
Nitroxyl radicals such as 4-benzoyloxy-TEMPO (4-ben-
zoyloxy-2,2,6,6-tetramethylpiperidinyl-N-oxyl) (1) are usu-
ally stable organic radicals, and oxidized species (i.e.,
oxoammonium ions) can be easily prepared electrochemi-
cally by one-electron oxidation (Chart 1).1) Oxoammonium
ions such as 2 are known to be specific and useful oxidants
for several functional groups, and nitroxyl radicals have been
used extensively as catalysts for the electrooxidation of alco-
hols,1) thiols,2) naphthols,3) and methylquinolines.4) Semmel-
hack and Schmid5) have developed the electrooxidation of
amines to nitriles and carbonyl compounds with TEMPO as
a nitroxyl radical catalyst, and MacCorquodale et al.6) have
demonstrated that, based on ESR and cyclic voltammetry,
poly(TEMPO-4-acrylic ester) acts as an efficient catalytst for
electrochemical oxidation of amines. We have also achieved
the electrocatalytic oxidation of amines to nitriles on a
graphite felt (GF) electrode coated with a thin poly (acrylic
acid) layer with immobilized 4-amino-TEMPO.7) However,
most of this work prior has employed primary amine com-
pounds as substrates. On the other hand, Hunter et al.8,9) re-
ported stoichiometric oxidation of N-alkyl-N-methylanilines
to N-alkylformanilides with 1-oxo-2,2,6,6-tetramethylpiper-
idinum chloride as oxidizing agent. From the viewpoint of
electrosynthesis, we report in this paper a preparative electro-
catalytic oxidation of N-alkyl-N-methylanilines to N-alkyl-
formanilides using 1.

Results and Discussion
Cyclic voltammetry was used to check the possibility of

electron-transfer from oxidatively generated 2 to N,N-di-
methylaniline. The cyclic voltammogram of 1 in the presence
of N,N-dimethylaniline, H2O and 2,6-lutidine in CH3CN so-
lution is shown in Fig. 1. 2,6-Lutidine is used as a weak base
to avoid the inhibitory effect of a high acid concentration1,5)

and to an abstract proton from substrate.10,11) The reversible
wave at 10.68 V vs. Ag/AgCl, which corresponds to the 1/2
couple became irreversible; an increase in the catalytic peak

height corresponded to oxidation of 1, although N,N-di-
methylaniline is not electroactive below 10.8 V vs. Ag/AgCl
at a glassy carbon electrode. This means that 1 is electrocat-
alytically active for the oxidation of N,N-dimethylaniline.

Based on the cyclic voltammmetry results, the preparative
electrolysis of N,N-dimethylaniline was performed at 10.8 V
vs. Ag/AgCl. During the electrolysis, the substrates and
products were occasionally analyzed by GC and HPLC. The
consumption of N,N-dimethylaniline and formation of N-hy-
droxymethyl-N-methylaniline and N-methylformanilide are
plotted against electrolysis time in Fig. 2. A variation in the
rate of conversion was observed and N-methylformanilide
only becomes important when a substantial quantity of N-hy-
droxymethyl-N-methylaniline is formed. It is clear that the
electro-oxidation reaction of N,N-dimethylaniline to N-
methylformanilide by 1 is sequential. One mmol of N,N-di-
methylaniline is consumed almost completely in about 20 h
to yield N-methylformanilide. The current efficiency in the
electrolysis is 94.5% during the course of electrolysis, and a
small amount of N-methylaniline was observed (95.9% se-
lectivity). The turnover number based on 1 (given by ratio of
mole of product34/mole of 1) was calculated to be 35.8 at
20 h of electrolysis.

The preparative results for oxidation for four N-alkyl-N-
methylanilines are shown in Table 1. The alkyl groups cho-
sen were ethyl, n-butyl, isopropyl, and benzyl. All N-alkyl-N-
methylanilines were oxidized to the corresponding N-alkyl-
formanilides in adequate current efficiency (89.2—96.1%)
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Chart 1. A Reversible Redox System Based on 1

Fig. 1. Cyclic Voltammograms of 0.02 M 1 in the Presence (——) and Ab-
sence (- - - - - -) of 0.2 M N,N-Dimethylaniline, 0.8 M 2,6-Lutidine and 0.3 M

H2O in CH3CN of 0.1 M NaClO4 at Scan Rate of 50 mV·s21



and yield (75.8—92.1%). A slightly lower selectivity (93.8—
97.6%) is ascribable to the formation of small amounts
(2.3—5.0%) of N-alkylanilines. The turnover numbers are
larger than 30.3. These product selectivities provide different
results from those obtained by conventional organic chem-
istry, because electroorganic reactions are unusual and
progress by electron-transfer on the electrode surface.

On the basis of the observed products, the reaction se-
quence shown in Chart 2 is postulated, which involves for-
mation of an iminium ion intermediate (4). The oxoammo-
nium ion (2) is expected to first react with the N-alkyl-N-
methylaniline, that is, to eliminate a proton from the N-
methyl group of aniline, then to change to the hydroxylamine
(3). The iminium salt (4) is the expected unstable intermedi-
ate, which can be hydrolyzed to primary alcohol by H2O in
the reaction medium. This primary alcohol is readily oxi-
dized to the formanilide by 1. The reaction of 2 and 3 pro-
duces 1, which is re-oxidized electrochemically to complete
a catalytic cycle.1)

In conclusion, the nitroxyl radical (1) catalyzed the oxida-
tion reaction of N-alkyl-N-methylanilines to N-alkylfor-
manilides in the presence of H2O in reaction media. We are
now exploring the electrocatalytic oxidation of many differ-
ent types of tertiary amines.

Experimental
Cyclic Voltammetry A glassy carbon disk electrode (3 mmf) and a

platinum wire were employed as the working electrode and the counter elec-
trode, respectively. The anode potentials were referred to Ag/AgCl (satu-
rated AgCl and (CH3)3C2H5NCl in CH3CN). Cyclic potential sweeps were
generated by a Hokuto Denko Model HABF-501 potentiostat/galvanostat.
Cyclic voltammograms were recorded on a Graphtec Model WX1200 X-Y
recorder. All electrochemical measurements were carried out at room tem-
perature (ca. 20 °C).

Macroelectrolysis Preparative potential-controlled electrolysis was per-
formed in CH3CN solution, using an ‘H’ type divided cell separated by a
cationic exchange membrane (Nafion 117). The anolyte contained 1 mmol of
substrate, 1.5 mmol of H2O, 0.1 mmol of 4-benzoyloxy-TEMPO, 0.5 mmol
of tetralin as gas chromatographic standard, 4 mmol of 2,6-lutidine and 0.5
mmol of NaClO4 as a supporting electrolyte in a total volume of 5 ml. The
catholyte was 5 ml of CH3CN solution containing 0.5 mmol of NaClO4.
Controlled potential electrolysis was carried out at 10.8 V vs. Ag/AgCl. The
GF electrode (Nippon Kynol Inc.), with a size of 53535 mm, was used as
the working anode electrode. During electrolysis, the substrates and products
were arbitrarily analyzed by GC (CP-Cyclodextrin-B-2,3,6-M-19, 0.25
mmf325 m/raising temperature 3 °C ·min21 from 80 to 150 °C, inj. temp.
200 °C, detection temperature 240 °C) and HPLC (Daicel CHIRALCEL 
OD column, 46 mmf3250 mm/column temperature 40 °C, 2-propanol : n-
hexane52 : 33, flow rate; 0.7 ml ·min21, detection; UV absorption at 254
nm). The end of electrolysis was determined by a considerable decrease in
current (less than 1 mA).
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Chart 2. Proposed Mechanism of Oxidation of N-Alkyl-N-methylaniline to N-Alkylformanilide with 2

Fig. 2. Macroelectrolysis of 0.2 M N,N-Dimethylaniline by 0.02 M 1 in the
Presence of 0.8 M 2,6-Lutidine and 0.3 M H2O in CH3CN of 0.1 M NaClO4

s, N,N-dimethylaniline; d, N-hydroxymethyl-N-methylaniline; h, N-methylform-
anilide; j, N-methylaniline.

Table 1. Electrocatalytic Oxidation of N-Alkyl-N-methylanilines to N-
Alkylformanilides Using 1

Charge Current 
Conversion Selectivity Turnover

R passed efficiency
number

(C) (%)
(%) (%)

Me 365.5 94.5 89.5 (3.8) 95.9 35.8
Et 326.0 92.7 78.3 (4.6) 94.5 31.3

n-Bu 347.7 93.9 84.6 (4.2) 95.3 33.8
iso-Pr 369.9 96.1 92.1 (2.3) 97.6 36.8

328.0 89.2 75.8 (5.0) 93.8 30.3
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Japan.
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