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Abstract: Several b-unsubstituted (Z)-g-alkylidenebutenolides
have been prepared in highly stereocontrolled fashion by imple-
menting a steric directing group stratagem in the vinylogous aldol
condensation of butenolides with aldehydes. Applications to the
synthesis of the antitumor heptene (S)-melodorinol and a
thiophenelactone from Chamaemelum nobile L. are described.
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The stereoselective construction of g-alkylidenebuteno-
lides continues to stand as an important objective in syn-
thetic organic chemistry due to the diverse structures and
biological activities of many members of this class.1,2

Most naturally occurring g-alkylidenebutenolides have
the Z-configuration, and many of them lack a b-sub-
stituent, as represented by eremolactone (1),1a the anti-
tumor heptene (S)-melodorinol (2),3 and the noncytotoxic
cholesterol biosynthesis inhibitor xerulin4 (3; Figure 1).

Figure 1

Although the Z-isomers are generally more stable than
their E-counterparts, in the absence of a b-substituent the
preference for formation of the Z-isomer is usually small.1

As a consequence, traditional synthetic approaches in-
volving alkylidenation of preformed oxacycles, such as
butenolides and 2-silyloxyfurans, are notoriously nonste-
reoselective.1a,5,6 Useful solutions to this problem include
the inherently stereospecific anti-elimination of diaste-
reomerically pure syn-g-(a-hydroxyalkyl)butenolides,1b,2c

the metallocyclization–protolysis of (Z)-2-en-4-ynoic
acids,1a,d and the Stille coupling of (Z)-halomethylidene-
butenolides with organotin reagents.7 While these

methods offer stereochemical predictability and high
levels of selectivity, they all require access to stereo-
defined precursors that may involve several steps and/or
the separation of diastereoisomers.1b,8

Scheme 1

In the course of our work on the total synthesis of
nostoclides and rubrolides,9 we found that mixtures of
syn- and anti-g-(a-silyloxyalkyl)butenolides bearing a b-
isopropyl or aryl substituent readily undergo b-elimina-
tion in the presence of DBU to afford solely (Z)-g-alkyl-
idenebutenolides. The consistently high stereoselectivity
seen in these reactions9,10 can best be explained by an
E1cb mechanism9a whereby the formation of the Z-isomer
is favored due to the steric bias provided by the b-sub-
stituent (Scheme 1).11 We now report an extension of the
mechanistic principle to the synthesis of b-unsubstituted
(Z)-g-alkylidenebutenolides by using bromine as a re-
movable steric directing group.12

The serviceability of this strategy was initially demon-
strated by the preparation of benzylidenebutenolide 7a
from silyloxyfuran 413 (Scheme 2). In accord with a gen-
eral trend,9a,14 the TBSOTf-mediated Mukaiyama aldol
reaction of 4 with benzaldehyde delivered a 3.3:1 mixture
of the syn- and anti-bromobutenolides 5 in 91% yield.15

Treatment of this mixture with DBU in dichloromethane
provided (Z)-ylidenebutenolide 6a as the only detectable
isomer in 94% yield after chromatography. Smooth de-
bromination to 7a was achieved by either Pd(0)-catalyzed
reduction with tri-n-butyltin hydride (Bu3SnH)16 or
Brückner’s procedure (Zn, AcOH–THF, sonication).7a

While the former method gave the highest yield (97%),
the latter was cleaner making product purification easier.
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Scheme 2 Reagents and conditions: (i) PhCHO (1 equiv), TBSOTf
(1.1 equiv), CH2Cl2, –78 °C, 2 h, 91%; (ii) DBU (2 equiv), CH2Cl2,
r.t., 1 h, 94%; (iii) Bu3SnH (1.4 equiv), (Ph3P)4Pd (0.02 equiv),
CH2Cl2, r.t., 1 h, 97%; (iv) Zn dust, AcOH, THF, r.t., sonication, 45
min, 85–88%.

The promise of this approach was further manifested by
the direct alkylidenation of b-bromobutenolide 8 using a
new variant of the one-pot procedure that we had previ-
ously developed for condensing b-arylbutenolides with
aromatic aldehydes.9b Thus, sequential treatment of 8 with
TBSOTf–triethylamine, the appropriate aldehyde and
DBU,17 delivered the corresponding g-alkylidene-b-bro-
mobutenolides 6 with excellent stereocontrol (Table 1).
Attempts to condense the parent, non-brominated a,b-
butenolide with benzaldehyde or p-anisaldehyde under
the same conditions led to complex mixtures containing
little, if any, of the desired product (7a: 0%; 7b: ca. 5–
10%). These results suggest that in addition to performing
the intended steric directing role, the b-bromine also
provides a strong accelerating effect to the condensation
process.

Using this protocol, lactone 7c, a constituent of Chamae-
melum nobile L. and popular target for testing new meth-
odology,18 was prepared from 5-methylthiophene-2-
carboxaldehyde in 76% yield over two steps (Table 1).
Likewise, (E)-cinnamaldehyde was easily converted into
7d,19 which has only recently been prepared stereoselec-
tively by Stille coupling.7a

In contrast to aromatic aldehydes, simple alkanals did not
undergo condensation with 8 under these conditions.
Their conversion to (Z)-alkylidenebutenolides could be
achieved with little additional effort through Mukaiyama
aldol reaction with silyloxyfuran 413 or 920 (Table 2).
Dehydration of the so obtained mixtures of syn- and anti-
alcohols 1015 with mesyl chloride in the presence of tri-
ethylamine–DMAP (0 °C) or pyridine (r.t.) furnished 11
(Z:E > 40:1) in good to excellent yields.21

The crude diastereomeric aldol products can be carried
forward without chromatographic purification, as illus-
trated by the entirely stereoselective conversion of (R)-
2,3-isopropylidene glyceraldehyde to 11e (65%, 2 steps)
in the context of a new synthesis of (S)-melodorinol (2).
Debromination of 11e provided the requisite relay ace-
tonide 12e3a (93%, Table 2) whose hydrolysis and ensuing
benzoylation afforded 2 as a pale yellow oil {[a]26

D +91.0,
(c = 0.98, CHCl3); Lit. [a]D +86.4,3a [a]D +92.53b} in 61%
yield for the two steps (Scheme 3).

In summary, this new methodology enables stereo-
controlled access to a variety of b-unsubstituted (Z)-g-
alkylidenebutenolides from readily available, non-stereo-
defined precursors. Moreover, the intermediate (Z)-g-
alkylidene-b-bromobutenolides are interesting in their

O OTBS

Br

O O

Br

Ph

R1 R2
O O

X

Ph

i

syn-5 R1 = H, R2 = OTBS
anti-5 R1 = OTBS, R2 = H

4
6a  X = Br
7a  X = H

ii

iii
or iv

Table 1 Stereocontrolled Access to (Z)-g-Alkylidenebutenolides 
from b-Bromo-a,b-butenolide (8)

R Yield (%)a,b of 6 Yield (%)a of 7

Ph 68c (6a) 86d (7a)

p-MeOPh 85 (6b) 87 (7b)

83 (6c) 91 (7c)

70 (6d) 77d (7d)

a Yields refer to chromatographically purified products.
b The Z/E ratio was over 40:1 according to 1H NMR.
c A second portion of TBSOTf (1.1 equiv) was added after the 
aldehyde.
d Data from ref. 7a.
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Table 2 Preparation of (Z)-g-Alkylidenebutenolides from 
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of 11
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of 12

Me(CH2)3 H 91 (10a; 5.0:1) 98 (11a) 96 (12a)

Me(CH2)3 Me 87 (10b; 5.2:1) 91 (11b) 97 (12b)

Ph(CH2)2 H 82 (10c; 5.5:1) 99 (11c) 89 (12c)

PhCH2 H 75 (10d; 4.2:1) 76d (11d) 77 (12d)

H –c 65d (11e) 93 (12e)

a Yields refer to chromatographically purified products. Aldols 
10a–d were obtained as diastereomeric mixtures after chromatogra-
phy on silica gel.
b The Z/E ratio was over 40:1 according to 1H NMR.
c Not determined; see text.
d Dehydration was carried out using MsCl in pyridine at r.t.
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own right since they can be transformed to a range of
b-substituted homologues by cross-coupling reac-
tions,7a,9b,22 and also due to the recent discovery that cer-
tain members of this class are potent quorum sensing (QS)
inhibitors23 with potential utility for the treatment of an-
thrax and other bacterial infections.24 Such applications
are under study and the results will be reported in due
course.
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