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Abstract : The KlD/Fe'I' montmorillonite catalyses cycloadditions of N-bensylidene aniline 
with vinyl ethers. Both [2,2] and [2,4] .cycloadducts form. Tetrahydroquinolines and 
azetidine? can thus be obtained. 

An entrenched stereotype has four membered rings formed "y photochemical [2r+2r1 
1 

and six membered rings by thermal [4,+2vl cycloadditions . We renort here an apuarent 

exceution to this orbital symmetry rule. We came across this abnormality in our on-going 

study of catalysis of cycloadditions such as the Diels-Alder by inorganic solids2. In order 

to further explore this access through such cycloadditions to nitrogen heterocycles' we 

looked at imines for their broad reactivity. 

N-bensylidene aniline ! bears no active hydrogen and cannot tautomerise to the 

enamine. We opted to cycloadd 1 to electron-rich Z vinyl ethers, under catalysis by the KlO 

acidic montmorillonite (8'3d Chemie) doned with Fe III 5-7 . The results are shown in the 

Scheme and Table 1. 
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The dienophiles were 2,3-dihydrofuran, 2~. 3,4-dihydro-2H-uyran, %, and -- 
ethylvinyl ether, 22. Product 22 reacts by [2,41 inverse electron demand Diels-Alder. But 

2% and 2k give a conjunction of [2+21 and [2+41 cycloadducts. Products 2 and i are 

identified in the usual way'. No tetrahydroisoquinoline nor Michael addition products' form. 

The clay catalyst is influential not only in accelerating the reactions - by a 

factor of 10 with less reactive dienophiles - but also in affecting product distribution. 

FeC13 alone catalyzes the reactions, but the i/i ratio is near unity. Other Lewis acids 
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promote formation of 22 but their use lacks generality: the yield of 2b 

Table I. Results of reactions of ! with vinyl ethers yielding 2 and 4". 

entry, solvent T(‘C) hrs rQ/j) % zb xi “1 

IO 
is modest . 

(substrate 2b) == 

1' dichloromethane 

2 diethyl ether 
3 II 11 

4d 1, ', 

5 n-pentane - 

6 dichloromethane 

7 11 II 

8 acetonitrile 

ge diethyl ether 

*Of 11 II 

(substrate 2a) == 
1 , 11 11 

,zc 11 II 

(substrate 2c) == 

13 " " 

22 6 1.0 47 

22 6 7.3 51 

35 6 7.4 67 

35 18 4.8 72 

22 6 1.9 15 

22 6 1.8 28 

40 6 2.3 35 

83 12 1.4 50 

35 4 12.8 86 

35 24 __ __ 

47 6 

7 35 

9 24 

17 II 

a 61 

15 57 

15 34 

36 14 

7 7 

__ 100 

22 2 11.6 81 7 I2 

22 2 1.3 56 42 2 

22 2 -- 95 __ 5 

a) reactions run with 2.5 mmole of reactants and 0.3-0.4g catalyst in 20mL of dry solvent; 2 
is added to ! well mixed with catalyst predried at 15O'C. b) percentages were determined by= 
200 MHz pmr. c) 10% mole equivalents FeCl ; no KlO. d) 10% mole equivalents 4-tert-butylphe- 
nol. e) 1.5 mole equivalents of FeIIIin K O/FelI1. 3 f) dienophiles include cyclohexene, 
maleic anhydride, and propargyl alcohol. 

Both cycloaddition modes are regiospecific and stereospecific, leading exclusively 

to products 3 and 48. = = The coupling constants show the three substituents in the six-membered 

rings &ZIS to be c&, cis as befits a Diels-Alder cycloaddition. Likewise, the phenyl and R' _-__ - 

substituents in i are a, from the large magnitude of Comparable couplings have been 
11 

3J3 4' 
found for cyclobutane derivatives . Stereosnecific formation of i cannot occur by a 

concerted process, this would violate the Noodward-Hoffmann rules. If it results from a 

steowise pathway, through a diradical or a zwitterionic intermediate, it is then rather 

remarkable that a single stereoisomer is obtained. The observed product 4 corresponds to 

diastereofacial specificity, the si face of 2 (at the future C-3) coming to overlap with the - 

re face of i (at the future C-4). - 

Despite the regio- and stereosnecificity in the formation of A, we believe it to 

arise from a zwitterionic pathway. A strong indication is provided by solvent effects 
12 : the 

21: ratio falls with an increase in the dielectric constant of the solvent; it is 7.4 in the 

low dielectric diethyl ether and only 1.4 in the high dielectric acetonitrile. 

Both the [2.4] and (2,2]cycloaddition modes require an electron-rich olefin as 

partner to 1, and normal olefins do not react (Table 1, entry IO). Protonation of the imine 



nitrogen by strongly acidic (HO ca. -7) clay makes the diene even more electron-deficient in 

the [2,4]. As previously observed, radical cations catalyze the [2,4]'* and use of 

4-tert-butylphenol as a source raises markedly the z/i rat%0 (Table 1, entry 9). 

Finally, the diastereofacial soecificity in the formation of 4 can be reconciled 
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with a switterionic (or a diradical) oathway. Assuming an unprotonated imine, the (re,re) -- 

zwitterion would be destabilized by stereoelectronic (or anomeric) effects when a bond forms 

between the imine nitrogen and the oxygen-bearing carbon of the vinyl ether. 

To sum up, results presented here show a most interesting interplay of orbital- and 
13 

of charge-control . 
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