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Abstract: A general and etticiant approach for synthesis of dihydruagarofuran sesquiterpanoid, the 
core structure of the polyol esters extensively present in the Celastraceae plants, has beqm developed 
by a series of transformations, which mainly include three creative and synthetically valuable 
conversions: the strategic donble-bond shifting of 3, the versatile re~.gement of epoxide 5 
gmerating two key functions, the C5-OH and 7,11-Double-bond, and the stereoselective cyclizatiord 
reduction of 8 constructing the tetrahydrofuran ring of 11. Thus the sesquiterpenoid 3ct,6ct,12- 
lrihydroxy-dihydoagarofuran I was synthesized. © 1998 Elsevier Science Ltd. All rights reserved. 

A variety of  dihydroagarofuran sesquiterpene polyol esters, including the alkaloids, have been 

characterized from the Celastraceae plants during the past few decades, 1'2 many of  which demonstrated the 

important cytotoxie, 3 immunosuppressive, 4 anticancer, 5 insecticidal 6 and insect antifeedant 7 activities, but less 

synthetic work about them was reported because of  the challenging multi-hydroxylation on the skeleton and 

construction of  the tetrahydrofia'an moiety. Of few sueceksful synthesis, 8-1° the procedure for synthesis of  a 

compound possessing few hydroxyls appeared even quite long and complicated, and all requires the essential 

establishment of  a specific configuration at C-7 for construction of  the tetrahydrofuran ring. In our recent 

synthetic efforts, research interesting was focussed on searching for a short and efficient procedure by choice 

of  ct-(-)-santonin as starting material, a rich and synthetically versatile natural source, H because of  the 

possible generation o f  multiple hydroxyls from its multi-functionality. This paper mainly describes the 

efficient synthesis o f  the core structure bearing three hydroxyls without the essential construction of  the 

stereoselective carbon center C-7. 
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For mainly working on the T-lactone moiety of  santonin 2 to construct the tetrahydronfuran ring, our 

synthesis, as indicated in scheme 1, was simplified to begin with the dihydro-santonin 3, prepared by 
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controlled hydrogenation of  2. '2 Thus the acid-catalyzed contraction with glycol in dry benzene under Dean- 

Stark water trapping gave the major double-bond-shifting and carbonyl-protected product 4 in the 66% yield. 

The presence of  a quartet at 8 3.03(d=-7.SHz) for 4-methine and the absence of  a signal for H-6 in the IH 

NMR in 4 suggested that double bond migrated to C5 and C6. The axial direction of  C4-Me was assigned 

based on the 'H NMR W couplings between H-2 and H-4 in the following 5 (d=3Hz) and ll(d=-l.THz). Then, 

epoxidation of  4 with m-CPBA in CH2C12 at r. t. formed only one epoxide in the 68% yield, whose ~3C NMR 

signals at ~ 71.8 and 91.9 for two quaternary carbons and the molecular composition C~7 H240 5 established by 

HRMS, indicated the 5,6-epoxide 5 was formed. The (z-face direction of  the epoxy oxygen in 5 was assigned 

based on the consideration that the oxygen attacked the double-bond fi~om the (z face of  it due to the steric 

hindering caused by two [3 methyls, the C4-Me and C~0-Me. 
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Scheme 1. a. H~=enay Ni/C~-I6; b. Glycol(5eq)/PTS/C~ reflux; c. m-CPBA(1.Seq)/CH2CI2, r. t., overnight; 
d. NaOMc(50eq)/MeOH, r. t.; e. LiAII-I4(20eq)/THF, -40°C(3h)-,r. t.(overnight); f. Hg(OAc).z/THF/H20 , 2h; 
g. NaBHi(20eq)/NaOH, r. t., 3h; h. MeCOMe[PTS, r. t., 15 rain; i. LiAIHi(1.5eq)/EhO, -78°C, 4h; j. PhCHO/ 
ZnCI2, r. t., 15h. 

Epoxide 5, when treated with NaOMe in MeOH at r. t., underwent an unusual rearrangement to give the 

important intermediate 6 in the 83% yield if the reaction was quenched with water upon the emerging of  the 

further dehydration product 7. The ~3C NMR of  6 displayed the signals at 8 120.8 and 161.3 for the 

tetrasubstituted and acyl-conjugated 7,11-double-bond, and that at 5 78.7 for oxygen-born quaternary C-5. 

The axial H-6 of  6 was assigned based on the similar literature stereochemistry consideration,~3 which was 

confirmed by NOESY technique for the following 1. The (z-configuration of  Cs-OH of 6 was confirmed by 
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the later successful cyclization of 8. Rearrangements of this epoxide under the typical conditiom, for 

example with Al(O-i-Pr)3/isopropanol or Al(O-i-Pr)3/tolune in place of NaOMe/MeOH, proved to be 

ineffective.! 4 Although the details of this rearrangement were unclear, the result was of synthetically 

significant importance not only because of the generation of Cs-OH and 7,1 l-double-bond for the following 

convenient tetrahydrofuran cyclization, but the possible hydroxylation at C-8 and C-9 through the appropriate 

functionization at the allylic position C-8 of this double-bond. 

Reduction of 6 with LiAIH4/THF at - 40°C---> r. t. gave the triol product 8 in the yield 95%, whose ~3C 

NMR exhibited the signals at 5 64.9 for the 12-methylene. Compound 8, when treated with Hg(OAc)2/THF 

followed by reduction with NaBH4 in situ, smoothly gave the lone product 11 in total yield 82%, 15 and no 

other 11-epimerization product could be isolated and detected. Other cyclization conditions, such as 

NBS/THF, H2SO~)cnzcne and p-TsOH/bcnzcne, proved to be ineffective, which all gave the very 

complicated mixtures. The down-field ~3C NMR signals at 5 92.8 and 84.7 indicated the successful 

cyclization of  the tetrahydrofuran ring because nearly all compounds of  this kind have the similar shifting 

values. The assignment of  the possible configuration at C-11 in 10 was based on that the equatorially direct 

coordination of  Hg(OAc)2 with the double bond in 8 formed the triangle intermediate 9, ~ which permitted 

that the Cs-OH attacked C-11 only from one side, the opposite one of  the Hg atom, and thus led to the 

formation of  13 CH-hydroxymethyl in 10, which then was reduced to compound 11 with NaBH~. Most 

important, this 13 direction of  the CH-hydroxymethyl was just required for synthesis of  a number of  bioactive 

micro-lactone alkaloids, such as Cathedulin K-197 

For generation of  an axial C3-OH which was also essential for synthesis of  this kind of  micro-lactone 

alkaloids mentioned above, a series of  diastereoselective reductions were tried, and LiAlI-h reduction at low 

temperature proved to be effective. Thus compound 11 was subjected to deprotection with acetone/H + 

followed by reduction with LiAIH4 at -78°C gave two separate products 1 and 12 in ratio 14/1, total yielding 

70%. The axial direction of  C3-OH of the dominant I was assigned based on its 1H NMR singlet at 6 3.75 and 

the singlet of  the following 13 at 8 5.53 for H-3. For further confirming the stereochemical assignments of  C- 

3, C-4 and C-6, a NOESY spectrum was taken, whose results were consistent with those mentioned above. 

Furthermore, compound 1 was readily contracted with PhCHO/ZnC12 to give the only acetal 13 in the 55% 

yield, supporting the above assignment of  13 C.-hydroxymethyl because an a form hardly formed such a 

cyclic acetal due to the steric hindering. As a result, we have synthesized a dihydroagarofuran 

sesquiterpenoid 1 with three hydroxyls useful for fiLrther synthesis of  natural products. All structures of  these 

compounds described above were determined mainly by NMIL MS and HRMS analysis. ~7 

The method reported above is in deed a new route for synthesis of  dihydroagarofuran sesquiterpenoids. 

If  the hydroxyls are introduced at appropriate stages of  this synthetic scheme, a series of  important chiral 

dihydroagarofuran sesquiterpene compounds or their enantiomers ~8 could be synthesized. 
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