i

NEUTRAL AND CATIONIC OXO-METHYL COMPLEXES OF RHENIUM(V); X-RAY STRUCTURE OF ReOMe₂Cl(PMe₃)₂

DAVID M. HOFFMAN* and DERK A. WIERDA

Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, MA 02138, U.S.A.

(Received 27 August 1988; accepted 9 November 1988)

Abstract—Reaction of ReO(OEt)Cl₂(py)₂ with 1 equivalent of AlMe₃ in the presence of 2 equivalents of PMe₃ or PMe₂Ph produces ReOMe₂Cl(PMe₂R)₂ (R = Me or Ph) and reaction of ReOMe₂Cl(PMe₂R)₂ with dmpe gives ReOMe₂Cl(dmpe). Spectroscopic studies and an X-ray structure of the PMe₃ derivative show that the compounds are octahedral with a *trans*-[Cl---Re=O] group and *cis*-methyl ligands. Reactions of an excess of ZnMe₂ with ReOMe₂Cl(PMe₂R)₂ and ReOMe₂Cl(dmpe) give square-pyramidal ReOMe₃(PMe₂R) (R = Me and Ph) and octahedral ReOMe₃(dmpe), respectively. The trimethyl complexes are unstable at room temperature ($t_{1/2} \approx 3$ h for ReOMe₃(PMe₃) in C₆D₆). The complexes ReOMe₂Cl(PMe₂R)₂ and ReOMe₂Cl(dmpe) react with [Ag(CH₃CN)₂][BF₄] to give [ReOMe₂(PMe₂R)₂(CH₃CN)][BF₄] (R = Me and Ph) and [ReOMe₂(dmpe)(CH₃CN)[BF₄], respectively. The cations are octahedral and contain a *trans*-[CH₃CN--Re=O] moiety. Both the PMe₃ and PMe₂Ph derivatives exist in solution as a mixture of *cis*- and *trans*-phosphine isomers; variable temperature NMR studies show that the *trans* isomer predominates at low temperatures.

We have established that d^2 square-pyramidal ReO(CH₂SiMe₃)₃(PMe₃) reacts with a variety of small molecules, including CO,¹ HCCH,² CN⁻, CH₂N₂ and bipyridine (bipy),³ Scheme 1. Surprisingly, however, ReO(CH₂SiMe₃)₃(PMe₃) does not react with ethylene.¹ This may be due to the large steric bulk of the trimethylsilylmethyl ligand. These observations prompted us to prepare d^2 oxomethyl complexes in order to test the reactivity of the less hindered complexes with ethylene and other small organic molecules. Reported here are the results of our initial synthetic work which includes the preparation of $\text{ReOMe}_2\text{Cl}(\text{PMe}_2\text{R})_2$ (R = Me and Ph); ReOMe₂Cl(dmpe) (dmpe = Me_2PCH_2 CH_2PMe_2 ; ReOMe₃(PMe₂R) (R = Me and Ph); ReOMe₃(dmpe); ReOMe₃(bipy); [ReOMe₂ $(CH_3CN)(PMe_2R)_2$ ⁺ (R = Me and Ph); and $[\text{ReOMe}_2(\text{CH}_3\text{CN})(\text{dmpe})]^+$.

RESULTS AND DISCUSSION

Neutral oxo-dimethyl rhenium(V) complexes

The reaction of ReO(OEt)Cl₂(py)₂ (1)⁴ with 1 equivalent of AlMe₃ in the presence of 2 equivalents

of trimethylphosphine or dimethylphenylphosphine gives $\text{ReOMe}_2\text{Cl}(\text{PMe}_3)_2$ (2a, yield 62%) and $\text{ReOMe}_2\text{Cl}(\text{PMe}_2\text{Ph})_2$ (2b, yield 56%), respectively [eq. (1)]. If 1/3 equivalent of AlMe₃ is used in reaction (1), a mixture of starting material, and monoand dimethylated products is obtained. Reaction of 1 with 1 equivalent of AlMe₃ in the absence of phosphine, or with 2 or 3 equivalents of AlMe₃ in presence of PMe₂Ph or PMe₃, gives paramagnetic products which have not yet been characterized.

^{*} Author to whom correspondence should be addressed.

These are presumably oxo-free complexes.

$$\frac{\text{ReO(OEt)Cl_2(py)_2 + AlMe_3 + 2PMe_2R}{\frac{75^\circ C 12h}{CH_2Cl_2}}}{(1)}$$

$$[\mathbf{R} = \mathbf{Me} (\mathbf{2a}) \text{ and } \mathbf{Ph} (\mathbf{2b})]$$

Reaction of **2a** or **2b** with dmpe at room temperature gives $\text{ReOMe}_2\text{Cl}(\text{dmpe})$ (**2c**) quantitatively by ¹H NMR (vs internal standard) and in 62 and 73% isolated yields, respectively [eq. (2)]. Surprisingly, the reaction of **1** with AlMe₃ and dmpe [cf. eq. (1)] does not give **2c**.

$$ReOMe_{2}Cl(PMe_{2}R)_{2} + dmpe \xrightarrow[1h]{} \frac{Toluene}{1h}$$
$$ReOMe_{2}Cl(dmpe) + 2PMe_{2}R. \quad (2)$$

(2c)

The compounds 2a, 2b and 2c are red-brown crystalline solids, which are sparingly soluble in hexane and soluble in toluene and CH_2Cl_2 . They are moderately air-sensitive, more so in solution than in the solid state.

The structure of 2a has been determined by an X-ray crystallographic study; an ORTEP plot of the molecule is given in Fig. 1. Bond lengths and angles are presented in Table 1. The molecular geometry of 2a is distorted octahedral. The Re=0,^{1,2,5}

Fig. 1. ORTEP plot of $\text{ReOMe}_2\text{Cl}(\text{PMe}_3)_2$ (2a) showing the atom numbering scheme (50% probability level).

Re—CH₃,⁶ and Re—P^{1,7} distances are normal, but the Re—Cl distance (2.607(3) Å) is long [e.g. it is 0.17 and 0.16 Å longer than the Re—Cl distances (Cl *trans* to Re—O) in ReOCl₃(CNBu^t)₂ and ReOCl₃(PEt₂Ph)₂, respectively].^{5b,c} A possible explanation for the longer than normal Re—Cl distance is that electron donation from the strongly σ donating methyl groups makes an electron contribution from the chloride unnecessary and, given this, that steric interactions are minimized by pushing chlorine away from the rhenium centre.

In **2a** the methyl groups are closer to the rhenium than the phosphines $(d_{\text{Re}-P} - d_{\text{Re}-C} = 0.25 \text{ Å})$ and, because of this, the oxo and chloride ligands are repelled more by the methyl groups than the phos-

	Bon	d distances	
Re—O 1.673	(6)	P(1) - C(11)	1.828(11)
Re-C(1) 2.1840	9)	P(1) - C(12)	1.813(11)
Re-C(2) 2.1930	9)	P(1)-C(13)	1.809(10)
Re-Cl 2.6070	(3)	P(2)-C(21)	1.805(11)
Re—P(1) 2.4590	(3)	P(2)—C(22)	1.780(10)
Re—P(2) 2.4490	(3)	P(2)—C(23)	1.800(12)
		Angles	
OReC(1)	102.0(3)	P(2)—Re—Cl	76.6(1)
OReC(2)	103.3(3)	Re—P(1)—C(11) 108.0(3)
O - Re - P(1)	96.6(2)	ReP(1)C(12) 122.1(3)
O-Re-P(2)	97.0(2)	Re—P(1)—C(13) 118.0(3)
O-Re-Cl	169.9(2)	C(11)-P(1)-	C(12) 101.4(5)
C(1)—Re—C(2)	81.5(3)	C(11)—P(1)—	C(13) 103.4(5)
C(1)—Re— $P(1)$	159.5(3)	C(12)—P(1)—	C(13) 101.5(4)
C(1)—Re—P(2)	84.9(2)	Re—P(2)—C(2	21) 122.2(4)
C(1)—Re—Cl	85.4(3)	Re—P(2)—C(2	22) 117.0(4)
C(2)—Re—P(1)	86.0(2)	Re—P(2)—C(2	23) 108.3(4)
C(2)—Re—P(2)	157.5(2)	C(21)—P(2)—	C(22) 102.3(5)
C(2)—Re—Cl	84.5(2)	C(21)—P(2)—	C(23) 99.8(5)
P(1)— Re — $P(2)$	101.4(1)	C(22)—P(2)—	C(23) 104.8(5)
P(1)—Re—Cl	77.3(1)		

Table 1. Complete listing of bond lengths (Å) and angles (°) for $ReOMe_2$ $Cl(PMe_3)_2$ (2a)

phine ligands, even though the phosphines are larger. This is indicated in the structure by angular distortions from an octahedral geometry. For instance, the O—Re—C angles [102.0(3) and $103.3(3)^{\circ}]$ are slightly larger than the O—Re—P angles [96.6(2) and $97.0(2)^{\circ}]$. Also, the O—Re—Cl angle is 10° from linear and bent in the direction of a line bisecting the P—Re—P angle.

Spectroscopic data for 2a, 2b and 2c are similar and consistent with the solid state structure of 2a. For instance, in 2a the protons of the Re—Me groups appear as a doublet in the ¹H NMR spectrum, and the carbons appear as a doublet of a doublet in the ¹³C{¹H} NMR spectrum (${}^{2}J_{CP} = 48$ and 8 Hz). By analogy to what has been reported for ReO(CH₂SiMe₃)₃(PMe₃),¹ the ³¹P—¹H coupling observed for 2a is attributed to the *cis*-[P—Re—CH₃] groups, and the large and small ${}^{2}J_{PC}$ values are assigned to the *trans*- and *cis*-[P—Re—CH₃] moieties, respectively. The methyl protons of the PMe₃ ligands in 2a give rise to a doublet in the ¹H NMR spectrum, but the carbons appear as a complex multiplet in the ¹³C{¹H} spectrum. To a first approximation the latter can be interpreted as one half of an AA'XX' spectrum, but in order to simulate the spectrum successfully it is necessary to use an AXY spin system (Fig. 2). This takes into account that $\text{ReO}(^{12}\text{CH}_3)_2\text{Cl}[^{31}\text{P}(^{13}\text{CH}_3)(^{12}\text{CH}_3)_2][^{31}\text{P}(^{12}\text{CH}_3)_3]$ is the isotopomer actually observed by $^{13}\text{C}\{^{1}\text{H}\}$ NMR. A complete listing of all coupling constants is given in the Experimental.

¹⁸O labelling studies show that the Re=O stretching bands for **2a**, **2b** and **2c** occur at 1004, 999 and 1000 cm⁻¹, respectively. These are normal values for neutral rhenium(V) mono-oxo complexes.⁸ The ¹⁸O labelled compounds were prepared by stirring the unlabelled complexes with an excess of degassed $H_2^{18}O$ (100 equivalents) for 24 h in toluene.

Neutral oxo-trimethyl rhenium(V) complexes

Reactions of 2a, 2b and 2c with an excess of $ZnMe_2$ at 0°C give the corresponding trimethyl derivatives, $ReOMe_3(PMe_2R)$ [R = Me(3a) and Ph (3b)] and $ReOMe_3(dmpe)$ (3c), eqs (3) and (4). Reactions (3) and (4) are quantitative by ¹H NMR (vs internal standard), and the isolated yields are 47, 51 and 31% for 3a, 3b and 3c, respectively.

Complex **3b** can also be prepared by the reaction of $\text{Re}_2(\mu\text{-O})\text{O}_2\text{Me}_6^{6a,c}$ with PMe_2Ph [eq. (5)], and complex **3c** by the reactions of dmpe with **3a** or **3b**.

$$ReOMe_{2}Cl(PMe_{2}R)_{2} + ZnMe_{2} \xrightarrow[Toluene]{} \xrightarrow{0^{\circ}C} \\ ReOMe_{3}(PMe_{2}R) + ZnMeCl + PMe_{2}R \quad (3) \\ [R = Me (3a) and Ph (3b)]$$

$$ReOMe_{2}Cl(dmpe) + ZnMe_{2} \xrightarrow[Toluene]{0^{\circ}C} \xrightarrow[Toluene]{Toluene} ReOMe_{3}(dmpe) + ZnMeCl \quad (4)$$
(3c)

 $Re_{2}(\mu-O)O_{2}Me_{6}+3PMe_{2}Ph \longrightarrow 2ReOMe_{3}(PMe_{2}Ph)+P(O)Me_{2}Ph.$ (5)

Compounds **3a** and **3b** are green oils, and **3c** is a red solid. All of the compounds decompose at room temperature $(t_{1/2} \approx 3 \text{ h for } 3a \text{ in } C_6D_6)$ to give as yet, uncharacterized products. The decomposition rates depend qualitatively on the phosphine ligand, with the dmpe ligand complex being the slowest to decompose and the PMe₃ complex being fastest.

The facile decomposition of **3a**, **3b** and **3c** has hampered their complete characterization. In particular, chemical analyses could not be obtained for any of the compounds and reliable IR data have been collected only for **3c** (v(Re=O) 1018 cm⁻¹). NMR data sets have been obtained for all three compounds, however, and they are consistent with the structures shown. The proposed structures for **3a** and **3b** are analogous to the structure reported for ReO(CH₂SiMe₃)₃(PMe₃).¹

Compounds 3a and 3b are fluxional on the NMR time scale at room temperature. In low temperature limiting ¹H NMR spectra recorded at -66° C, the methyl ligands in 3a give rise to a doublet, which by the integral intensity is assigned to the methyl ligands *cis* to PMe₃, and a singlet (methyl ligand *trans* to PMe₃). The observation of P—H coupling due to the *cis*-[P—Re—CH₃] and not the *trans*- $[P-Re-CH_3]$ groups is consistent with an earlier study of ReO(CH₂SiMe₃)₃(PMe₃).¹

In contrast to compounds **3a** and **3b**, **3c** is not fluxional on the NMR time scale. In the ${}^{31}P{}^{1}H$ NMR spectrum recorded for **3c**, two doublets are observed indicating that the phosphorus atoms are in different chemical environments and are both bound to the metal. The ${}^{1}H$ NMR spectrum also shows evidence for two bound phosphorus atoms in that each methyl ligand (2:1 integral ratio) appears as a doublet of a doublet. Doublet of doublet resonances are also observed for the carbons of the methyl ligands in the ${}^{13}C{}^{1}H{}$ NMR spectrum.

In addition to ReO(CH₂SiMe₃)₃(PMe₃), two other compounds related to **3a**, **3b** and **3c**, Re(NPh)Me₃(PMe₃)₂⁹ and ReOEt₃(PPh₃)₂,¹⁰ have been reported in the literature. The existence of these two compounds, each containing two phosphine ligands, suggested to us that the bis-phosphine complexes ReOMe₃(PMe₂R)₂, R = Me and Ph, should exist.

In an effort to observe a bis-phosphine adduct, we recorded a low-temperature limiting ¹H NMR spectrum $(-73^{\circ}C, C_6D_5CD_3)$ for a mixture of **3a** and 5 equivalents of PMe₃. This spectrum was consistent with the presence of cis,mer-ReOMe₃ $(PMe_3)_2$ and free PMe₃ in solution. An attempt to isolate the bisphosphine complex by reacting an excess of PMe₃ with 3a on a large scale, however, resulted in recovery of only 3a after workup. Thus, two phosphine ligands do coordinate to **3a** at low temperature in solution, but the isolable species contains only one phosphine ligand. Obviously, two phosphine centres coordinate in 3c because of the chelate effect, but it is unclear why two phosphines coordinate in $Re(NPh)Me_3(PMe_3)_2$ and $ReOEt_3(PPh_3)_2$, whereas only one coordinates in 3a and 3b.

In addition to the NMR studies, there is also indirect evidence that the mono-phosphine formulation of **3b** is correct. The reaction of **3b** with bipyridine, carried out in an NMR tube and monitored by ¹H NMR, gave *one* free phosphine molecule and ReOMe₃(bipy) (4) [eq. (6), 80% yield by integration vs internal standard]. A large-scale reaction produced 4 in 35% isolated yield.

$$ReOMe_{3}(PMe_{2}Ph) + bipy \xrightarrow{C_{6}D_{6}} ReOMe_{3}(bipy) + PMe_{2}Ph. \quad (6)$$
(4)

Complex 4 is a blue crystalline solid which is airstable in solution and in the solid state. The IR spectrum has a strong band at 970 cm⁻¹ which can be assigned to the Re=O stretch. The ¹H NMR spectrum reveals two methyl resonances in the integral ratio 2:1 as well as eight different resonances attributable to coordinated bipyridine. These data are consistent with the structure shown below.

Cationic oxo-methyl rhenium(V) complexes

Reactions of 2a, 2b and 2c with $[Ag(CH_3CN)_2]$ [BF₄] in acetonitrile give the cationic rhenium(V) complexes [ReOMe₂(PMe₂R)₂(CH₃CN)] [R = Me (5a, yield 71%) and R = Ph (5b, yield 65%)], eq. (7) and [ReOMe₂(dmpe)(CH₃CN)[BF₄] (5c, yield 68%), eq. (8), respectively. The cationic complexes are thermally stable red oils or oily solids which are insoluble in hydrocarbon solvents.

$$ReOMe_{2}Cl(PMe_{2}R)_{2} + [Ag(CH_{3}CN)_{2}][BF_{4}] \xrightarrow{CH_{3}CN} [ReOMe_{2}(PMe_{2}R)_{2}(CH_{3}CN)][BF_{4}] + AgCl \quad (7)$$
$$[R = Me(5a) \text{ and } Ph(5b)]$$

$$ReOMe_{2}Cl(dmpe) + [Ag(CH_{3}CN)_{2}][BF_{4}] \xrightarrow{CH_{3}CN} [ReOMe_{2}(dmpe)(CH_{3}CN)[BF_{4}] + AgCl. \quad (8)$$
(5c)

Variable temperature ¹H and ¹³C NMR studies (CD_3COCD_3) reveal that **5a** and **5b** exist in solution as an equilibrium mixture of the *cis*- and *trans*-phosphine isomers shown below. For **5a** at 23°C, the ratio of *cis* to *trans* isomers (cis-trans) is approximately 1:1. At -33° C the *trans* isomer is dominant (1:6) and at $+39^{\circ}$ C the *cis* isomer is slightly favoured (1.7:1). The spectral changes are fully reversible. The solution behaviour of **5b** is similar to that of **5a** but, as expected on steric grounds, PMe₂Ph has a greater preference to be *trans* to PMe₂Ph (as opposed to *cis*) in comparison to the PMe₃ case.

If the variable temperature ¹H NMR studies of **5a** and **5b** are repeated using CD_3CN as a solvent, the *cis-trans* ratio remains constant at temperatures below 23°C. This suggests that the isomerization is a two-step process involving acetonitrile dissociation followed by an intramolecular rearrangement of the resulting five-coordinate intermediate.

The cis- and trans-phosphine isomers of 5a and

5b are readily distinguished in ¹H NMR spectra. For instance, the *cis* isomer of **5a** gives rise to a doublet of a doublet for ReCH₃ and a doublet for the PMe₃ protons, whereas the *trans* isomer gives a triplet for ReCH₃ and a virtual triplet for the PMe₃ protons.

In contrast to 5a and 5b, NMR spectra recorded for 5c are invariant with temperature. Two separate proton resonances for the dmpe methyl groups and only one ³¹P resonance are observed for 5c, and the ¹H NMR spectrum in the Re*Me* region resembles the spectra of *cis* 5a and 5b. These findings, as well as ${}^{13}C{}^{1}H{}$ NMR data, are consistent with the structure shown below.

IR spectra recorded for **5a**, **5b** and **5c** show broad overlapping bands in the 950–1050 cm⁻¹ region. This has prevented a definitive identification by labelling studies of the bands arising from the Re=O stretches. Oxo ligands are present, however, because the cations can be converted in the absence of air or water to their respective neutral compounds (**2a**, **2b** and **2c**) via reactions (9) and (10). It is noteworthy that only *cis*-dimethyl *cis*-diphosphine ReOMe₂Cl(PMe₂R)₂ complexes are obtained from eq. (9).

$$[\text{ReOMe}_{2}(\text{PMe}_{2}\text{R})_{2}(\text{CH}_{3}\text{CN})][\text{BF}_{4}] + \text{NaCl} \xrightarrow{\text{CH}_{3}\text{CN}}_{1\text{h}}$$

$$\text{ReOMe}_{2}\text{Cl}(\text{PMe}_{2}\text{R})_{2} + \text{NaBF}_{4} \quad (9)$$

$$[\text{ReOMe}_{2}(\text{dmpe})(\text{CH}_{3}\text{CN})][\text{BF}_{4}] + \text{NaCl} \xrightarrow{\text{CH}_{3}\text{CN}}_{1\text{h}}$$

 $ReOMe_2Cl(dmpe) + NaBF_4$. (10)

CONCLUSION

We have prepared the neutral rhenium oxomethyl complexes $ReOMe_2Cl(PMe_2R)_2$ (R = Me, Ph) and $ReOMe_2Cl(dmpe)$, and the cationic rhenium oxo-methyl complexes [$ReOMe_2(PMe_2R)_2$ (CH_3CN)]⁺ (R = Me, Ph) and [$ReOMe_2(dmpe)$ (CH_3CN)]⁺, in moderate yields. The latter compounds are the first examples of rhenium(V) monooxo cations.

The original synthetic targets of this study, ReOMe₃(PMe₂R) compounds, are thermally unstable. This is in contrast to ReO(CH₂SiMe₃)₃ (PMe₃), which is stable at 23°C in the absence of air for months.¹ A related compound, ReOEt₃ (PPh₃)₂, is also reported to be unstable at room temperature, but in this case the instability is probably due to the presence of β -hydrogens in the molecule.¹⁰ We are studying the decomposition reactions of ReOMe₃(PMe₂R) in order to determine the ultimate products. Reactivity studies using ReOMe₃(PMe₂R), which can be generated quantitatively *in situ*, are also in progress.

EXPERIMENTAL

Microanalyses were performed by Dornis and Kolbe, F.R.G. IR data were collected on a Perkin– Elmer 598 spectrophotometer (Nujol mulls (cm⁻¹), referenced externally to the 1601 cm⁻¹ band of polystyrene). NMR data were collected using Bruker AM-500, AM-300, AM-250 and WM-300-WB (³¹P NMR) spectrometers. ¹H NMR spectra were referenced to the ¹H impurities in the deuterated solvents (benezene-d₆, δ 7.15; acetonitrile-d₃, δ 1.93), ¹³C NMR spectra to the ¹³C triplet of benzene-d₆ (δ 128.0) or the septet of acetonitrile-d₃ (δ 1.3), and ³¹P spectra to external H₃PO₄, with upfield shifts taken as negative. Molecular weights were determined by isothermal distillation (vs ferrocene).¹¹

All operations were performed under oxygen-free nitrogen, argon or *in vacuo*. Solvents were purified by standard techniques and were dry and oxygenfree.

¹³C{¹H} NMR spectra obtained for the carbons of the phosphine ligands in **2a**, **2b**, **2c**, **3c**, **5a**, **5b** and **5c** were simulated using the program PANIC (Bruker). Initial ¹³C coupling constants for **2a**, **2b**, **2c**, **5a**, **5b** and **5c** were obtained analytically by approximating the spin systems as AA'XX' ($J_{CC'} = 0$).¹² Simulations with PANIC were carried out using an AXY spin system. In all cases, simulated and analytically determined coupling constants were in close agreement. The methyl region of the ¹H NMR spectrum of ReOMe₃(dmpe) (**3c**) was simulated as well.

Chlorodimethyloxobis(trimethylphosphine)rhenium(V), ReOMe₂Cl(PMe₃)₂ (2a)

To a cold solution (-78°C) of ReO(OEt)Cl₂(py)₂ (1.50 g, 3.15 mmol) in methylene chloride (75 cm³) AlMe₃ (1.6 cm³, 3.20 mmol, 2.0 mol dm⁻³ in toluene) was added dropwise. The resulting green solution was frozen (-196°C) and the flask evacuated. PMe₃ (6.50 mmol) was then condensed into the flask via a calibrated vacuum manifold. After the mixture was allowed to warm to room temperature, the blue solution was heated (**Caution**: closed flask heating) at 75°C for 12 h. The volatiles were then removed *in vacuo*, and the residue was extracted with toluene (4 × 75 cm³); the extracts were filtered and then evaporated to dryness *in vacuo*, and the residue was extracted with warm hexane $(6 \times 75 \text{ cm}^3, 45^\circ\text{C})$. The hexane solution was filtered, reduced in volume, and cooled to -60°C to give red blocks. If necessary, the compound can be recrystallized from toluene. (Yield 0.82 g, 1.97 mmol, 62%).) Found: C, 23.1; H, 5.9; mol. wt (CH₂Cl₂) 404(30). Calc. for ReClP₂OC₈H₂₄: C, 22.9; H, 5.8%; mol. wt calc. 419.9.

¹H NMR (C_6D_6): δ 3.8 (d, 6, *cis-J*_{PH} = 7.4 Hz, Re*Me*), 1.6 (d, 18, *J*_{PH} = 9.2 Hz, *PMe*₃). ¹³C{¹H} NMR (C_6D_6): δ 19.4 (dd, 2, *trans-J*_{CP} = 48 Hz, *cis-J*_{CP} = 8 Hz, Re*Me*), 18.0 (AXY, *J*_{CP} = 27.3, ³*J*_{CP} = 2.7, *J*_{PP} = -11.4 Hz, $\Delta P_X - \Delta P_Y = 1.9$ Hz, *PMe*₃). ³¹P{¹H} (C_6D_6): δ -47.1 (s). IR: *v*(Re=O) 1004 s [*v*(Re=¹⁸O) 949], 1433(sh), 1420(m), 1368(sh), 1305(m), 1281(s), 958(s), 944(s), 859(m), 850(m), 747(s), 671(m), 510(m), 500(m), 351(w), 301(w), 268(w).

(2) Chlorodimethyloxobis(dimethylphenylphosphine) rhenium(V), ReOMe₂Cl(PMe₂Ph)₂ (2b)

This compound was prepared by a procedure analogous to the one used for the preparation of ReOMe₂Cl(PMe₃)₂. (Yield 54%.) Found: C, 39.4; H, 4.9; mol. wt (benzene) 520(30). Calc. for ReClP₂OC₁₈H₂₈: C, 39.7; H, 5.2%; mol. wt calc. 544.0.

¹H NMR (C_6D_6): δ 7.33 (m, 4, PMe₂Ph), 7.00 (m, 6, PMe_2Ph), 4.05 (d, 6, *cis-J*_{PH} = 7.1 Hz, ReMe), 1.47 (d, 6, $J_{PH} = 8.9$ Hz, PMe_aMe_bPh), 1.41 (d, 6, $J_{PH} = 9.5$ Hz, PMe_aMe_bPh). ¹³C{¹H} NMR (C_6D_6) : δ 131.50 (d, 1, $J_{CP} = 3.3$ Hz, PMe_2Ph), 131.47 (d, 1, $J_{CP} = 3.3$ Hz, PMe_2Ph), 130.9 (s, 1, PMe_2Ph), 129.54 (d, 1, $J_{CP} = 3.3$ Hz, PMe_2Ph), 129.51 (d, 1, $J_{CP} = 3.3$ Hz, PMe_2Ph), 18.7 (dd, 2, trans- $J_{CP} = 44$ Hz, cis- $J_{CP} = 7$ Hz, ReMe), 15.7 (AXY, $J_{CP} = 33.7$ Hz, ${}^{3}J_{CP} = 4.9$ Hz, $J_{PP} = -6.9$ Hz, $\Delta P_X - \Delta P_Y = 1.7 Hz$, PMe_aMe_bPh), 14.5 (AXY, $J_{\rm CP} = 36.2$ Hz, ${}^{3}J_{\rm CP} = 4.5$ Hz, $J_{\rm PP} = -5.0$ Hz, $\Delta P_{X} - \Delta P_{Y} = 2.4 \text{ Hz}, \text{PMe}_{a}Me_{b}\text{Ph}).$ ³¹P{¹H} NMR $(C_6D_6): \delta - 39.5$ (s). IR: v(Re=0) 999(s) $[v(\text{Re}^{18}\text{O}) 948], 1438(\text{m}), 1419(\text{w}), 1370(\text{w}),$ 1315(w), 1307(w), 1290(m), 1279(w), 1239(w), 1161(w), 1109(m), 987(sh), 948(s), 912(sh), 907(s), 839(m), 752(m), 741(s), 711(w), 697(m), 679(w), 679(w), 510(w), 502(w), 489(m), 417(m), 404(m), 345(w), 327(w), 311(w), 301(w).

 (3) Chlorodimethyloxo(bis(dimethylphosphino)ethane)rhenium(V), ReOMe₂Cl(Me₂PCH₂CH₂PMe₂)
 (2c)

To a solution of $\text{ReOMe}_2\text{Cl}(\text{PMe}_2\text{Ph})_2$ (0.275 g, 0.51 mmol) in toluene (25 cm³) dmpe (0.106 cm³,

0.58 mmol) was added via syringe. The brown solution was stirred (1 h), filtered and concentrated *in vacuo* (to *ca* 3 cm³). Cooling (-20° C) produced brown crystals. (Yield 0.162 g, 0.39 mmol, 76%.) This compound was also prepared from ReOMe₂ Cl(PMe₃)₂ in 62% yield by an analogous procedure. A satisfactory carbon analysis was not obtained. Found: C, 25.5; H, 5.4. Calc. for ReClP₂OC₈H₂₂: C, 23.0; H, 5.3%.

¹H NMR (C₆D₆): δ 3.76 (d, 6, *cis*-J_{PH} = 6.8 Hz, ReMe), 1.79 (m, 2, --CH₂PMe₂), 1.40 (d, 6, $J_{\rm PH} = 11.4 \text{ Hz}, --CH_2 PMe_2), 1.07 \text{ (d, 6, } J_{\rm PH} = 8.0$ Hz, $-CH_2PMe_2$, 0.93 (m, 2, $-CH_2PMe_2$). ¹³C{¹H} NMR (C₆D₆): δ 32.9 (AXY, 2, J_{CP} = 41.0 Hz, ${}^{3}J_{CP} = 3.3$ Hz, $J_{PP} = -12$ Hz, $-CH_{2}PMe_{2}$), 16.7 (AXY, 2, $J_{CP} = 28.2$ Hz, ${}^{3}J_{CP} = 10.1$ Hz, Hz, $\Delta P_{\rm X} - \Delta P_{\rm Y} = 3.4$ $J_{\rm PP} = -4.3$ Hz, $-CH_2PMe_2$), 11.8 (AXY, 2, $J_{CP} = 39.8$ Hz, ${}^{3}J_{CP} = 7.1 \text{ Hz}, J_{PP} = -5 \text{ Hz}, \Delta P_{X} - \Delta P_{Y} = 1.9 \text{ Hz},$ $-CH_2PMe_2$, 11.35 (AXY, 2, trans- $J_{CP} = 37.5$ Hz, $cis-J_{CP} = 12.5 \text{ Hz}, J_{PP} = -3.4 \text{ Hz}, \text{Re}Me$. ³¹P{¹H} NMR (C_6D_6) : δ 16.1 (s). IR: v(Re) 1000(s) $[\nu(\text{Re}^{18}\text{O}) 948], 1827(\text{w}), 1799(\text{m}), 1420(\text{w}),$ 1409(w), 1302(sh), 1288(m), 1246(w), 1180(br), 1107(w), 940(s), 919(w), 901(m), 867(w), 844(w), 748(m), 713(m), 650(m), 636(m), 510(m), 453(w), 362(w), 349(w).

(4) Trimethyloxo(trimethylphosphine)rhenium(V), ReOMe₃(PMe₃) (3a)

To a cold solution (0°C) of ReOMe₂Cl(PMe₂Ph)₂ (0.050 g, 0.12 mmol) in toluene (20 cm³) a toluene solution (5 cm³) of ZnMe₂ (0.020 cm³, 0.21 mmol) was added dropwise via an addition funnel over a period of 10 min. The solvent was then removed at 0°C under reduced pressure. The residue was extracted with cold pentane. Removal of the pentane under reduced pressure yielded a green oil. The yield was quantitative by ¹H NMR vs internal standard. The isolated yield was 47%. The material decomposed within days when stored at -20° C.

¹H NMR (C_7D_8 , $-57^{\circ}C$): 3.56 (s, 3, Re*Me*), 2.57 (d, 6, $J_{PH} = 8.2$ Hz, Re*Me*), 0.61 (d, 9, $J_{PH} = 8.2$ Hz, P*Me*₃). ¹³C{¹H} NMR (C_7D_8 , $-66^{\circ}C$): 32.2 (d, 1, $J_{CP} = 25.3$ Hz, Re*Me*), 18.0 (s, 2, Re*Me*), 12.6 (d, 2, $J_{CP} = 31.3$ Hz, P*Me*₃). ³¹P{¹H} NMR (C_7D_8 , $-23^{\circ}C$): $\delta - 0.7$ (s).

(5) Trimethyloxo(dimethylphenylphosphine)rhenium(V), ReOMe₃(PMe₂Ph) (**3b**)

This compound was prepared by a procedure analogous to the one used for the preparation of $ReOMe_3(PMe_3)$. The yield was quantitative by ¹H

NMR vs internal standard. The isolated yield was 51%.

¹H NMR (C_7D_8 , -66° C): δ 7.26 (m, 2, PMe₂Ph), 7.04 (m, 3, PMe₂Ph), 3.66 (s, 3, ReMe), 2.62 (d, 6, $J_{PH} = 8.7$ Hz, ReMe), 0.85 (d, 6, $J_{PH} = 9.1$ Hz, PMe₂Ph). ¹³C{¹H} NMR (C_7D_8 , -66° C): δ 131.6 (d, 2, $J_{CP} = 10.7$ Hz, PMe₂Ph), 130.8 (s, 1, PMe₂Ph), 129.1 (2, PMe₂Ph), 31.8 (d, 1, $J_{CP} = 24.9$ Hz, ReMe), 18.9 (s, 2, ReMe), 12.5 (d, 2, $J_{CP} = 30.7$ Hz, PMe₂Ph). ³¹P{¹H} NMR (C_7D_8 , 23°C): δ -0.8 (s).

(6) Trimethyloxo(bis(dimethylphosphino)ethane) rhenium(V), ReOMe₃(dmpe) (**3c**)

This compound was prepared by a procedure similar to the one used for the preparation of $ReOMe_3(PMe_3)$. The compound is a red solid. (Yield 31%.)

¹H NMR (C_6D_6): δ 3.25 (dd, 3, $J_{P_XH} = 7.8$ Hz, $J_{P_YH} = 6.6$ Hz, Re*Me*), 2.94 (dd, 6, $J_{P_XH} = 13.7$ Hz, $J_{P_YH} = 5.7$ Hz, Rc*Me*), 1.39 (d, 6, $J_{PH} = 9.9$ Hz, --CH₂PMe₂), 1.02 (m, 2, --CH₂PMe₂), 0.55 (m, 2, --CH₂PMe₂), 0.20 (d, 6, $J_{PH} = 7.5$ Hz, --CH₂PMe₂), ¹³C{¹H} NMR (C_6D_6): δ 28.8 (m, 1, --CH₂PMe₂), 25.9 (dd, 1, $J_{CP_X} = 20.5$ Hz, $J_{CP_Y} = 17.5$ Hz, Re*Me*), 24.7 (m, 1, --CH₂PMe₂), 17.2 (m, 2, CH₂PMe₂), 17.0 (dd, 2, $J_{CP_X} = 17.5$ Hz, $J_{CP_Y} = 12.5$ Hz, Re*Me*), 7.7 (m, 2, CH₂PMe₂), ³¹P{¹H} NMR (C_6D_6): δ -3.0 (d, $J_{PP} = 29$ Hz), -34.7 (d, $J_{PP} = 29$ Hz). IR: ν (Re=O) 1018(s), 1419(m), 1360(sh), 1299(m), 1283(m), 1239(m), 1252(m), 1221(m), 980(m), 938(s), 927(sh), 910(m), 894(m), 835(m), 793(w), 703(m), 649(w).

(7) Trimethyloxo(bipyridine)rhenium(V), ReOMe₃(bipy) (4)

To a cold (0°C) solution of ReOMe₂Cl(PMe₂Ph)₂ (0.050 g, 0.09 mmol) in toluene (30 cm³) a toluene solution (5 cm³) of ZnMe₂ (0.020 cm³, 0.21 mmol) was added dropwise via an addition funnel. After the addition was complete, the solvent was removed at 0°C *in vacuo*. The residue was extracted with cold pentane, and the pentane solution added to a flask containing an excess of bipy (0.050 g, 0.32 mmol). The mixture slowly changed colour from green to blue (2 h). Solvent and the excess bipy were then removed *in vacuo*. Crystallization from pentane (-50° C) gave blue crystals. (Yield 0.013 g, 0.03 mmol, 35%.)

¹H NMR (C_6D_6): δ 8.81 (m, 1, *bipy*), 7.77 (d, 1, bipy), 7.25 (m, 1, bipy), 6.79 (d, 1, bipy), 6.50 (dt, 1, bipy), 6.23 (dq, 2, bipy), 5.34 (m, 1, bipy), 3.92 (s, 3, ReMe), 2.83 (s, 6, ReMe). IR: v(Re=O) 970(s), 1602(m), 1588(m), 1579(sh), 1562(w), 1419(sh),

1312(m), 1260(m), 1239(m), 1150(w), 1010(w), 990(w), 957(sh), 900(m), 752(s), 511(w).

(8) Dimethyloxo(acetonitrile)bis(trimethylphosphine) rheniumV) tetrafluoroborate, [ReOMe₂(PMe₃)₂ (CH₃CN)][BF₄] (5a)

To a mixture of ReOMe₂Cl(PMe₃)₂ (0.100 g, 0.24 mmol) and [Ag(CH₃CN)₂][BF₄] (0.065 g, 0.24 mmol) cold acetonitrile (25 cm³, 0°C) was added. A white powder formed immediately. The solution was stirred (1 h), filtered, and then the solvent removed *in vacuo* to yield a red oil. (Yield 0.086 g, 0.17 mmol, 71%).) Two isomers were observed in solution (the *cis-trans* ratio at 24°C in CD₃CN is 3:1). Found: C, 23.4; H, 5.1; N, 2.9. Calc. for ReP₂F₄ONC₁₀BH₂₇: C, 23.4; H, 5.3; N, 2.7%.

IR: 2287(w), 1314(sh), 1292(m), 1235(s), 1120(br), 1030(br), 1010(m), 950(m), 905(m), 848(w), 761(w).

cis isomer. ¹H NMR (CD₃CN): δ 3.0 (dd, 6, cis-J_{PH} = 7.3 Hz, trans-J_{P'H} = 2.3 Hz, ReMe), 1.9 (s, 3, CH₃CN), 1.83 (d, 18, J_{PH} = 10.3 Hz, PMe₃). ¹³C{¹H} NMR (CD₃CN): δ 18.0 (AXY, 2, J_{CP} = 23 Hz, ³J_{CP} = 10.5 Hz, J_{PP} = -17 Hz, $\Delta P_X - \Delta P_Y = 1.9$ Hz, PMe₃), 14.4 (dd, 2, trans-J_{CP} = 15 Hz, cis-J_{CP} = 9 Hz, ReMe). ³¹P{¹H}: δ - 36.1 (s).

trans isomer. ¹H NMR (CD₃CN): δ 3.73 (t, 6, $J_{\text{PH}} = 6.3$ Hz, Re*Me*), 1.95 (s, 3, CH₃CN), 1.73 (virtual triplet, 18, $J_{\text{PH}} = J_{\text{P'H}} = 5.1$ Hz, P*Me*₃). ¹³C{¹H} NMR (CD₃CN): 14.72 (virtual triplet, 6, $J_{\text{CP}} = {}^{3}J_{\text{CP}} = 17$ Hz, P*Me*₃), -6.1 (t, 2, $J_{\text{CP}} = 5$ Hz, Re*Me*). ³¹P{¹H} (CD₃CN): δ -32.9 (s).

(9) Dimethyloxo(acetonitrile)bis(dimethylphenylphosphine)rhenium(V) tetrafluoroborate, [ReOMe₂ (PMe₂Ph)₂(CH₃CN)][BF₄] (5b)

This compound was prepared by a procedure similar to the one used for the preparation of $[\text{ReOMe}_2(\text{PMe}_3)_2(\text{CH}_3\text{CN})][\text{BF}_4]$. The compound was isolated as a red-orange oil. (Yield 65%.) Two isomers were observed in solution (the *cis-trans* ratio at 24°C in CD₃CN is 2:1).

IR: 2255(w), 2240(m), 1440(sh), 1308(m), 1289(w), 1236(m), 1060(vbr), 980(br), 956(w), 895(m), 870(sh), 838(w), 740(s), 690(m), 675(w), 518(m), 483(s), 412(m), 397(sh).

cis isomer. ¹H NMR (CD₃CN): δ 7.62 (m, 2, PMe₂Ph), 7.51 (m, 3, PMe₂Ph), 3.08 (dd, 6, cis-J_{PH} = 9.4 Hz, trans-J_{P'H} = 2.0 Hz, ReMe), 1.95 (s, 3, CH₃CN), 1.90 (d, 6, J_{PH} = 10 Hz, PMe₂ Ph), 1.85 (d, 6, J_{PH} = 9.9 Hz, PMe₂Ph). ¹³C{¹H} NMR (CD₃CN): δ 132.1 (s, 2, PMe₂Ph), 131.82 (d, 2, J_{PC} = 3.5 Hz, PMe₂Ph), 131.77 (d, 2, J_{CP} = 3.5 Hz, PMe_2Ph), 131.46 (d, 2, $J_{CP} = 3.7$ Hz, PMe_2Ph), 131.41 (d, 2, $J_{CP} = 3.7$ Hz, PMe_2Ph), 130.15 (d, 2, $J_{CP} = 4.5$ Hz, PMe_2Ph), 16.25 (AXY, 2, $J_{CP} = 30$ Hz, ${}^{3}J_{CP} = 2.2$ Hz, $J_{PP} = -12.2$ Hz, $\Delta P_X - \Delta P_Y = 2.0$ Hz, PMe_aMe_bPh), 14.96 (AXY, 2, $J_{CP} = 32.2$ Hz, ${}^{3}J_{CP} = 1.3$ Hz, $J_{PP} = -12.2$ Hz, $\Delta P_X - \Delta P_Y = 2.4$ Hz, PMe_aMe_bPh), 16.5 (dd, 2, $trans-J_{CP} = 16$ Hz, $cis-J_{CP} = 2$ Hz, ReMe). ${}^{31}P{}^{1}H$ NMR (CD₃CN): $\delta - 28.1$ (s).

trans isomer. ¹H NMR (CD₃CN): δ 7.62 (m, 2, PMe₂Ph), 7.51 (m, 3, PMe₂Ph), 3.65 (t, 6, $J_{PH} = 6.4$ Hz, ReMe), 2.02 (virtual triplet, 12, $J_{PH} = J_{PH} = 4.6$ Hz, PMe₂Ph), 1.95 (s, 3, CH₃CN). ¹³C{¹H} NMR (CD₃CN): δ 132.1 (s, 2, PMe₂Ph), 131.82 (d, 2, $J_{PC} = 3.5$ Hz, PMe₂Ph), 131.77 (d, 2, $J_{PC} = 3.5$ Hz, PMe₂Ph), 131.46 (d, 2, $J_{PC} = 3.7$ Hz, PMe₂Ph), 131.41 (d, 2, $J_{PC} = 3.7$ Hz, PMe₂Ph), 130.0 (t, 2, $J_{PC} = ^{3}J_{CP} = 17.2$, PMe₂Ph), -3.1 (t, 2, $J_{CP} = 4.5$ Hz, ReMe). ³¹P{¹H} NMR (CD₃CN): δ -23.4 (s).

(10) Dimethyloxo(acetonitrile)(bis(dimethylphosphino)ethane)rhenium(V) tetrafluoroborate, [ReO Me₂(Me₂PCH₂CH₂PMe₂)(CH₃CN)][BF₄] (**5**c)

This compound was prepared by a procedure similar to the one used for the preparation of $[ReOMe_2(PMe_3)_2(CH_3CN)][BF_4]$. The compound was isolated as a red-brown solid. (Yield 68%.) Found: C, 23.6; H, 5.1; N, 2.5. Calc. for $ReP_2F_4ONC_{10}BH_{25}$; C, 23.5; H, 4.9; N, 2.7%.

¹H NMR (CD₃CN): δ 2.96 (dd, 6, *cis-J*_{PH} = 5.8 Hz, trans- $J_{P'H} = 2.5$ Hz, ReMe), 2.20 (m, 4, $-CH_2PMe_2$, 1.91 (d, 6, $J_{PH} = 11.5$ Hz, $-CH_2$ PMe_2), 1.69 (d, 6, $J_{PH} = 11.5$ Hz, $--CH_2PMe_2$). ¹³C{¹H}: δ 31.5 (AXY, 2, $J_{CP} = 42$ Hz, ³ $J_{CP} = 1$ Hz, $J_{PP} = -16$ Hz, $\Delta P_X - \Delta P_Y = 1.7$ Hz, $-CH_2$ PMe₂), 15.8 (AXY, 2, $J_{PC} = 27.2$ Hz, ${}^{3}J_{CP} = 1$ Hz, $J_{PP} = -10.8$ Hz, $\Delta P_X - \Delta P_Y = 3.3$ Hz, $--CH_2$ PMe_aMe_b , 10.6 (AXY, 2, $J_{CP} = 36$ Hz, ${}^{3}J_{CP} =$ 2.3 Hz, $J_{PP} = -12.8$ Hz, $\Delta P_X - \Delta P_Y = 3.7$ Hz, $-CH_2PMe_aMe_b$, 4.9 (m, 2, ReMe). ³¹P{¹H} NMR (CD₃CN): δ 22.6 (s). IR : 1421(sh), 1302(m), 1297(m), 1250(w), 1210(w), 1186(w), 1135(sh), 1095(s), 1055(s), 1040(s), 1010(s), 955(s), 940(s), 921(sh), 906(sh), 870(s), 851(m), 793(w), 755(m), 651(m), 520(m), 500(sh), 450(m), 355(w), 335(w).

Crystallographic studies

Crystal data. ReOClMe₂(PMe₃)₂ at $-80(1)^{\circ}$ C: M = 419.9; monoclinic, space group $P2_1/n$, a = 6.632(4), b = 12.729(4), c = 17.495(6) Å, $\beta = 93.08(4)^{\circ}$, Z = 4, $D_c = 1.891$ g cm⁻³, μ (Mo- $K_{\alpha}) = 87.21$ cm⁻¹.

Data collection. X-ray data were collected on a

Nicolet R3 four-circle diffractometer equipped with a LT-1 low-temperature device. Data collection was controlled using the Nicolet program P3. Raw diffractometer data were processed using the program XDISK. An empirical absorption correction was performed with the program PSICOR. $4 \le 2\theta \le 45^\circ$, T = 193 K, 4366 data measured, 1930 unique, 1741 observed $[F_0 > 6\sigma(F_0)]$.

Structure solution and refinement. The structure was solved and refined using the SHELXTL-PLUS (microVax II) packages of programs. The rhenium atom was found by use of a Patterson synthesis. Standard difference map techniques were used to find the remaining non-hydrogen atoms. After all of the non-hydrogen atoms were located and refined anisotropically, a difference map revealed approximately one half of the hydrogen positions. The hydrogen atoms were therefore placed in calculated positions on the appropriate carbon atoms $(U_{iso}(H) = 1.2U_{iso}(C); d_{C-H} 0.96 \text{ Å})$ for refinement. Refinement was performed to convergence $\left[\Delta/\sigma(\max) < 0.001\right]$ with this model. The values of R, R_w were 0.0335 and 0.0401, respectively, and the weighting scheme was $w = [\sigma^2(F) + 0.0018F^2]^{-1}$. The final difference map contained two peaks (1.63 and 1.44 $e^{A^{-3}}$) within 1.00 Å of the rhenium. All other peaks were less than 0.90 $e^{A^{-3}}$.

Final atomic coordinates, a table of anisotropic thermal parameters and a F_o/F_c listing have been deposited with the Editor as supplementary material.

Acknowledgement—The authors thank the Petroleum Research Fund, administered by the American Chemical Society, for the support of this research.

REFERENCES

- 1. S. Cai, D. M. Hoffman, D. Lappas and H.-G. Woo, Organometallics 1987, 6, 2273.
- D. Lappas, D. M. Hoffman, K. Folting and J. C. Huffman, Angew. Chem. Int. Ed. Engl. 1988, 27, 587;
 D. Lappas, D. M. Hoffman, K. Folting and J. C. Huffman, Angew. Chem. 1988, 100, 585.

- 3. D. Lappas and D. M. Hoffman, unpublished results.
- 4. N. P. Johnson, F. I. M. Taha and G. Wilkinson, J. Chem. Soc. 1964, 2614.
- 5. (a) A. M. Arif, T. A. Bright and R. A. Jones, J. Coord. Chem. 1987, 16, 45; M. Fernanda, N. N. Carvalho, A. J. L. Pombeiro, D. L. Hughes and R. L. Richards, J. Organomet. Chem. 1987, 335, C23; G. Ciani, A. Sironi, T. Beringhelli, G. D'Alfonso and M. Freni, Inorg. Chim. Acta 1986, 113, 61; G. Gilli, M. Sacerdoti, V. Bertolasi and R. Rossi, Acta Cryst. 1982, 38, 100; C. J. L. Lock and C. Wan, Can. J. Chem. 1975, 53, 1548; G. F. Ciani, G. D'Alfonso, P. F. Romiti, A. Sironi and M. Freni, Inorg. Chim. Acta 1983, 72, 29; C. J. L. Lock and G. Turner, Can. J. Chem. 1977, 55, 333; M. B. Hursthouse, S. A. A. Jayaweera and A. Quick, J. Chem. Soc., Dalton Trans. 1979, 279, (b) J. C. Bryan, R. E. Stenkamp, T. H. Tulip and J. M. Mayer, Inorg. Chem. 1987, 26, 2283, (c) V. S. Sergienko, M. A. Porai-Koshits, V. E. Mistryukov and K. V. Kotegov, Koord. Khim. 1982, 8, 230.
- (a) P. Stavropoulos, P. G. Edwards, G. Wilkinson, M. Motevalli, K. M. Abdul Malik and M. B. Hursthouse, J. Chem. Soc., Dalton Trans. 1985, 2167, (b) P. Edwards, K. Mertis, G. Wilkinson, M. B. Hursthouse and K. M. A. Malik, J. Chem. Soc., Dalton Trans. 1980, 334, (c) W. A. Herrmann, J. G. Kuchler, J. K. Felixberger, E. Herdtweck and W. Wagner, Angew. Chem. Int. Ed. Engl. 1988, 27, 394; W. A. Herrmann, J. G. Kuchler, J. K. Felixberger, E. Herdtweck and W. Wagner, Angew. Chem. 1988, 100, 420.
- P. G. Edwards, A. C. Skapski, A. M. Z. Slawin and G. Wilkinson, *Polyhedron* 1984, 3, 1083; P. G. Edwards, G. Wilkinson, M. B. Hursthouse and K. M. A. Malik, *J. Chem. Soc.*, *Dalton Trans.* 1980 2467.
- 8. G. Rouschias, Chem. Rev. 1974, 74, 531.
- K. W. Chiu, W.-K. Wong, G. Wilkinson, A. M. R. Galas and M. B. Hursthouse, *Polyhedron* 1982, 1, 31.
- 10. W. K. Rybak and J. J. Ziolkowski, J. Mol. Catal. 1987, 42, 347.
- 11. E. P. Clark, Ind. Eng. Chem. Anal. Ed. 1941, 13, 820.
- H. Günther, Angew. Chem. Int. Ed. Engl. 1972, 11, 861; H. Günther, Angew. Chem. 1972, 84, 907.