Agents

GEORGE B. MULLEN*, JEFFREY T. MITCHELL[‡], STANLEY D. ALLEN[‡], AND VASSIL ST. GEORGIEV* [×]

Received December 30, 1987, from the *Department of Organic Chemistry, Pennwalt Corporation, Pharmaceutical Division, Rochester, NY 14623, and the *Laboratory Animal Research Center, Utah State University, Logan, UT 84322. Accepted for publication August 3, 1988.

Abstract \Box The in vitro antifungal activity of a novel series of *cis*- and *trans*-5-{[aryl or aryloxy (or thio)]methyl}-3-(1*H*-imidazol-1-ylmethyl)-3-(2-thienyl)-2-methylisoxazolidines (13–24) was evaluated and compared with ketoconazole. The title series of compounds was prepared via a 1,3-dipolar cycloaddition reaction of 1-(2-thienyl)-2-(1*H*-imidazol-1-yl)-*N*-methylethanimine *N*-oxides with appropriate styrenes, allyl phenyl ethers, or allyl phenyl thioether precursors. The resulting products were mixtures of the corresponding *cis*- and *trans*-diastereomers which were readily separated by flash chromatography on neutral silica gel. The majority of compounds 13–24, when tested in solid agar cultures, exhibited moderate to potent activity against *Trichophyton rubrum*, *Aspergillus fumigatus*, and *Candida albicans* at concentrations ranging between ≤ 2.0 and 70.0 μ g/mL.

Clotrimazole (1),¹ along with miconazole $(2)^{2.3}$ and econazole (3),^{2.4} were the first azole derivatives to be successfully introduced for clinical use as antifungals. Since then, a number of other azole compounds were developed and mar keted as antimycotic agents. One of them, ketoconazole (4),⁵⁻¹² became the first orally active antifungal drug having activity against a broad spectrum of various superficial and systemic mycoses.⁵ Recently, two new azoles, itraconazole $(5)^{13-16}$ and fluconazole (6),¹⁷⁻²⁰ were reported to have little of the major side effects of ketoconazole (mainly hepatotoxicity) and to display a better pharmacokinetic profile.²¹ However, like 4, 5 and 6 are fungistatic rather than fungicidal in their mechanism of action.

Recently,^{22,23} we reported the synthesis and antifungal activity of a series of 3,5-substituted isoxazolidine derivatives (7) that were found to possess potent antifungal activity against a wide variety of dermatophytes and yeast and systemic mycoses. We explored the effects of substitution in both phenyl rings and the alkyl moiety of the C-5 substituent

on the in vitro antifungal activity of 7. In the present communication, we report the extension of these studies, namely, the synthesis and antifungal activity of a novel series of 5-{[aryl or aryloxy (or thio)]methyl}-3-(1H-imidazol-1-ylmethyl)-3-(2-thienyl)-2-methylisoxazolidines, 13-24.

Results and Discussion

As seen from Scheme I, the title thienvl compounds were prepared by an initial bromination of 2-acetylthiophene (8) to form the corresponding bromo derivative 9. Reaction of 9 with imidazole provided 1-(2-thienyl)-2-(1H-imidazol-1yl)ethanone (10), which in turn, was treated with N-methylhydroxylamine hydrochloride to yield the 1-(2-thienyl)-2-(1H-imidazol-1-yl)-N-methylethanimine N-oxide (11). Next, the α -substituted ketonitrone 11 underwent a 1,3-dipolar cycloaddition reaction 24,25 with an appropriate styrene 12 (or allyl phenyl ether or allyl phenyl thioether), leaving the desired 3,5-substituted isoxazolidine compound as a cis/trans-diastereomeric mixture (13, 14).26 The latter was conveniently separated by flash chromatography on neutral silica gel. The 1,3-dipolar cycloaddition of (E)-nitrones 11 with 12 proceeded in a regiospecific manner, affording exclusively the 5-substituted isoxazolidines 13 and 14. The corresponding 4-substituted isoxazolidine derivatives (see Structure iv in Scheme II) are excluded on the basis of electronic factors.

The configuration of the asymmetric centers of *cis-/trans*isoxazolidines 13 and 14 was determined by ¹H NMR spectroscopy using the difference (Δ) between the coupling constants (*J*) of H_{4A}, H_{4B}, and H₅ protons (Table I). The corresponding Δ values for *cis*-13-19 (e.g., 14) and *trans*-20-24 (e.g., 20) were 5.5 and 0 Hz, respectively. Similar correlations

1050 / Journal of Pharmaceutical Sciences Vol. 77, No. 12, December 1988

for Δ values had been observed previously²³ for the structurally related *cis*- and *trans*-3-aryl-5-[(aryloxy)methyl]-3-[(1*H*imidazol-1-yl)methyl]-2-methylisoxazolidines 25 and 26, respectively. As seen from Table I, the Δ value for *cis*-25 is 4.1 Hz and significantly higher than the 1.4 Hz observed for *trans*-26. An X-ray crystal structure determination²⁷ of *cis*-25 unambiguously confirmed its structure. The configuration of all remaining *cis*- and *trans*-isoxazolidines was determined using the same correlations of J values (see *Experimental* Section for details). All compounds that were prepared during the present study are listed in Table II.

The antifungal activity of the thienyl derivatives 13-24 was assayed in vitro in solid agar tests performed in 24-well tissue culture plates. The activity was measured by the minimum inhibitory concentration (MIC) values which are interpreted as the lowest dilution at which no visible growth of fungus is observed. The results from the in vitro screening of 13-24 are summarized in Table III. When tested against Trichophyton rubrum, Aspergillus fumigatus, and Candida albicans, all compounds exerted moderate to potent in vitro activity. In general, the antifungal potency against the dermatophyte T. rubrum was greater than that against A. fumigatus and C. albicans. Of the three cis-analogues 13-15, the 5-(4-chlorophenyl) compound 14 was the most active one, having MIC values of $<0.2-20.0 \ \mu g/mL$; 14 was equipotent with ketoconazole against A. fumigatus and C. albicans, but more potent against T. rubrum. It is of interest to note that when compared with its trans-isomer 20, the latter compound was significantly less active against T. rubrum and A.

Scheme II

fumigatus (2.0 versus <0.2 and >70.0 versus 7.0 μ g/mL, respectively), but considerably more effective against *C. albicans* (7.0 versus 20.0 μ g/mL). In the two pairs of *cis*/*trans*-5-(4-chlorophenoxy) diastereomers 16/21 and 17/22, the configuration of the two asymmetric centers seems of less importance for activity against the yeast *C. albicans*; however, the ratio of activity against the dermatophyte *T. rubrum* remained similar to that of the 5-(4-chlorophenyl) analogues 14 and 20. In general, compounds having a 4-chloro substituent (14, 17, 20, 22) showed improved in vitro antifungal activity when compared with the corresponding unsubstituted phenyl analogues (13, 16, 21). The two 5-phenylthiomethyl derivatives 18 and 19 had activity comparable to that of the 5-phenoxymethyl compounds 16 and 17.

The in vitro antifungal activity of the 3-(2-thienyl) compounds 13-24 was also compared with that of the corresponding 3-(2-furanyl) analogues $27-29^{28}$ (Table III). Three pairs of derivatives (14, 15, and 20 versus 27-29, respectively) were examined. While 14 and 27 displayed about the same activity, the thienyl analogue 15 was found to be inferior to its furanyl counterpart 28. The *trans*-20 compound was less potent than *trans*-29 against *T. rubrum* and *A. fumigatus*, but more effective against *C. albicans*. Overall, the presence of a 3-(2-thienyl) ring in the molecule of the 3,5-substituted isoxazolidines led to a decreased in vitro potency against *A. fumigatus*.

Based on the results of in vitro screening, the title series of 5-{[ary] or aryloxy (or thio)]methyl}-3-(1*H*-imidazol-1-y]-methyl)-3-(2-thienyl)-2-methylisoxazolidines 13-24 represent a novel class of antifungal agents.²⁹

Experimental Section

Melting points were determined on a Thomas-Hoover capillary melting point apparatus and are uncorrected. The infrared (IR) spectra of the compounds as KBr discs were obtained on a Nicolet MX-1 FT spectrometer. The proton nuclear magnetic resonance (¹H NMR) spectra were obtained on a Varian EM-360A (60 MHz) spectrometer using tetramethylsilane as an internal standard. The 200 MHz ¹H NMR spectra were obtained on a Bruker-IBM-200-SY Fourier-transform instrument using the same internal standard. All spectra were consistent with the assigned structures.

2-(1H-Imidazol-1-yl)-1-(2-thienyl)ethanone (10)—Bromine (19.0 mL, 0.371 mol) was added in a dropwise manner to an ice-cold solution of 40.75 g (0.323 mol) of 2-acetylthiophene in 200 mL of ether under a nitrogen atmosphere. After stirring for 90 min, the

Table I—¹H NMR Coupling Constants (J) for *cis*- and *trans*-Diastereomeric Isoxazolidines^e

cis-25

trans-26

Compound	$J(H_5-H_{4A})$	J(H ₅ H _{4B})	$\Delta[J(H_5-H_{4B}) - J(H_5-H_{4A})]$
cis-25	5.4	9.5	4.1
trans-26	7.7	9.1	1.4
cis-14	4.4	9.9	5.5
trans-20	9.4	9.4	0

^aExpressed in Hz.

Table II-5-{[(Aryl or Aryloxy (or thio)]methyl]}-3-(1H-imidazol-1-ylmethyl]-3-(2-thienyl)-2-methyllsoxazolidines

Compound	R	mp, °C	Recrystallization Solvent	Formula
13	C ₆ H ₅	89-92	Ethanol	C18H19N3OS
14	C ₆ H ₄ Cl-4	125-127	Ethyl acetate	C18H18CIN3OS
15	C ₆ H ₄ NO ₂ -3	154.5-156	Ethanol	C18H18NAO3S
16	CH ₂ OC ₆ H ₅	107109	Ethyl acetate	C ₁₀ H ₂₁ N ₃ O ₂ S
17	CH ₂ OC ₆ H ₄ CI-4	118-120	Ethyl acetate	C10H20CIN3O2S
18·HCI	CH ₂ SC ₆ H₄CH ₃ -4	205-210	Ethanol	C ₂₀ H ₂₄ CIN ₃ OS ₂
19	CH ₂ SC ₆ H ₄ CI-4	101–104	Ethyl acetate	C ₁₉ H ₂₀ CIN ₃ OS ₂
20	C ₆ H ₄ Cl-4	149-152	Ethyl acetate	C18H18CIN3OS
21		144–146	Ethyl acetate	C10H21N2O2S
22	CH ₂ OC ₆ H ₄ Cl-4	95-99	Ethyl acetate	C10H20CIN2O2S
23·HCI	CH ₂ SC ₆ H ₄ CH ₃ -4	149–161	Ethanol:Ether (1:1)	C ₂₀ H ₂₄ CIN ₃ OS ₂
24·HCI	CH ₂ SC ₆ H₄Cl-4	168–173	2-Propanol	$C_{19}H_{21}Cl_2N_3OS_2$

Table III—In Vitro Antifungal Activity of 5-{[(Aryl or Aryloxy (or thio)]methyl]}-3-(1H-imidazol-1-ylmethyl)-3-(2-thienyl or 2-furanyl)-2methylisoxazolidines*

28: $R = 3-NO_2$ (*cis*-)

trans-29

Compound	Trichophyton rubrum ATCC 18762	Aspergillus fumigatus ATCC 28212	Candida albicans ATCC 10259
13	7.0	>70.0	70.0
14	<0.2	7.0	20.0
15	<2.0	>70.0	>70.0
16	<2.0	70.0	20.0
17	<2.0	20.0	7.0
18	<0.2	20.0	20.0
19	<2.0	7.0	7.0
20	2.0	>70.0	7.0
21	20.0	>20.0	>20.0
22	7.0	>20.0	7.0
23	<2.0	20.0	7.0
27	0.7	2.0	20.0
28	2.0	20.0	>20.0
29	0.7	70.0	20.0
Ketoconazole	0.7	7.0	20.0

^aMeasured as the MIC in $\mu q/mL$.

reaction was quenched with 100 mL of saturated aqueous ammonium chloride. The two layers were separated and the organic extract was washed with 100 mL of water, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to give a vellow oil. The oil was dissolved in 100 mL of ether and added over a period of 60 min to an ice-cold solution of 89.75 g (1.32 mol) of imidazole in 150 mL of methanol under a nitrogen atmosphere. The reaction mixture was stirred at ambient temperature for 22 h, then diluted with 1 L of water and extracted with chloroform $(4 \times 300 \text{ mL})$. The combined organic extract was dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and flash-chromatographed on neutral silica gel, using a 99:1 mixture of chloroform and methanol as eluant, to give 36.10 g (58%) of ketone 10, mp 87-89 °C (ethyl acetate); IR (KBr): 3107 (m), 1673 (s), 1505 (m), 1410 (s), 1237 (s), 1230 (s), 1081 (m), 1055 (m), 752 (s), and 732 (m) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): 5.31 (s, 2H, NCH₂), 6.96 (s, 1H), 7.11 (s, 1H), 7.20 (t, 1H, J = 4.4 Hz), 7.51 (s, 1H), and 7.76 ppm (d, 2H, J = 4.4 Hz).

Anal.-Calc. for C₉H₈N₂OS: C, 56.23; H, 4.19; N, 14.57; S, 16.68. Found: C, 56.03; H, 4.28; N, 14.48; S, 16.39.

2-(1H-Imidazol-1-yl)-N-methyl-1-(2-thienyl)ethanimine N-Oxide (11)—Under a nitrogen atmosphere, a mixture of 22.0 g (0.114 mol) of 2-(1H-imidazol-1-yl)-1-(2-thienyl)ethanone, 11.49 g (0.138 mol) of N-methylhydroxylamine hydrochloride, and 22.55 g (0.275 mol) of sodium acetate in 250 mL of ethanol was heated to 50 °C and stirred at that temperature for 4 d. The reaction mixture was filtered while hot and the filtrate was concentrated under reduced pressure. Crystallization from ethanol provided 22.62 g (89%) of nitrone 11, mp 162-164 °C; IR (KBr): 3109 (m), 3100 (m), 3083 (m), 1507 (m), 1365 (s), 1226 (s), 1180 (s), 1090 (s), 826 (m), 712 (s), and 668 (m) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): 3.98 (s, 3H, NCH₃), 5.39 (s, 2H, NCH_2), 6.91 (s, 1H), 7.10 (s, 1H), 7.19 (t, 1H, J = 4.4 Hz), and 7.52– 7.56 ppm (m, 3H).

Anal.-Calc. for C10H11N3OS: C, 54.28; H, 5.01; N, 18.99. Found: C, 54.16; H, 5.06; N, 18.86.

3-(1H-Imidazol-1-ylmethyl)-2-methyl-5-phenyl-3-(2-thienyl)isoxazolidine (13)-A suspension of 4.04 g (0.018 mol) of 2-(1H-imidazol-1-yl)-N-methyl-1-(2-thienyl)ethanimine N-oxide and 3.1 mL (1.5 equiv) of styrene in 100 mL of toluene was refluxed for 72 h under a nitrogen atmosphere. The reaction mixture was cooled to ambient temperature and filtered; from the undissolved solid, 0.73 (18%) of nitrone 11 was recovered. The filtrate was concentrated and then flash chromatographed on neutral silica gel using a 98:2 mixture of chloroform and methanol as eluant, to furnish 2.68 g (45%) of cis-13, mp 89-92 °C (ethyl acetate); IR (KBr): 3100 (m), 2998 (m), 2970 (m), 2893 (m), 1503 (s), 1449 (s), 1347 (m), 1230 (s), 1079 (s), 1036 (m), 1002 (m), 930 (m), 841 (m), 820 (m), 746 (s), 741 (s), 720 (s), 704 (s), and 664 (s) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): 2.42 (dd, 1H, J = 5.0, 13.2 Hz, OHCHCH), 2.64 (s, 3H, NCH₃), 3.18 (dd, 1H, J = 9.4, 13.2 Hz, OHCHCH), 4.26 (d, 1H, J = 14.3 Hz, NHCH), 4.39 (d, 1H, J =14.3 Hz, NHCH), 5.64 (dd, 1H, J = 5.0, 9.4 Hz, OCH), 6.19 (s, 1H), 6.70 (s, 1H), 6.80 (s, 1H), 6.83-6.85 (m, 1H), 6.98-7.03 (m, 1H), and 7.29-7.44 ppm (m, 6H).

Anal.—Calc. for C₁₈H₁₉N₃OS: C, 66.44; H, 5.88; N, 12.91. Found: C, 66.34; H, 5.91; N, 12.92.

Compounds 14-24—The remaining 3-(2-thienyl)isoxazolidines 14-24 were prepared by methods similar to that described for the synthesis of *cis*-13, and the yield, mp ($^{\circ}$ C), solvent of recrystallization, IR, ¹H NMR, and analysis data are given below.

5-(4-Chlorophenyl)-3-(1H-imidazol-1-ylmethyl)-2-methyl-3-(2-thienyl)isoxazolidine—cis-Diastereomer 14—42%; mp 125– 127 °C (ethyl acetate); IR (KBr): 3077 (m), 2971 (m), 1507 (s), 1491 (s), 1447 (m), 1235 (s), 1092 (m), 1077 (s), 1035 (m), 1009 (m), 928 (m), 836 (m), 825 (s), 744 (m), and 717 (m) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): 2.39 (dd, 1H, J = 4.4, 13.2 Hz, OHCHCH), 2.61 (s, 3H, NCH₃), 3.17 (dd, 1H, J = 9.9, 13.2 Hz, OHCHCH), 4.22 (d, 1H, J =14.9 Hz, NHCH), 4.39 (d, 1H, J = 14.9 Hz, NHCH), 5.56 (dd, 1H, J =4.4, 9.9 Hz, OCH), 6.27 (s, 1H), 6.79–6.85 (m, 3H), 7.00–7.05 (m, 1H), and 7.31–7.41 ppm (m, 5H).

Anal.—Calc. for C₁₈H₁₈ClN₃OS: C, 60.08; H, 5.04; Cl, 9.85; N, 11.68. Found: C, 60.12; H, 5.05; Cl, 10.10; N, 11.70.

trans-Diastereomer 20–13%; mp 149–152 °C (ethyl acetate); IR (KBr): 3120 (m), 3064 (m), 2977 (m), 2952 (m), 2910 (m), 2880 (m), 1511 (s), 1505 (m), 1230 (s), 1093 (s), 1074 (m), 1069 (m), 1010 (m), 990 (m), 830 (m), 745 (s), and 735 (s) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): 2.50 (s, 3H, NCH₃), 2.67 (dd, 1H, J = 9.4, 13.2 Hz, OHCHCH), 2.84 (dd, 1H, J = 9.4, 13.2 Hz, OHCHCH), 2.84 (dd, 1H, J = 9.4, 13.2 Hz, OHCHCH), 4.45 (s, 2H, NCH₂), 5.09 (t, 1H, J = 9.4 Hz, OCH), 6.77 (s, 1H), 6.83 (d, 1H, J = 4.4 Hz), 6.98–7.02 (m, 2H), and 7.24–7.37 ppm (m, 6H).

Anal.—Calc. for C₁₈H₁₈ClN₃OS: C, 60.08; H, 5.04; Cl, 9.85; N, 11.68. Found: C, 60.17; H, 5.16; Cl, 10.13; N, 11.69.

3-(1H-Imidazol-1-ylmethyl)-2-methyl-5-(3-nitrophenyl)-3-(2thienyl)isoxazolidine (15)—29%; mp 154.5–156 °C (ethanol); IR (KBr): 3112 (w), 3092 (m), 3073 (w), 2978 (w), 2893 (m), 1533 (s), 1505 (m), 1460 (m), 1356 (s), 1347 (s), 1234 (m), 1078 (m), 1040 (m), 895 (m), 822 (m), 732 (m), and 717 (m) cm⁻¹; ¹H NMR (200 MHz, DMSO-d₆): 2.43 (dd, 1H, J = 6.5, 13.1 Hz, OHCHCH), 2.54 (s, 3H, NCH₃), 3.22 (dd, 1H, J = 8.6, 13.1 Hz, OHCHCH), 4.54 (d, 1H, J =15.1 Hz, NHCH), 4.55 (d, 1H, J = 15.1 Hz, NHCH), 5.42 (dd, 1H, J =6.5, 8.6 Hz, OCH), 6.76 (s, 1H), 7.08–7.13 (m, 2H), 7.42 (s, 1H), 7.57– 7.76 (m, 3H), and 8.10–8.17 ppm (m, 2H).

Anal.—Calc. for $C_{18}H_{18}N_4O_3S$: C, 58.36; H, 4.90; N, 15.12. Found: C, 57.50; H, 4.87; N, 14.92.

3.(1H-Imidazol-1-ylmethyl)-2-methyl-5-(phenoxymethyl)-3.(2-thienyl)isoxazolidine—cis-Diastereomer 16—35%; mp 107– 109 °C (ethyl acetate); IR (KBr): 3198 (m), 2970 (m), 2931 (m), 2878 (m), 1593 (m), 1582 (m), 1501 (m), 1491 (s), 1453 (m), 1290 (m), 1247 (s), 1235 (s), 1078 (s), 1044 (m), 1016 (m), 818 (m), 766 (s), 754 (m), and 729 (s) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): 2.53 (s, 3H, NCH₃), 2.54 (dd, 1H, J = 5.5, 13.2 Hz, OHCHCH), 2.86 (dd, 1H, J = 8.8, 13.2 Hz, OHCHCH), 4.10 (dd, 1H, J = 3.9, 11.0 Hz, OHCH), 4.19 (dd, 1H, J = 5.0, 11.0 Hz, OHCH), 4.45 (d, 1H, J = 14.3 Hz, NHCH), 4.48 (d, 1H, J = 14.3 Hz, NHCH), 4.77–4.88 (m, 1H, OCH), 6.70 (s, 1H), 6.77– 6.80 (m, 1H), 6.91–7.03 (m, 5H), and 7.26–7.35 ppm (m, 4H).

Anal.—Calc. for $C_{19}H_{21}N_3O_2S$: C, 64.20; H, 5.95; N, 11.82. Found: C, 64.30; H, 6.09; N, 11.84.

trans-Diastereomer 21—11%; mp 144–146 °C (ethyl acetate); IR (KBr): 3115 (m), 2942 (m), 1598 (m), 1589 (m), 1491 (s), 1442 (m), 1292 (m), 1281 (m), 1250 (s), 1236 (s), 1071 (m), 1034 (s), 1018 (m), 841 (m), 768 (m), 759 (s), and 738 (s) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): 2.49 (dd, 1H, J = 7.2, 13.2 Hz, OHCHCH), 2.54 (s, 3H,

NCH₃), 2.73 (dd, 1H, J = 8.8, 13.2 Hz, OHCHCH), 4.05–4.20 (m, 2H, OCH₂), 4.35 (d, 1H, J = 14.3 Hz, NHCH), 4.41 (d, 1H, J = 14.3 Hz, NHCH), 4.46–4.59 (m, 1H, OCH), 6.68 (s, 1H), 6.89–7.03 (m, 6H), and 7.25–7.38 ppm (m, 4H).

Anal.—Cale. for $C_{19}H_{21}N_3O_2S$: C, 64.20; H, 5.95; N, 11.82. Found: C, 64.31; H, 6.18; N, 11.79.

5.(4.Chlorophenoxymethyl)-3-(1H-imidazol-1-ylmethyl)-2-methyl-3-(2-thienyl)isoxazolidine—cis-Diastereomer 17—35%; mp 118– 120 °C (ethyl acetate); IR (KBr): 2977 (w), 2920 (m), 1595 (m), 1508 (m), 1492 (s), 1443 (m), 1281 (m), 1234 (s), 1073 (m), 992 (m), 820 (s), 721 (m), and 699 (m) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): 2.47 (dd, 1H, J = 5.5, 13.2 Hz, J = OHCHCH), 2.51 (s, 3H, NCH₃), 2.81 (dd, 1H, J =9.4, 13.2 Hz, OHCHCH), 4.02 (dd, 1H, J = 3.9, 11.0 Hz, OHCH), 4.12 (dd, 1H, J = 5.0, 11.0 Hz, OHCH), 4.43 (s, 2H, NCH₂), 4.73–4.85 (m, 1H, OCH), 6.68 (s, 1H), 6.78–7.02 (m, 5H), and 7.22–7.35 ppm (m, 4H).

Anal.—Calc. for $C_{19}H_{20}ClN_3O_2S$: C, 58.53; H, 5.17; N, 10.78; S, 8.22. Found: C, 58.69; H, 5.23; N, 10.76; S, 8.50.

trans-Diastereomer 22—11%; mp 95–99 °C (ethyl acetate); IR (KBr): 2947 (w), 2910 (m), 2877 (w), 1506 (m), 1486 (s), 1452 (m), 1301 (m), 1230 (s), 1221 (s), 1092 (m), 1041 (m), 1020 (m), 826 (m), and 737 (m) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): 2.48 (dd, 1H, J = 7.7, 13.2 Hz, OHCHCH), 2.52 (s, 3H, NCH₃), 2.69 (dd, 1H, J = 8.8, 13.2 Hz, OHCHCH), 4.01–4.16 (m, 2H, OCH₂), 4.35 (d, 1H, J = 13.8 Hz, NHCH), 4.41 (d, 1H, J = 13.8 Hz, NHCH), 4.42–4.56 (m, 1H, OCH), 6.68 (s, 1H), 6.80–7.03 (m, 5H), and 7.21–7.38 ppm (m, 4H).

Anal.—Calc. for C₁₉H₂₀ClN₃O₂S: C, 58.53; H, 5.17; Cl, 9.09; N, 10.78; S, 8.22. Found: C, 58.50; H, 5.23; Cl, 9.29; N, 10.68; S, 8.18.

3-(1H-Imidazol-1-ylmethyl)-2-methyl-5-((4-methylphenyl) thiomethyl)-3-(2-thienyl)isoxazolidine—cis-Diastereomer 18—43%; mp 205–210 °C (decomp) (ethanol) as its monohydrochloride salt; IR (KBr): 3049 (s), 3025 (s), 2988 (s), 2953 (s), 2942 (s), 2919 (s), 2904 (s), 2881 (s), 2791 (s), 2787 (s), 1568 (m), 1430 (m), 1285 (m), 1089 (m), 992 (m), 858 (m), and 721 (m) cm⁻¹; ¹H NMR (200 MHz, CDCl₃-TFA): 2.35 (s, 3H, ArCH₃), 2.93 (s, 3H, NCH₃), 2.87–2.98 (m, 1H), 3.09 (dd, 1H, J = 8.3, 14.3 Hz, OHCHCH(*H*), 3.34–3.52 (m, 2H, SCH₂), 4.97–5.12 (m, 1H, OCH), 5.19 (d, 1H, J = 14.3 Hz, NHCH), 5.33 (d, 1H, J = 14.3 Hz, NHCH), 7.07–7.13 (m, 2H), 7.22–7.28 (m, 4H), 7.38–7.44 (m, 2H), 7.60–7.63 (m, 1H), and 8.61 ppm (s, 1H).

Anal.—Calc. for $C_{20}H_{24}ClN_3OS_2$: C, 56.92; H, 5.73; Cl, 8.40; N, 9.96; S, 15.20. Found: C, 56.88; H, 5.92; Cl, 8.66; N, 9.97; S, 15.30.

trans-Diastereomer 23—8.5%; mp 149–161 °C (ethanol:ether, 1:1) as its monohydrochloride salt; ¹H NMR (200 MHz, CDCl₃): 2.34 (s, 3H, ArCH₃), 2.53 (s, 3H, NCH₃), 2.63–2.82 (m, 2H, SCH₂), 3.02 (dd, 1H, J = 8.3, 13.2 Hz, OHCHCH), 3.39 (dd, 1H, J = 5.5, 13.2 Hz, OHCHCH), 4.21–4.35 (m, 1H, OCH), 4.38 (d, 1H, J = 13.8 Hz, NHCH), 4.56 (d, 1H, J = 13.8 Hz, NHCH), 6.65 (d, 1H, J = 3.3 Hz), 6.94–7.06 (m, 3H), 7.16–7.32 (m, 5H), 8.77 (s, 1H), and 15.1 ppm (HCl salt).

Anal.—Calc. for C₂₀H₂₄ClN₃OS₂: C, 56.92; H, 5.73; N, 9.96. Found: C, 56.78; H, 5.82; N, 9.92.

5-[(4-Chlorophenyl)thiomethyl]-3-(1H-imidazol-1-ylmethyl)-2-methyl-3-(2-thienyl)isoxazolidine—cis-Diastereomer 19—32%; mp 101-104 °C (ethyl acetate); IR (KBr): 3091 (m), 2993 (m), 2968 (m), 2929 (m), 1505 (s), 1478 (s), 1454 (s), 1249 (s), 1236 (s), 1091 (s), 1078 (s), 1009 (m), 935 (m), 820 (s), 725 (m), and 693 (s) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): 2.23 (dd, 1H, J = 5.5, 13.2 Hz, OHCHCH), 2.42 (s, 3H, NCH₃), 2.79 (dd, 1H, J = 8.8, 13.2 Hz, OHCHCH), 3.03 (dd, 1H, J = 6.6, 13.8 Hz, SHCH), 3.18 (dd, 1H, J = 5.5, 13.8 Hz, SHCH), 4.26 (d, 1H, J = 14.3 Hz, NHCH), 4.42 (d, 1H, J = 14.3 Hz, NHCH), 4.45-(d, 1H, J = 14.3 Hz, NHCH), 6.70 (s, 1H), 6.76-6.79 (m, 1H), 6.96-7.01 (m, 2H), and 7.23-7.33 ppm (m, 6H).

Anal.—Calc. for $C_{19}H_{20}ClN_3OS_2$: C, 56.21; H, 4.97; Cl, 8.73; N, 10.35; S, 15.79. Found: C, 56.30; H, 5.02; Cl, 8.98; N, 10.37; S, 15.47.

trans-Diastereomer-24-3%; mp 168-173 °C (2-propanol) as its monohydrochloride salt; IR (KBr): 3093 (s), 3016 (s), 2995 (s), 2988 (s), 2962 (s), 2919 (s), 2890 (s), 1566 (s), 1477 (m), 1455 (m), 1433 (m), 1289 (m), 1095 (s), 1074 (m), 1001 (m), 852 (m), and 717 (m) cm $^{-1}$; ¹H NMR (200 MHz, CDCl₃): 2.54 (s, 3H, NCH₃), 2.65-2.87 (m, 2H, OHCCH₂), 2.98-3.15 (m, 1H, SHCH), 3.29-3.45 (m, 1H, SHCH), 4.25-4.66 (m, 3H, OCH + NCH₂), 6.71 (s, 1H), 6.95-7.05 (m, 2H), 7.19-7.42 (m, 7H), and 8.93-9.01 ppm (m, 1H).

Anal.—Calc. for C₁₉H₂₁Cl₂N₃OS₂: C, 51.58; H, 4.78; Cl, 16.03; N, 9.50; S, 14.49. Found: C, 51.67; H, 4.72; Cl, 15.92; N, 9.50; S, 14.28.

Antifungal Screening Assay—The antifungal activity of the title 3-(2-thienyl)isoxazolidine compounds was assayed in vitro in solid

agar tests performed in 24-well tissue culture plates. The test media was prepared by diluting the test compounds 10-fold into Antibiotic Medium 3 + 2% agar. The testing was performed using either a fourpoint (70, 20, 7, and 2 μ g/mL) or a six-point (70, 20, 7, 2, 0.7, and 0.2 μ g/mL) dilution scheme, with ketoconazole being used as a control in all assays. All test organisms were grown on potato flake agar at 26 °C. Candida albicans was grown overnight, Aspergillus fumigatus was grown for ~ 1 week, and Trichophyton rubrum was grown for ~ 2 weeks. Cells were either removed from the plates with a sterile cotton swab and suspended in sterile water (C. albicans and A. fumigatus) or washed from the surface of the plate with sterile water and diluted in sterile water (T. rubrum). The actual cell counts were performed using a hemacytometer and the suspensions were diluted to 1×10^4 cells/mL. The test and control plates were inoculated with 0.05 mL of the fungal suspension and were incubated at 26 $^{\circ}\mathrm{C}$ until visible growth was evident in the compound-free control plates. The minimum inhibitory concentration (MIC) values were interpreted as the lowest dilution at which no visible growth occurred.

References and Notes

- 1. Büchel, K. H.; Draber, W.; Regel, E.; Plempel, M. Arzneim.-Forsch. 1972, 22, 1260.
- 2. Godefroi, E. F.; Heeres, J.; Van Cutsem, J.; Janssen, P. A. J. J. Med. Chem. 1969, 12, 784.
- 3. Godts, P.; Vermylen, P.; Van Cutsem, J. Arzneim.-Forsch. 1971,
- 4. Heel, R. C.; Brogden, R. N.; Speight, T. M.; Avery, G. S. Drugs 1978, 16, 177.
- 5. Heel, R. C.; Brogden, R. N.; Carmine, A.; Morley, P. A.; Speight, Г. М.; Avery, G. S. Drugs 1982, 23, 1.
- 6. Drouhet, E.; Dupont, B. Rev. Infect. Dis. 1987, 9 (Suppl. 1), S4.
- Graybill, J. R.; Stevens, D. A.; Galgiani, J. N.; Sugar, A. M.; Craven, P. C.; Gregg, C.; Huppert, M.; Cloud, G.; Dismukes, W. E. Antifungal Drugs; Georgiev, V. St., Ed., Annals of the New York Academy of Sciences: New York, 1988, in press.
- Negroni, R. Antifungal Drugs; Georgiev, V. St., Ed., Annals of the New York Academy of Sciences: New York, 1988, in press.
- 9. Symoens, J.; Cauwenbergh, G. Prog. Drug Res. 1983, 27, 63. vanden Bossche, H.; Marichal, P.; Gorrens, J.; Geerts, H.; Janssen, P. A. J. Antifungal Drugs; Georgiev, V. St., Ed., An-nals of the New York Academy of Sciences: New York, 1988, in
- oress.
- Kirkpatrick, C. H. Antifungal Drugs; Georgiev, V. St., Ed., An-nals of the New York Academy of Sciences: New York, 1988, in press.
- Thienpont, D.; Van Cutsem, J.; Van Gerven, J.; Heeres, J.; Janssen, P. A. J. Experientia 1979, 35, 606.
- Tucker, R. M.; Williams, P. L.; Arathoon, E. G.; Stevens, D. A. Antifungal Drugs; Georgiev, V. St., Ed., Annals of the New York Academy of Sciences: New York, 1988, in press.

- 14. Restrepo, A.; Gonzalez, A.; Gomez, I.; Arango, M.; de Bedout, C. Antifungal Drugs; Georgiev, V. St., Ed., Annals of the New York Academy of Sciences: New York, 1988, in press.
- Borgers, M. The Scientific Basis of Antimicrobial Chemotherapy; Greenwood, D.; O'Grady, F., Eds., Cambridge University: Cambridge, 1985; p 133.
- 16. Anon. Drugs of the Future 1986, 11, 335.
- Richardson, K.; Brammer, K. W.; Marriott, M. S.; Troke, P. F. Antimicrob. Agents Chemother. 1985, 27, 832.
- Richardson, K.; Cooper, K.; Marriott, M. S.; Tarbit, M. H.; Troke, P. F.; Whittle, P. J. Antifungal Drugs; Georgiev, V. St., Ed., Annals of the New York Academy of Sciences: New York, 1988, in press.
- Troke, P. F.; Marriott, M. S.; Richardson, K.; Tarbit, M. H. Antifungal Drugs; Georgiev, V. St., Ed., Annals of the New York Academy of Sciences: New York, 1988, in press.
- Brammer, K. W.; Feczko, J. M. Antifungal Drugs; Georgiev, V. St., Ed., Annals of the New York Academy of Sciences: New York, 1988, in press.
- 21. Richardson, K.; Marriott, M. S. Annu. Rep. Med. Chem. 1987, 22. 159.
- Mullen, G. B.; Swift, P. A.; Bennett, G. A.; DeCory, T. R.; Marin-yak, D. M.; Dormer, P. A.; Georgiev, V. St. Antifungal Drugs; Georgiev, V. St., Ed., Annals of the New York Academy of Sciences: New York, 1988, in press.
- Mullen, G. B.; Swift, P. A.; Marinyak, D. M.; Allen, S. D.; Mitchell, J. T.; Kinsolving, C. R.; Georgiev, V. St. Helv. Chim. Acta 1988, 71, 718.
- 24. Mullen, G. B.; Georgiev, V. St. Heterocycles 1986, 24, 3441.
- 25. Mullen, G. B.; Swift, P. A.; Georgiev, V. St. J. Pharm. Sci. 1987, 76, 930.
- 26. Similar to the Diels-Alder reaction, the 1,3-dipolar cycloaddition reaction is considered to proceed via a concerted mechanism and is formally treated as an allowed $[\pi^4 s + \pi^2 s]$ process by frontier molecular orbital theory. The regio- and stereospecificity of the reaction is markedly dependent on the structures of the starting nitrone and the dipolarophile and involves both electronic and steric factors (see Tufariello, J. J. 1,3-Dipolar Cyclo-addition Chemistry, Vol. 2; Padwa, A., Ed.; John Wiley: New York, 1984; pp 83-168). Thus, in case of aldonitrones i, the 1,3dipolar cycloaddition with monosubstituted olefins (ii) results in the preparation of both 3,5- and 3,4-substituted isoxazolidines iii and iv, respectively (see Scheme II).
 27. Carroll, P. J.; Mullen, G. B.; Georgiev, V. St. Acta Crystallogr.
- 1988, C44, in press.
- Bennett, G. A.; Mullen, G. B.; Mitchell, J. T.; Allen, S. D.; Kin-solving, C. R.; Georgiev, V. St. Antifungal Drugs; Georgiev, V. St., Ed., Annals of the New York Academy of Sciences: New York, in press.
- This communication represents Part 24 of the series "Studies on Antifungal Agents." For Part 23 see: Mullen, G. B.; DeCory, T. R.; Mitchell, J. T.; Allen, S. D.; Kinsolving, C. R.; Georgiev, V. St. J. Med. Chem. 1988, 31, 2008.