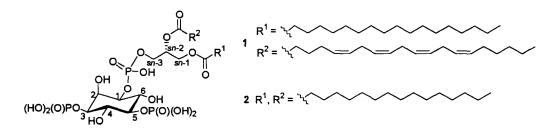


Tetrahedron Letters 39 (1998) 6769-6772

L-α-Phosphatidyl-D-myo-inositol 3,5-bisphosphate: total synthesis of a new inositol phospholipid via myo-inositol orthoacetate

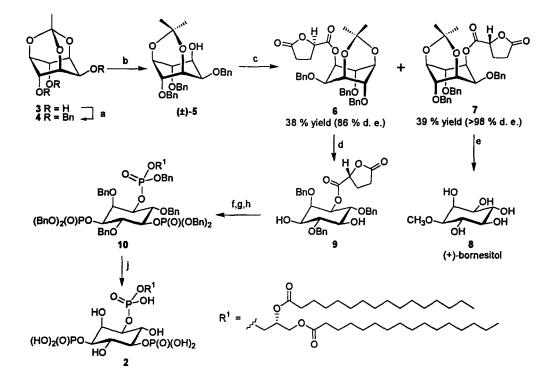
Andrew M. Riley and Barry V. L. Potter*


Wolfson Laboratory of Medicinal Chemistry

Dept. of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK

Received 17 June 1998; accepted 6 July 1998

Abstract: The synthesis from *myo*-inositol of a newly-discovered inositol phospholipid, phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P₂], is described. The synthetic strategy, employing *inter alia*, a trimethylaluminium-mediated regioselective cleavage of a protected *myo*-inositol orthoacetate followed by an optical resolution using (R)-(–)-5-oxo-2-tetrahydrofurancarboxylate esters, allows rapid access to dipalmitoyl PtdIns(3,5)P₂. © 1998 Elsevier Science Ltd. All rights reserved.


Phosphorylation of the hydroxyl groups in phosphatidylinositol [PtdIns] at one or a combination of positions D-3, 4 and 5 of the inositol head group generates a family of phosphatidylinositol phosphates [PtdIns(P)_ns], which have been identified as components of the lipid bilayer of cell membranes. The biological functions of PtdIns(P)_ns in signal transduction, exocytosis and the regulation of membrane trafficking are currently the subject of intense interest in cell biology.¹ Recently, the previously unknown phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P₂, 1] was reported to occur in mammalian cell lines² and a second study has shown that PtdIns(3,5)P₂ is widespread among eukaryotes.³ There now exists compelling evidence that PtdIns(3,5)P₂ may be at the centre of a previously uncharacterised regulatory pathway,^{3,4} but attempts to identify the cellular function of PtdIns(3,5)P₂ will require much larger quantities of phospholipid than can be obtained from natural sources, as well as routes adaptable to the preparation of other pharmacological probes. We therefore report here a concise and versatile synthetic route to dipalmitoyl PtdIns(3,5)P₂ (2).

* Email: b.v.l.potter@bath.ac.uk Fax: +44 1225 826114

0040-4039/98/\$ - see front matter © 1998 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(98)01422-1

The route begins with *myo*-inositol orthoacetate (3).⁵ Conventional benzylation of 3 gave the highly crystalline tri-O-benzyl derivative 4^6 in 87 % yield without recourse to chromatography. It had previously been reported that treatment of 2,4,6-tri-O-benzyl-*myo*-inositol 1,3,5-orthoformate with trimethylaluminium gave (±)-2,4,6-tri-O-benzyl-1,5-O-ethylidene *myo*-inositol⁷, and we reasoned that application of a similar procedure to the orthoacetate ester 4 should give the more useful isopropylidene acetal (±)-5. The advantages of employing the orthoacetate ester are two-fold: first, the resulting isopropylidene acetal does not contain a new stereogenic centre at the bridging carbon, and second, this acetal should be more acid-labile than the corresponding ethylidene, enabling its removal under mild conditions.

Reagents and conditions: a) NaH, BnBr, DMF, 87% b) Me₃Al (2.5 - 3.0 equiv.), CH₂Cl₂, hexane, -78°C, 91%; c) (R)-(-)-5-oxo-2-tetrahydrofurancarboxylic acid, DCC, DMAP, CH₂Cl₂, -78°C to rt; d) 80% acetic acid, rt, then recrystallise from propan-2-ol, 78%; e) i) NaOH, MeOH, reflux; ii) NaH, MeI, DMF; iii) CH₂Cl₂ / CF₃COOH / H₂O 80:19:1; iv) H₂, 50 p.s.i., Pd-C, EtOH; 71% yield for 4 steps; f) (BnO)₂PNPr²₂, 1*H*-tetrazole, CH₂Cl₂; ii) *m*-CPBA, -40°C to rt, 96%; g) NH₃ / MeOH, rt, 91%; h) R¹OP(OBn)NPr²₂, 1*H*-tetrazole, CH₂Cl₂; ii) *m*-CPBA, -40°C to rt, 83%; j) H₂, 50 p.s.i., Pd(OH)₂-C, Bu'OH, 85%. Bn = benzyl.

Optimised conditions involved the use of 2.5 to 3.0 equivalents of trimethylaluminium at -78° C, followed by an alkaline work-up. Under these conditions the alcohol (±)-5 was obtained in high yields on a multigram scale. Higher temperatures gave substantial amounts of the unwanted 2,4,6-tri-O-benzyl-myo-inositol. The isopropylidene acetal of (±)-5 proved to be highly labile, and this property was exploited later in the synthesis.

Attempts to resolve (\pm) -5 employing the widely used (S)-(-)-camphanate esters were unsuccessful, as was the use of acetylmandelate esters,⁸ but DCC-promoted esterification with (R)-(-)-5-oxo-2tetrahydrofurancarboxylic [(R)-(-)-TOF] acid⁹ gave the diastereoisomeric esters 6 and 7^{10} which were separable by flash chromatography. The less polar ester was obtained pure (as judged by ¹H NMR) in this way, and was converted in four steps to (+)-bornesitol¹¹ (8), identifying the ester as 7. The more polar diastereoisomer 6 was obtained contaminated with some 7. For analytical purposes, pure 6 could be isolated by further chromatography, but for the present route, it was convenient to proceed directly to the next step using partially purified 6. Removal of the isopropylidene acetal from 6 by mild acid treatment (acetic acid at room temperature) followed by a single crystallisation from propan-2-ol gave the single diastereoisomer 9^{12} in 78% yield. Highly crystalline 9 could routinely be obtained on a gram scale in this way. Benzylphosphate groups were then introduced at positions 3 and 5 by phosphitylation using $bis(benzyloxy)(N,N-diisopropylamino)phosphine^{13}$ and 1H-tetrazole followed by in situ oxidation with m-CPBA, and the rather labile (R)-(-)-TOF ester was cleaved using ammonia-saturated dry methanol. Reaction at the exposed 1-OH group with benzyl 1,2-O-dipalmitoyl-snglyceryl N,N-diisopropylphosphoramidite¹⁴ in the presence of 1H-tetrazole, gave 10 as a mixture of diastereoisomers after m-CPBA oxidation. Finally, deprotection by hydrogenation over palladium hydroxide on carbon in tert-butyl alcohol¹⁵ gave dipalmitoyl PtdIns(3,5)P₂ (2).¹⁶

In conclusion, we have described an expedient route to a recently-discovered inositol phospholipid, employing a novel regioselective protecting group strategy and a chiral auxiliary new to the field of inositol chemistry. The enantiomer of 2, potentially of use in investigating the specificity of putative target proteins for PtdIns(3,5)P₂, can be synthesised either from 7 or by the use of (S)-(+)-5-oxo-2-tetrahydrofurancarboxylic acid. Finally, intermediate 9, rapidly accessible in high purity from *myo*-inositol orthoacetate, provides a suitable starting point for the synthesis of other analogues of PtdIns(3,5)P₂.

ACKNOWLEDGEMENTS:

We thank the Wellcome trust for Programme Grant Support (045491) and Professors R. Gigg and S. Shuto for advice on the physical properties of phospholipids.

References and Notes

- For reviews see: (a) Divecha, N. and Irvine, R. F. Cell 1995, 80, 269-278; (b) De Camilli, P.; Emr, S. D.; McPherson, P. S., Novick, P. Science 1996, 271, 1533-1539.
- 2. Whiteford, C. C.; Brearley, C. A. and Ulug, E. T. Biochem. J. 1997, 323, 597-601.
- 3. Dove, S. K.; Cooke, F.T.; Douglas, M. R.; Sayers, L. G.; Parker, P. J. and Michell, R. H. Nature 1997, 390, 187-192.
- 4. Hinchliffe, K. and Irvine, R. F. Nature 1997, 390, 123-124.
- 5. Garrett, S. W.; Liu, C.; Riley, A. M. and Potter, B. V. L. J. Chem. Soc. Perkin Trans. 1 1998, 1367-1368.

- 6. Compound 4 had R_f 0.36 (EtOAc / hexane 1:3), mp 77.5 78.5°C (from hexane). All new compounds exhibited satisfactory spectroscopic and analytical data.
- 7. Gilbert, I. H.; Holmes, A. B.; Pestchanker, M. J. and Young, R. C. Carbohydr. Res. 1992, 234, 117-130.
- 8. Mills, S. J. and Potter, B. V. L. J. Chem. Soc. Perkin Trans. 1 1997, 1279-1286.
- 9. Purchased from Aldrich and recrystallised once from ether / hexane before use. The enantiomer, (S)-(+)-5-oxo-2-tetrahydrofurancarboxylic [(S)-(+)-TOF] acid, also available from Aldrich, has been used as a chiral derivatising reagent for alcohols (Doolittle, R. E. and Heath, R. R. J. Org. Chem. 1984, 49, 5041-5050). (S)-(+)-TOF esters have also been employed for the optical resolution of (±)-4-benzyloxytetrahydrofuran-3-ol (Altenbach, H.-J. and Wolf, E. Tetrahedron: Asymmetry 1993, 4, 2155-2158).
- 10. Data for 6: $[\alpha]_D^{20} 21$ (c 1.5, CHCl₃); $R_f 0.40$ (CHCl₃/EtOAc 10:1); δ_H (270 MHz, CDCl₃, TMS) 1.38 (3 H, s, CH₃), 1.43 (3 H, s, CH₃), 2.07 2.16 (1 H, m), 2.24 2.40 (2 H, m), 2.42 2.56 (1 H, m), 4.05 (1 H, br d, $J \sim 5.5$ Hz), 4.27-4.30 (2 H, m), 4.38 4.54 (5 H, m), 4.62 4.72 (3 H, m), 4.92 (1 H, dd, J 8.4, 4.4 Hz, C-2'-H), 5.50 (1 H, dd, J 7.1 5.5 Hz, C-1-H), 7.20 7.32 (15 H, $3 \times C_6H_3$).

Data for 7: $[\alpha]_D^{16}$ -4 (c 1, CHCl₃); R_f 0.48 (CHCl₃/EtOAc 10:1); δ_H (400 MHz, CDCl₃, TMS) 1.39 (3 H, s, CH₃), 1.49 (3 H, s, CH₃), 1.95 - 2.04 (1 H, m), 2.08 - 2.18 (1 H, m), 2.23 - 2.35 (2 H, m), 3.94 (1 H, br s), 4.24 (1 H, dd, J 6.1 2.1 Hz), 4.38 (1 H, br s), 4.41 - 4.54 (4 H, m), 4.62 - 4.76 (4 H, m), 4.87 (1 H, dd, J 8.2, 4.3 Hz, C-2'-H), 5.65 (1 H, dd, J 6.1 3.1 Hz, C-1-H), 7.20 - 7.33 (15 H, m, 3 × C₆H₅).

- 11. ¹H NMR data for 8 agreed with those published for 1D-(-)-1-O-methyl myo-inositol, (Jaramillo, C.; Chiara, J.-L. and Martín-Lomas, M. J. Org Chem. 1994, 59, 3135-3141) but 8 had $[\alpha]_D^{23}$ +32 (c 2, H₂O), identifying it as 1L-1-O-methyl myo-inositol [(+)-bornesitol]; mp 203-205°C (from MeOH / EtOH); Lit. values: + 31.9 (c 1, H₂O), mp 205-207°C (Gigg, J.; Gigg, R.; Payne, S. and Conant, R. J. Chem. Soc. Perkin Trans. 1 1987, 1757-1762. See also references therein).
- 12. Data for 9: mp 121.5 123.5°C from propan-2-ol; $[\alpha]_D^{24}$ -28° (c 1, CHCl₃); δ_H (¹H ¹H COSY, 400MHz, CDCl₃, TMS) 1.93 2.05 (1 H, m, C-3'-H_{2A}), 2.26 2.37 (3 H, m, C-4'-H₂ and C-3'-H_{2B}), 2.39 (1 H, d, J 5.2 Hz, D₂O ex., C-3-OH), 2.59 (1 H, d, J 2.4 Hz, D₂O ex., C-5-OH), 3.58 3.64 (2 H, m, C-3-H and C-5-H), 3.73 (1 H, dd, J 9.5, 9.3 Hz, C-4-H), 3.95 (1 H, dd, J 10.1, 9.2 Hz, C-6-H), 4.06 (1 H, dd, J 2.7, 2.5 Hz, C-2-H), 4.65 4.71 (3 H, m, OCH₂Ar and C-2'-H), 4.75 4.90 (4 H, m, OCH₂Ar), 4.87 (1 H, dd, partly buried, J 10.3, 2.7 Hz C-1-H), 7.24 7.40 (15 H, m, 3 × C₆H₅).
- 13. Yu, K.-L.; Fraser-Reid, B. Tetrahedron Lett. 1988, 29, 979-982.
- 14 Dreef, C. E.; Elie, C. J. J.; Hoogerhout, P.; van der Marel, G. A. and van Boom, J. H. Tetrahedron Lett. 1988, 29, 6513-6516.
- 15 Kozikowski, A. P.; Tückmantel, W. and Powis, G. Angew. Chem. Int. Ed. Engl. 1992, 31, 1379 1381. Deprotection using hydrogenation over palladium on carbon in tert-butyl alcohol / water / NaHCO₃ was unsatisfactory because the product could not be adequately characterised: the sodium salt of 2 gave only broad, unresolved peaks in the ¹H NMR spectrum, and a ³¹P NMR spectrum could not be obtained.
- 16. Although the free acid 2 was poorly soluble in water, and NMR spectra taken in chloroform / methanol mixtures were broad, well-resolved NMR spectra could be obtained in [²H₇]DMF.
 Data for 2: δ_H (¹H ¹H COSY, 400 MHz, [²H₇]DMF, TMS) 0.88 (6 H, t, J 7 Hz, palmitoyl CH₃), 1.22 1.38 (48 H, m, palmitoyl CH₂), 1.54 1.64 (4 H, m, palmitoyl β-CH₂), 2.32 (2 H, t, J 7.6 Hz, palmitoyl α-CH₂), 2.34 (2 H, t, J 7.6 Hz, palmitoyl α-CH₂), 3.98 (2 H, br t, J 9 Hz, inositol C-4-H, C-6-H), 4.10 (1 H, br q, J 8 Hz, inositol C-5-H), 4.18 4.27 (5 H, m, inositol C-1-H and C-3-H, glyceryl sn-1-CH_{2A}, sn-3-CH₂), 4.42 (1 H, dd, J 11.6 Hz, 2.4 Hz, glyceryl sn-1-CH_{2B}), 4.52 (1 H, br s, inositol C-2-H), 5.25 (1 H, m, glyceryl sn-2-H); δ_P (162 MHz, [²H₇]DMF, external H₃PO₄) -1.70 (1P), -0.02 (1P), 1.73 (1P). Negative FABMS (cyclohexylammonium salt, m-NBA): m/z 969.5 [(M-H)⁻, 100%], 647.5 [C₁₅H₃₁COOCH₂CH(OCOC₁₅H₃₁)CH₂OPO₃H⁻, 80%], 255.2 [C₁₅H₃₁COO⁻, 60%]. 97.0 [H₂PO₄⁻, 40%].