Reactions of Aromatic S- and O-Enynes with Two Methyl Substituents on the Olefinic Unit Assisted by a Ruthenium Complex: Tandem Cyclization and Product Selectivity

Yi-Jhen Feng, Ying-Hsuan Lai, Ying-Chih Lin,* Shou-Ling Huang, and Yi-Hung Liu^[a]

Abstract: Ruthenium-assisted cyclizations of two enynes, $HC \equiv CCH(OH)$ - $(C_6H_4)X-CH_2CH=CMe_2$ (X=S (1a), O (1b)), each of which contains two terminal methyl substituents on the olefinic parts, are explored. The reaction of 1a in CH₂Cl₂ gives the vinylidene complex 2a from the first cyclization and two side products, 3a and the carbene complex 4a with a benzothiophene ligand. The same reaction in the presence of HBF₄ affords 4a exclusively. Air oxidation of 4a in the presence of Et₃N readily gives an aldehyde product. In MeOH, tandem cyclizations of **1a** generate a mixture of the benzothiochromene compound **10a** and the carbene complex **7a** also with a benzothiochromene ligand. First, cyclization of **1b** likewise proceeds in CH₂Cl₂ to give **2b**. Tandem cyclization of **1b** in MeOH yields comparable products **10b** and **7b** with benzochromene moi-

Keywords: cyclization • enynes • oxygenation • ruthenium • vinylidene ligands

eties, yet with no other side product. The reaction of [Ru]Cl with $HC \equiv CCH(OH)(C_6H_4)S-CH_2CH=CH_2$ (1c), which contains no methyl substituent in the olefinic part, in MeOH gives the carbene complex 15c with an unsubstituted thiochromene by means of a C-S bond formation. Structures of 3a and 15c are confirmed by X-ray diffraction analysis. The presence of methyl groups of enynes 1a and 1b promotes sequential cyclization reactions that involve C-C bond formation through carbocationic species.

Introduction

Heterocyclic sulfur and oxygen-containing compounds such as thiochromane and chromane derivatives attract a great deal of interest because these compounds are commonly found in many natural and biologically active compounds.^[1] Thiochromane derivatives are ordinary structural motifs in pharmaceutical molecules for use in antiestrogens,^[2] anti-HIV drugs,^[3] depression, schizophrenia, and Parkinson's disease.^[4] Thus the development of effective strategies for the synthesis of heterocyclic compounds remains a challenge for modern organic synthesis.^[5] Transition-metal vinylidene, acetylide, and allenylidene complexes have been among the most prominent catalytic precursors employed in organic synthesis.^[6,7] Recently, metal-catalyzed cycloisomerization of envnes has been utilized as an efficient synthetic strategy for a variety of carbo-^[8] and heterocycles,^[9,10] because of the presence of the metal-stabilized "nonclassical" cationic intermediate. In addition, the metal-catalyzed cycloisomerization of enynes often leads to various skeletal rearrangements.^[11] A number of ruthenium allenylidene complexes

 [a] Y.-J. Feng, Y.-H. Lai, Prof. Dr. Y.-C. Lin, S.-L. Huang, Y.-H. Liu Department of Chemistry, National Taiwan University Taipei, 106 (Taiwan)
 Fax: (+886)223636359
 E-mail: vclin@ntu.edu.tw

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/asia.201301264.

have been proposed as the key intermediate in intra- and intermolecular carbon–carbon bond-forming reactions between propargylic alcohols and alkenes.^[12] Similar C–C bond-forming reactions have been reported in a rutheniumcatalyzed intramolecular cyclization of enynes with a propargylic alcohol containing heteroatoms and with various methyl substituents on the olefinic part.^[13]

Previously, we developed ruthenium-mediated skeletal rearrangement of 1,5-enynes, which was proposed to proceed by means of an unusual mechanism that involves a formal metathesis process of the terminal vinyl group with the C=C of the vinylidene group.^[14] However, ruthenium-mediated cycloisomerizations of 1.*n*-envnes with a methyl group at the terminal vinyl group produced alkoxycyclohexenes^[14] and a vinylidene complex with a cyclic ring that contains an unsaturated vinyl group.^[12e] Presumably, this vinylidene ligand might undergo further cyclization, which was not observed. In our previous investigation, we found a ruthenium-mediated tandem cyclization reaction of a phenyl propargylic alcohol, with a methyl-substituted allylic group at the ortho-position of the aromatic ring, which afforded a tricyclic compound with two newly formed six-membered rings.^[8g] Quite recently, we found that different tandem cyclization reactions took place at similar enynes that contained thioether but with an internal methyl substitutent instead of two terminal methyl substituents in the olefinic group to afford an altered tricyclic compound with a methanobenzothionine skeleton.^[9f] The reactions of envnes with various methyl substituents on the olefinic part are significantly different from that of corresponding enynes with no methyl group on the olefinic part.^[8g,12e,14] As an extension of our previous study, we explore ruthenium-mediated reactions of an aromatic propargylic alcohol, with a two-terminal methyl-substituent-containing allylic sulfane moiety at the *ortho* position of the aromatic ring. Herein, we report our results on the study of reactions of [Ru]Cl with aromatic sulfur- and oxygen-enynes that contain a propargylic alcohol group.

Results and Discussion

Enyne Cyclization in CH₂Cl₂

Treatment of the aromatic propargyl alcohol **1a**, which contains two terminal methyl groups in the olefinic part, with [Ru]Cl ([Ru]=[Cp(PPh₃)₂Ru]; Cp=cyclopentadienyl) in the presence of NH₄PF₆ in CH₂Cl₂ at room temperature affords the vinylidene complex **2a** together with the metallacyclic complex **3a** and the carbene complex **4a** in a ratio of 39:55:6 (see Scheme 1). Deprotonation of **2a** takes place when the mixture is passed through an Al₂O₃ column to result in the yellow acetylide complex **5a** and a mixture of **3a** and **4a**. Reprotonation of **5a** with HBF₄ at 0 °C quantitatively yields **2a**. The structure of **2a** with a substituted thiochromane unit at C β is revealed by 2D NMR spectra. For example, the COSY NMR spectrum shows correlations of

Abstract in Chinese:

含硫原子並有兩個甲基修飾在末端烯基的芳香烯 炔化合物 1a 與釘金屬化合物 Cp(PPh3)2RuCl 在二氯 甲烷下反應,經過一次環化反應,生成釘亞乙烯 錯合物 2a,反應伴隨著生成 3a 和碳烯錯化合物 4a。相同反應若加入氟硼酸,或是將金屬化合物 改換成(Cp(PPh₃)₂RuNCCH₃)⁺,則在 NH₄PF₆和二氯甲 烷下,只得到單一產物 4a。在三乙基胺存在下 4a 與氧氣反應,釋出配位基,得到帶有醛基之有機 物。相同的反應在以甲醇為溶劑的條件下,則產 生連續兩次環化反應,而生成釘金屬碳烯錯化合 物 7a 和 10a,反應並伴隨著 3a 的生成。而氧原子 取代硫原子的相似芳香烯炔化合物 1b 與釘金屬化 合物的反應,也可以用溶劑控制,而得到相似的 一次環化產物 2b 或二次環化的產物 7b 以及 10b。 此反應沒有生成其他副產物。末端烯基上沒有甲 基取代基的含硫烯炔化合物 1c 與釘金屬化合物在 以甲醇為溶劑下作用,產生硫攻擊炔基末端的碳 的環化反應,生成含硫六環的金屬碳烯錯合物 15c。 單晶繞射確定了兩個釘錯合物 3a 與 15c 的固態結 構。

Scheme 1. Reaction of 1a with [Ru]Cl in CH₂Cl₂.

the ¹H resonance at $\delta = 4.07$ ppm, which is assigned to C γ H, with two doublet resonances at $\delta = 4.46$ and 2.53 ppm, which are assigned to C β H and the neighboring CH group of the aliphatic ring, respectively, thus indicating formation of the six-membered ring. The 2D HMBC NMR spectrum reveals the correlation between the triplet ¹³C peak at $\delta = 347.84$ ppm with ²*J*(C,P)=16.1 Hz, which is assigned to C α , and the C γ H resonance at $\delta = 4.07$ ppm.

A pathway for the cyclization reaction to yield **2a** might proceed through the formation of an allenylidene **B** followed by either a direct addition of the olefinic group to the electrophilic $C\gamma$,^[12d,13b] as shown in Scheme 2. That is to say, an intramolecular attack of the tethering olefinic portion onto $C\gamma$ of **B** generates the acetylide intermediate **C**, which bears a cationic charge. Stability of this tertiary carbocationic intermediate could significantly assist this cyclization process. Then transfer of one terminal proton into the acetylide ligand gives **2a**. Alternatively, a concerted allenylidene-ene pathway directly transforms **B** into **2a**.^[12a,b]

For the formation of **3a** and **4a**, intermediate **A** with a π coordinated alkyne might play the key role. Interestingly, at 40 °C in CH₂Cl₂, the C–C bond formation is prohibited; instead, the reaction gives **3a** as the major product in 86% yield with a small amount of **4a**. At higher temperature, formation of **A** is probably favored in CH₂Cl₂, thus leading to **3a**. In the ¹H NMR spectrum of **3a**, the characteristic OH proton resonance appears as a doublet at $\delta = 3.52$ ppm with ²*J*(H,H)=8.4 Hz, which disappears upon addition of D₂O. The ³¹P NMR spectrum of **3a** shows two broad peaks at $\delta =$ 55.01 and -6.43 ppm at room temperature, which displays two sharp peaks at 233 K. This might be due to the weak coordinating ability of S atom to Ru metal.

Single crystals of **3a** were obtained from CH₂Cl₂/hexanes. The molecular structure was determined by X-ray diffraction analysis. An ORTEP-type view of **3a** is shown in Figure 1, and their selected bond lengths and angles are collected in the legend below. The bond length of Ru1–C1 (2.053(3) Å) is slightly longer than that of a typical Ru–C single bond.^[15] The Ru1–S1 bond length of 2.342(1) Å is similar to other Ru–S bond lengths observed for a few arene half-sandwich complexes in which the thioether moiety is part of a metallacycle or a mixed thioether/thiolate

Scheme 2. Formation of 2a, 3a, and 4a in CH₂Cl₂, and 6a in MeOH.

Figure 1. ORTEP drawing of **3a**. For clarity, the aryl group of PPh₃ ligands on Ru except for the *ipso*-carbon atoms are omitted (thermal ellipsoid is set at the 50% probability level). Selected bond lengths [Å] and angles [°]: Ru1–C1 2.053(3), Ru1–S1 2.3415(7), C1–C2 1.533(4), C2–C3 1.499(4), C1–C9 1.354(4), C11–C12 1.324(5), C2–O1 1.435(4), S1–C4 1.779(3), S1–C10 1.849(3), P1–C9 1.769(3); C1–Ru1–S1 91.86(8), C2–C1–Ru1 117.31(19), C9–C1–Ru1 123.0(2), C4–S1–Ru1 113.34(10), C3–C2–C1 114.2(2), C1–Ru1–P2 91.87(3), P2–Ru1–S1 87.97(3).

chelating ligand.^[16,17] In such complexes Ru–S bond lengths usually range within 2.30–2.34 Å. The C11–C12 and C1–C9 bond lengths of 1.324(5) and 1.354(4) Å are in the range of values for a regular double bond. The addition of a PPh₃ group at C9 is clearly seen. The C2–O1 bond length of 1.435(4) Å is a typical C–O single bond of a hydroxyl group.^[12e]

Even though the electrophilic $C\alpha$ of an allenylidene or a vinylidene ligand is susceptible to attack^[18] by a nucleophile such as phosphine,^[19] the presence of both the terminal alkynyl hydrogen and the hydroxyl groups on **3a** indicates that nucleophilic attack of PPh₃ should take place while the alkynyl ligand is π -coordinated to the ruthenium center instead of through the allenylidene or vinylidene intermediate.[20] As shown in Scheme 2, direct migration of PPh₃ from metal center onto C α of the π -alkyne ligand provides a vacant site on the metal. Subsequent sulfur coordination affords 3a. The high coordination ability of the sulfur atom to transition metals^[21,22] is attested by a variety of ruthenium complexes that contain the S,X-chelating ligand $(X=N, O, P)^{[23]}$ reported in the literature. In a recent study, (η^6 p-cymene) ruthenium complexes derived from bidentate thiosemicarbazones were evaluated for their biological activity against breast and colorectal carcinoma cells.[24] These com-

plexes exhibited good in vitro cytotoxic activity against all cancer cell lines.

Oxidation of 4a to Aldehyde

Interestingly, the reaction of 1a is controlled to yield 4a exclusively. That is to say, the reaction of 1a with $[Ru]NCCH_3^+$ in the presence of NH_4PF_6 in CH_2Cl_2 gives only 4a in 83% yield. Alternatively, in the presence of HBF₄ in MeOH at room temperature, the reaction with [Ru]Cl also produces 4a in 78% yield. The structure of 4a is determined by spectroscopic methods. In the ¹H NMR spectrum of 4a, the relatively downfield triplet resonance at $\delta = 14.92 \text{ ppm}$ with ${}^{3}J(P,H) = 11.2 \text{ Hz}$ is assigned to $C\alpha H.^{[12e,25]}$ As shown in Scheme 2, the reaction that yields **4a** is believed to proceed by means of π coordination of the alkynyl ligand to the metal center to give A. Cleavage of the substituted allylic group is accompanied by a nucleophilic attack of the S atom to give $\mathbf{E}^{[26]}$ Dehydroxylation of \mathbf{E} then leads to 4a. The presence of HBF₄ might assist cleavage of the allylic group and enhances the rate of nucleophilic attack, thus making 4a the only product.

A recent study by our group revealed that a metal carbene complex with a highly conjugated ring system might be oxidized in the presence of amines in air to yield aldehyde.^[25] Also with a highly conjugated ring structure, **4a** undergoes an oxidation reaction in air in the presence of an excess amount of NEt₃ in CH₃CN at ambient temperature to afford 2-benzothiophenecarbaldehyde **13a** in 80% yield (see Scheme 3). In the absence of NEt₃, no aldehyde was obtained even under an oxygen atmosphere. Compound **13a** has been used as a precursor for the synthesis of dihydrofuro[3,4-*c*] pyridinones and shows inhibition of the cytolytic effects of the lymphocyte toxin perforin.^[27]

Scheme 3. Oxidation of 4a to aldehyde.

AN ASIAN JOURNAL

The proposed pathway for the oxygenation is shown in Scheme 3.^[25] Dissociation of a PPh₃ ligand provides a vacant site for coordination of O_2 to give \mathbf{F} .^[28] The promoter NEt₃ or dissociated PPh₃ is then treated with the activated oxygen to give ONEt₃ or OPPh₃ and a metal oxo/carbene complex.^[29] Coupling of two ligands, induced by the incoming PPh₃ yields \mathbf{G} ,^[30] which generates aldehyde **13a** in good yield.

Tandem Cyclization in MeOH

Previously, tandem cyclizations of all-carbon-chain aromatic enynes^[8g] with methyl groups on the olefinic part in CHCl₃/ MeOH were found to proceed through vinylidene intermediates that contain unsaturated olefinic groups on the ligand. Complex 2a also has a tethering olefinic group on the vinylidene ligand, and is expected to show an additional cyclization reaction, which is indeed observed when the reaction is carried out in alcohol. Treatment of 1a with [Ru]Cl in the presence of KPF₆ in MeOH at 60 °C affords the carbene complexes 7a and 10a, in addition to 3a, in a ratio of 16:63:21 (see Scheme 4). Treatment of 2a in MeOH at 60 °C also affords 7a and 10a. Two products, 7a and 10a, which have different tetrahydrobenzothiochromene units, were characterized by spectroscopic methods. For 7a, the HMBC NMR spectrum shows correlations between the singlet ¹H peak at $\delta = 7.22$ ppm assigned to =CH with three ¹³C resonances at $\delta = 62.86$, 39.48, and 23.78 ppm assigned to the methylene, bridgehead CH, and methyl carbon atoms, thereby revealing the C-C bond formation. For 10a, the COSY NMR spectrum shows correlations of the multiplet resonance at $\delta = 5.58$ ppm, which is assigned to one of two olefinic =CH, with that of the next methylene group. Interestingly, aromatization occurs when 7a is passed through a neutral Al_2O_3 column to give the yellow product **11a** with two aromatic rings (see Scheme 4). Two bridgehead CH resonances of **7a** disappear in the ¹H NMR spectrum of **11a**. When 11a is treated with HCl, cleavage of the M-C bond gives 12a in 86% yield. Two singlet peaks at $\delta = 3.84$ and 2.43 ppm in the ¹H NMR spectrum of **12a** are assigned to aliphatic CH₂ and Me groups, respectively.

Scheme 4. Tandem cyclization of 1a in MeOH.

Distribution of products for the reaction of 1a in MeOH depends on the reaction temperature. The reaction at 0°C failed to give the desired products. At room temperature, the reaction affords 7a (31% yield) together with a mixture of 3a, 4a, and a new vinylidene complex 6a in a ratio of 33:28:28:11. The structure of **6a** bears resemblance to **2a**. Presumably, addition of a methanol molecule to C generates 6a in MeOH (see Scheme 2). Deprotonation of 6a yields the yellow acetylide complex 8a. The reaction of 1a in MeOH at 40°C for 1 day afforded 9a with benzothiochromene, a precursor for 10a, in 14% yield, in addition to 3a, 4a, and 7a. The ratio of 9a/3a/4a/7a is 9:41:28:22. The reaction at 40 °C for 3 days leads to the organic product 10a by protonation of 9a, along with 3a, 4a, and 7a. As was mentioned above, the reaction in MeOH at 60°C for 1 day gave 10a in 37% yield. Conducting the reaction at a higher temperature in MeOH seems to promote tandem cyclization. Similarly, the reaction of 1a with [Ru]Cl in EtOH at 60°C also afforded 3a, 7a, and 10a' with an ethoxy group.

Both **7a** and **9a** are formed through **2a**. As shown in Scheme 4, the second cyclization is believed to proceed by nucleophilic addition of the olefinic moiety to C α of the vinylidene ligand, thereby affording the intermediate **H**, which contains a cationic charge on the tertiary carbon. Subsequent proton migration generates **7a**. Alternatively, the addition of a methoxide group at the tertiary carbocation of **H** gives **9a**. Experimental results from deuterium-labeling experiments are consistent with this pathway. The reaction of **1a** in MeOD affords **7a–d**, with deuteration at the C β methylene group, as indicated by the absence of the ¹H signals at $\delta = 3.86/2.20$ ppm. Complexes **7a** and **9a** are not interconvertible, since the attempted reaction of **7a** with MeOH in the presence of NaOMe fails to give **9a**.

Oxygen Analogue of 1a

The ruthenium-induced cyclization reaction of **1b** gives fewer products, which is most likely due to the relatively poor coordinating ability of oxygen. Treatment of the aromatic enyne **1b**, an oxygen analogue of **1a**, with [Ru]Cl in CH_2Cl_2 affords the analogous vinylidene complex **2b** and the phosphonium acetylide complex **14b** in a ratio of 1.5:1 (see Scheme 5). The reaction in the presence of an excess

Scheme 5. Reactions of 1b with [Ru]Cl.

amount of free phosphine gives only **14b** in 94% yield.^[31] Deprotonation of **2b** yields the acetylide complex **5b**. The reactions of **1b** with [Ru]Cl in MeOH and EtOH also afford **10b** and **10b'**, respectively, in addition to **7b**. This tandem cyclization of **1b** yields no other side product.

Formation of similar fused cyclic compounds has been reported but in two separate steps.^[13] An Ru-catalyzed cyclization by means of an allenylidene-ene process in the first step is followed by a Pt-catalyzed cycloisomerization in the second step. But in our case, tandem cyclizations readily take place in methanol.

Enynes with No Methyl Group

To study the effect of the methyl substituent on the olefinic group, we prepared the aromatic envne 1c, which contains an analogous olefinic chain similar to **1a** but has no methyl group. As shown in Scheme 6, treatment of 1c with [Ru]Cl in the presence of KPF₆ in MeOH at 25°C afforded 15c as the only isolable product. Nucleophilic attack of S onto $C\alpha$ was accompanied by cleavage of the S-allylic bond. No product with a formed C-C bond was obtained. The structure of 15c was determined by spectroscopic methods and was fully characterized by X-ray diffraction analysis. In the COSY NMR spectrum, the characteristic doublet resonance at $\delta = 7.87$ ppm assigned to C β H shows correlation with a multiplet resonance at $\delta = 7.05$ ppm assigned to CyH. In the 2D HMBC NMR spectrum, the triplet peak at $\delta =$ 247.10 ppm with ${}^{2}J(C,P) = 13.1$ Hz, which is assigned to C α , shows correlations with the ¹H resonances of C β H and C γ H.

Scheme 6. Reaction of 1c with [Ru]Cl.

Figure 2. ORTEP drawing of **15c**. For clarity, the aryl group of the PPh₃ ligands on Ru except for the *ipso*-carbon atoms are omitted (thermal ellipsoid is set at the 50% probability level). Selected bond lengths [Å] and angles [°]: Ru1–C1 2.015(2), C1–C2 1.425(3), C2–C3 1.354(3), C3–C4 1.426(3), S1–C1 1.719(2), S1–C9 1.745(2); Ru1–C1–C2 128.56(16), Ru1–C1–S1 116.13(12), C2–C1–S1 115.32(16), C1–C2–C3 129.1(2), C1–S1–C9 108.77(11).

Single crystals were obtained by slow evaporation of a solution of **15c** in CH₂Cl₂/hexanes. An ORTEP-type view of **15c** is shown in Figure 2. The Ru1–C1 bond length of 2.015(2) Å is similar to the Ru–C bond length of 2.065(7) Å found for [Cp*Ru{C(SCH₂CH₂–CH₃)CH=CPh}(CO)-(PMeiPr₂)]⁺,^[32] but is longer than that of a six-membered cyclic oxocarbene complex [CpRu(=C₅H₈O)(dppe)][PF₆] (dppe = 1,2-bis(diphenylphosphino)ethane) (1.938 Å).^[33]

The C2–C3 bond length of 1.354(3) Å is in the range of a typical double bond,^[32] probably due to the conjugated system of the ring structure. Formation of 15c most likely proceeds by means of the γ -hydroxyvinylidene intermediate **I**, followed by a nucleophilic attack of the sulfur atom to C α to give **J**, accompanied by the cleavage of the allylic group (see Scheme 6). Dehydroxylation of **J** then leads to 15c. Unlike 1a, which shows reactivity of cyclization to result in a C–C bond formation, 1c displays cyclization that involves a C–S bond formation.

For the cyclization of 1a, the stability of the tertiary carbocation from the presence of two methyl groups should play the key role in promoting the reaction. The regioselectivities of sulfur attacks on the triple bonds for 1a and 1care quite different. Here the S attack at C α in 1c indicates intermediacy of a vinylidene or allenylidene ligand, whereas the S attack at C β in **1a** that leads to **4a** points to the presence of π coordination of the alkynyl ligand. Lack of methyl substituents in **1c** should enhance the rate of formation of the vinylidene ligand, possibly owing to the smaller steric effect. Unlike **4a**, complex **15c** is stable and no air oxidation was observed.

Conclusion

Tandem cyclization of the aromatic O-containing enyne 1b to cleanly yield 7b and 10b with benzochromene groups is induced by [Ru]Cl in MeOH. The reaction proceeds through a first cyclization to give the vinylidene complex 2b, which is isolated for the reaction in CH₂Cl₂, and in MeOH the second cyclization proceeds to give final products. A similar reaction of S-containing enyne 1a yields analogous benzothiochromene products 7a, 10a, and other side products 3a and 4a. The formation of 3a and 4a is believed to proceed through a π -coordinated alkyne intermediate instead of the vinylidene species. For 1a, the reaction conditions can be adjusted to yield exclusively 4a, which is oxidized by O_2 in the presence of Et₃N to give an aldehyde product. The presence of methyl substituents on the olefinic part of these envnes promotes their cyclization reactions. Therefore the reaction of envne 1c, which has no methyl group in the olefinic part, gives nucleophilic addition of S onto Ca accompanied by the cleavage of a C-S bond of the allylic group to yield complex 15c with a six-membered cyclic thiocarbene ligand.

Experimental Section

General Procedures

The manipulations were performed under an atmosphere of dry nitrogen by using vacuum-line and standard Schlenk techniques. Solvents were dried by standard methods and distilled under nitrogen before use. The ruthenium complexes $[Cp(PPh_3)_2RuCl]$,^[34] 1b,^[13] and 1c^[9f] were prepared by following the methods reported in the literature. The C and H analyses and X-ray diffraction studies were carried out at the Regional Center of Analytical Instruments at National Taiwan University. Mass spectra were recorded with LCQ Advantage (ESI) and Finnigan MAT 95S (EI) mass spectrometers. NMR spectra were recorded with Bruker AvanceIII 400 or DMX-500 FT-NMR spectrometers at room temperature (unless stated otherwise). $^1\!\mathrm{H}$ and $^{13}\!\mathrm{C\,NMR}$ spectra were obtained in CDCl_3 and CD₂Cl₂ at ambient temperature, and chemical shifts are expressed in parts per million. Proton chemical shifts are referenced to $\delta = 7.26$ (CDCl₃), 5.32 (CD₂Cl₂), 7.15 (C₆D₆), and 2.05 ppm ([D₆]acetone). Carbon chemical shifts are referenced to $\delta = 77.1$ (CDCl₃), 53.92 (CD₂Cl₂), 127.69 (C₆D₆), and 205.36 and 28.99 ppm ([D₆]acetone). The ³¹P NMR spectra were measured relative to external 85% phosphoric acid. Both ¹³C and ³¹P spectra were proton decoupled spectra.

Synthesis of **1** a

*n*BuLi (9.9 mL, 25 mmol) was added to a solution of Me₃SiCCH (4.9 mL, 34 mmol) in THF (10 mL) at -78 °C under nitrogen. After 20 min, 2-(3-methylbut-2-enylthio)benzaldehyde^[35] (3.2 g, 16 mmol) in dry diethyl ether (10 mL) was added. The mixture was kept at -78 °C for 30 min and was allowed to warm to room temperature. Then the mixture was

quenched with saturated aqueous NH₄Cl solution and extracted with diethyl ether (3×10 mL). The combined organic layer was washed with brine, dried over MgSO₄, and evaporated to give the crude product, which was purified by flash chromatography on a silica gel column (hexanes/ethyl acetate (EA) 9:1) to give **S1** (4.26 g, 88% yield). ¹H NMR (400.1 MHz, CDCl₃): δ =7.69 (dd, ³J(H,H)=7.4 Hz, ⁴J(H,H)=1.8 Hz, 1H; Ph), 7.44 (dd, ³J(H,H)=7.3 Hz, ⁴J(H,H)=1.5 Hz, 1H; Ph), 7.28 (m, 2H; Ph), 5.96 (s, 1H; CH), 5.28 (m, 1H; =CH), 3.52 (d, ³J(H,H)=7.9 Hz, 2H; CH₂), 2.97 (br, 1H; OH), 1.69 (s, 3H; Me), 1.45 (s, 3H; Me), 0.19 ppm (s, 9H; Me₃Si); ¹³C NMR (100.6 MHz, CDCl₃): δ =142.06 (Ph), 137.04 (=C(Me)₂), 134.23, 133.54, 128.68, 127.70, 127.66 (Ph), 119.24 (= CH), 105.04 (≡C), 91.55 (≡C), 63.23 (CH), 34.00 (CH₂), 25.65 (Me), 17.55 (Me), -0.14 ppm (Me₃Si).

Bu₄NF (1 mu solution in THF, 19.7 mL, 19.7 mmol) was added to a solution of **S1** (3.0 g, 9.9 mmol) in THF (10 mL) at room temperature. After 4 h the reaction was extracted with diethyl ether. The combined organic layer was washed with brine, dried over MgSO₄, and subjected to flash column chromatography over silica gel eluting with a mixture of 9:1 hexanes/EA to give **1a** (2.16 g, 94% yield). ¹H NMR (400.1 MHz, CDCl₃): δ =7.70 (m, 1H; Ph), 7.44 (m, 1H; Ph), 7.28 (m, 2H; Ph), 5.96 (s, 1H; CH), 5.28 (m, 1H; =CH), 3.53 (d, ³*J*(H,H)=7.9 Hz, 2H; CH₂), 2.97 (br, 1H; OH), 2.65 (d, ³*J*(H,H)=2.3 Hz, 1H; C=CH), 1.69 (s, 3H; Me), 1.48 ppm (s, 3H; Me); ¹³C NMR (100.6 MHz, CDCl₃): δ =141.45 (Ph), 137.21 (=C(Me)₂), 134.31, 133.14, 128.90, 127.63, 127.47 (Ph), 119.06 (= CH₂), 83.39 (=C), 74.94 (=CH), 62.64 (CH), 33.97 (CH₂), 25.66 (Me), 17.57 ppm (Me).

Synthesis of 2 a and 5 a

A mixture of [Ru]Cl (300 mg, 0.41 mmol), 1a (143 mg, 0.62 mmol), and NH_4PF_6 (167.0 mg, 1.03 mmol) in CH_2Cl_2 (40 mL) was stirred at ambient temperature for 1 day. The solvent was removed under vacuum, and CH2Cl2 was used to extract the product. The crude mixture was filtered through Celite to remove the insoluble precipitates. The filtrate was concentrated to approximately 5 mL and was added to a stirred diethyl ether (60 mL) to produce olive-colored precipitates. The powder was collected, washed with diethyl ether, and dried under vacuum to give a mixture of 2a, 3a, and 4a. The mixture was dissolved in CH₂Cl₂ and was passed through an acidic Al2O3 column eluted with hexanes/diethyl ether/ CH2Cl2. Collection of the yellow band followed by drying under vacuum resulted in **5a** (278 mg, 75% yield). ¹H NMR (400.1 MHz, C_6D_6): $\delta =$ 7.61-6.88 (m, Ph), 5.12 (s, 1H; =CH), 5.03 (s, 1H; =CH), 4.37 (s, 5H; Cp), 4.29 (s, 1H; CγH), 4.11 (t, ³J(H,H)=11.5 Hz, 1H; CH₂), 2.84 (d, ³J- $(H,H) = 11.0 \text{ Hz}, 1\text{ H}; \text{ CH}_2), 2.57 \text{ (d, } {}^{3}J(H,H) = 11.4 \text{ Hz}, 1\text{ H}; \text{ CH}),$ 1.88 ppm (s, 3H; Me); 13 C NMR (100.6 MHz, C₆D₆): $\delta = 147.07 - 123.51$ (Ph, =C), 110.90 (=CH₂), 108.71 (C β), 99.82 (t, ²*J*(C,P)=24.8 Hz; C α), 85.45 (Cp), 44.80 (CH), 39.68 (Cy), 27.22 (CH₂), 22.59 ppm (Me); ³¹P NMR (162.0 MHz, C₆D₆): $\delta = 51.84$, 51.39 ppm (2 d, ²*J*(P,P) = 37.4 Hz; PPh₃); elemental analysis calcd (%) for $C_{55}H_{48}P_2RuS$: C 73.07, H 5.35; found: C 73.36, H 5.47; ESI-MS: m/z: 905.21 [M+1]+.

A solution of HBF4·Et2O (48%, 0.02 mL, 0.11 mmol) in diethyl ether (20 mL) was added dropwise at 0°C to a stirred solution of 5a (300 mg, 0.33 mmol) in diethyl ether (10 mL). Insoluble solid precipitated immediately, but the addition was continued until no further solid was formed. The solution was then decanted, and the pink solid was washed with diethyl ether and dried under vacuum to yield 2a (225 mg, 75% yield). ¹H NMR (400.1 MHz, CD₂Cl₂): $\delta = 7.43-6.50$ (m; Ph), 5.09 (s, 1H; = CH₂), 5.00 (s, 5H; Cp), 4.84 (s, 1H; =CH₂), 4.43 (d, ${}^{2}J(H,H) = 7.0$ Hz, 1H; CβH), 3.99 (d, ${}^{2}J$ (H,H)=6.6 Hz, 1H; CγH), 3.28 (t, ${}^{2}J$ (H,H)= 12.1 Hz, 1H; CH₂), 3.00 (m, 1H; CH₂), 2.51 (d, ²*J*(H,H)=11.8 Hz, 1H; CH), 1.81 ppm (s, 3H; Me); 13 C NMR (125.8 MHz, CD₂Cl₂): $\delta = 347.55$ $(t, {}^{2}J(C,P) = 15.3 \text{ Hz}; C\alpha), 145.16-124.49 (Ph, =C), 112.56 (=CH_{2}), 112.09$ (Cβ), 94.59 (Cp), 44.29 (CH), 38.10 (Cγ), 26.58 (CH₂), 23.18 ppm (Me); ³¹P NMR (162.0 MHz, CDCl₃): $\delta = 42.52$, 40.28 ppm (2 d, ²J(P,P) = 26.7 Hz, PPh₃); elemental analysis calcd (%) for C₅₅H₄₉BF₄P₂RuS: C 66.60, H 4.98; found: C 66.03, H 5.28; ESI-MS: m/z: 905.21 [M]+.

A mixture of [Ru]Cl (200 mg, 0.27 mmol), 1a (94 mg, 0.41 mmol), and NH₄PF₆ (111.7 mg, 1.03 mmol) in CH₂Cl₂ (40 mL) was stirred at 40 °C for 1 day. The solvent was removed under vacuum, and $\mathrm{CH}_2\mathrm{Cl}_2$ was used to extract the crude product. The mixture was filtered through Celite to remove the insoluble precipitates. The filtrate was concentrated to approximately 5 mL and added to stirred diethyl ether (60 mL) to produce the olive-colored precipitates. The powder was collected, washed with diethyl ether, and dried under vacuum to give complex 3a (217 mg, 86% yield). ¹H NMR (500.1 MHz, CDCl₃, 233 K): $\delta = 7.79-5.98$ (m; Ph), 5.60 (d, ²*J*(H,P)=34.7 Hz, 1H; =CHPPh₃), 5.23 (s, 1H; =CH), 5.17 (d, ³*J*-(H,H)=7.0 Hz, 1H; Ph), 4.79 (s, 5H; Cp), 4.75 (s, 1H; CH), 3.79 (t, ²J- $(H,H) = 11.0 \text{ Hz}, 1 \text{ H}; CH_2), 3.49 \text{ (d, } {}^2J(H,H) = 8.4 \text{ Hz}, 1 \text{ H}; OH), 3.34 \text{ (br,}$ 1H; CH₂), 1.43 (s, 3H; Me), 0.49 ppm (s, 3H; Me); ¹³C NMR (125.8 MHz, CDCl₃, 233 K): $\delta = 233.28$ (t, ²*J*(C,P) = 14.6 Hz; C α), 141.93– 122.50 (Ph), 117.90 (=CH), 101.96 (dd, ${}^{1}J(C,P) = 53.9 \text{ Hz}$, ${}^{3}J(C,P) =$ 8.3 Hz; CHPPh₃), 80.82 (Cp), 76.72 (CH), 49.15 (CH₂), 26.64 (Me), 16.97 ppm (Me); ³¹P NMR (202.5 MHz, CDCl₃, 233 K): $\delta = 55.93$ (s; PPh₃), -5.37 ppm (s; PPh₃); single crystals of **3a** were obtained from CH₂Cl₂/hexanes; elemental analysis calcd (%) for C₅₅H₅₁F₆OP₃RuS: C 61.85, H 4.81; found: C 61.53, H 4.98; ESI-MS: m/z: 923.22 [M]+.

Synthesis of 4 a

Method A: A mixture of [Ru]Cl (100 mg, 0.14 mmol), 1a (48 mg, 0.21 mmol), and KPF₆ (63.0 mg, 0.34 mmol) in MeOH (20 mL) with 2 drops of HBF4.Et2O was stirred at ambient temperature for 1 day. The crude product was processed similarly to that for 3a. The powder was washed with diethyl ether and dried under vacuum to give 4a (100 mg, 78% yield). Method B: A mixture of [Ru]NCCH₃⁺ (200 mg, 0.23 mmol), 1a (95 mg, 0.41 mmol), and NH_4PF_6 (110 mg, 0.69 mmol) in CH_2Cl_2 (40 mL) was stirred at room temperature for 3 days. The crude mixture was processed similarly to that for 3a. The filtrate was concentrated to approximately 5 mL and added to a stirred diethyl ether (60 mL) to produce the olive-colored precipitates. The powder was collected, washed with diethyl ether, and dried under vacuum to give complex 4a (186 mg, 83 % yield). ¹H NMR (400.1 MHz, CDCl₃): $\delta = 14.92$ (t, ³J(P,H) = 11.2 Hz, 1 H; CaH), 8.12–6.96 (m; Ph), 5.15 ppm (s, 5H; Cp); $^{13}\mathrm{C}\,\mathrm{NMR}$ (100.6 MHz, CDCl₃): δ=287.18 (Cα), 165.42-123.71 (Ph, =C), 94.68 ppm (Cp); ³¹P NMR (162.0 MHz, CDCl₃): $\delta = 46.06$ ppm (s; PPh₃); elemental analysis calcd (%) for C50H41F6P3RuS: C 61.16, H 4.21; found: C 61.42, H 4.33; ESI-MS: *m*/*z*: 837.14 [*M*]⁺.

Synthesis of 6a and 8a

A mixture of [Ru]Cl (300 mg, 0.41 mmol), 1a (143 mg, 0.62 mmol), and KPF₆ (189.0 mg, 1.03 mmol) in MeOH (40 mL) was stirred at ambient temperature for 1 day. The crude mixture was obtained similarly to that for 5a. The mixture was dissolved in CH₂Cl₂ and was passed through an Al₂O₃ column eluted with hexanes/diethyl ethers/CH₂Cl₂. Collection of the first yellow band followed by drying under vacuum resulted in 8a (49 mg, 83 % yield). ¹H NMR (400.1 MHz, C_6D_6): $\delta = 7.67-6.57$ (m; Ph), 4.18 (s, 5H; Cp), 3.91 (s, 1H; C γ H), 3.79 (t, ³J(H,H)=11.5 Hz, 1H; CH₂), 3.21 (s, 3H; OMe), 2.92 (d, ${}^{3}J(H,H) = 11.2 \text{ Hz}$, 1H; CH₂), 2.08 (d, ${}^{3}J$ -(H,H)=11.9 Hz, 1H; CH), 1.57 (s, 3H; Me), 1.40 ppm (s, 3H; Me); ¹³C NMR (100.6 MHz, C₆D₆): δ = 139.82–123.20 (Ph), 109.62 (Cβ), 100.30 (t, ${}^{2}J(C,P) = 24.9 \text{ Hz}$; Ca), 84.94 (Cp), 76.96 (C(OMe)(Me)₂), 48.23 (OMe), 45.57 (CH), 37.01 (Cy), 24.65 (CH₂), 23.22 (Me), 23.00 ppm (Me); ³¹P NMR (162.0 MHz, C₆D₆): $\delta = 51.95$, 50.41 ppm (2d, ²J(P,P) = 37.0 Hz; PPh₃); elemental analysis calcd (%) for C₅₆H₅₂OP₂RuS: C 71.85, H 5.06; found: C 71.98, H 5.21; ESI-MS: m/z: 937.23 [M+1]+.

Synthesis of **6a** (86 mg, 80% yield) was achieved by treating **8a** (98 mg, 0.10 mmol) with HBF₄·Et₂O (48%, 0.02 mL, 0.11 mmol) until no further solid was formed at 0°C, followed by the same purification procedure as that for the synthesis of **2a**. Data of **6a**: ¹H NMR (400.2 MHz, CD₂Cl₂): δ =7.67–6.80 (m; Ph), 6.10 (d, ²*J*(H,H)=7.6 Hz, 1H; Ph), 5.15 (m, 1H; CβH), 4.96 (s, 5H; Cp), 4.36 (d, ²*J*(H,H)=5.9 Hz, 1H; CγH), 3.28 (t, ²*J*-(H,H)=12.1 Hz, 1H; CH₂), 3.20 (s, 3H; OMe), 3.15 (m, 1H; CH₂), 1.85 (m, 1H; CH), 1.35 (s, 3H; Me), 1.32 ppm (s, 3H; Me); ¹³C NMR (100.6 MHz, CD₂Cl₂): δ =348.79 (br; Ca), 139.32–124.38 (Ph), 112.14

(Cβ), 93.71 (Cp), 76.44 (C(OMe)(Me)₂), 49.03 (OMe), 46.94 (CH), 35.08 (Cγ), 24.07 (CH₂), 23.88 (Me), 23.24 ppm (Me); ³¹P NMR (162.0 MHz, CDCl₃): δ = 43.06, 40.04 ppm (2d, ²*J*(P,P) = 27 Hz; PPh₃); elemental analysis calcd (%) for C₅₆H₅₃BF₄OP₂RuS: C 65.69, H 5.22; found: C 65.48, H 5.13; ESI-MS: *m/z*: 937.23 [*M*]⁺.

Synthesis of 7 a

A mixture of [Ru]Cl (200 mg, 0.27 mmol), **1a** (96 mg, 0.41 mmol), and KPF₆ (126 mg, 0.69 mmol) in MeOH (40 mL) was stirred at 60 °C for 1 day. The crude product was processed similarly to that for **3a**. The mixture was collected, washed with diethyl ether, and dried under vacuum to give a mixture of **3a** (34% yield) and **7a** (29% NMR spectroscopic yield). Data of **7a**: ¹H NMR (400.2 MHz, CDCl₃): δ = 7.80–6.62 (m; Ph, = CH), 4.86 (s, 5H; Cp), 3.86 (m, 1H; CβH₂), 3.01 (d, ³*J*(H,H) = 11.8 Hz, 1H; CγH), 2.63 (d, ³*J*(H,H) = 10.2 Hz, 1H; SCH₂), 2.49 (t, ³*J*(H,H) = 12.1 Hz, 1H; SCH₂), 2.30 (m, 1H; CH), 2.20 (m, 1H; CβH₂), 1.28 ppm (s, 3H; Me); ¹³C NMR (100.6 MHz, CDCl₃): δ = 313.80 (t, ²*J*(C,P) = 9.3 Hz; Ca), 150.61 (=CH), 150.09–124.72 (Ph), 94.97 (Cp), 62.86 (CβH₂), 39.48 (CH), 38.96 (CγH), 23.78 (Me), 22.79 ppm (SCH₂); ³¹P NMR (162.0 MHz, CDCl₃): δ = 44.84, 44.37 ppm (2 d, ²*J*(P,P) = 28.63 Hz; PPh₃); ESI-MS: *m/z*: 905.21 [*M*]⁺. Pure complex **7a** was not obtained.

Synthesis of 9 a

A mixture of [Ru]Cl (300 mg, 0.41 mmol), 1a (143 mg, 0.62 mmol), and KPF₆ (189.0 mg, 1.03 mmol) in MeOH (40 mL) was stirred at 40 °C for 1 day. The crude was processed similarly to that for 3a. The mixture in CH₂Cl₂ (5 mL) was added to stirred hexanes (60 mL) to produce the olive-colored precipitates and yellow filtrate. The yellow filtrate was collected and concentrated to approximately 15 mL at 0 °C to produce the desired yellow precipitates, which were dried under vacuum to give 9a (131 mg, 14% yield). ¹H NMR (400.2 MHz, C₆D₆): $\delta = 7.44-6.43$ (m; Ph), 4.90 (s, 1H; =CH), 4.30 (s, 5H; Cp), 3.19 (br, 1H; CH), 3.12 (s, 3H; OMe), 2.92 (m, 2H; CH₂), 2.85 (m, 2H; CH₂), 2.27 (m, H; CH), 1.20 ppm (s, 3H; Me); ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 142.94$ (t, ²J-(C,P)=16.6 Hz; Ca), 140.10-122.92 (Ph, =C), 85.09 (Cp), 76.30 (C-(OMe)), 54.33 (CH₂), 47.41 (OMe), 43.63 (CH), 39.24 (CH), 23.25 (SCH₂), 21.75 ppm (Me); ³¹P NMR (162.0 MHz, C₆D₆): δ =53.83, 49.74 ppm (2d, ${}^{2}J(P,P) = 37.1$ Hz, PPh₃); elemental analysis calcd (%) for C₅₆H₅₂OP₂RuS: C 71.85, H 5.60; found: C 72.23, H 5.86; ESI-MS: *m*/*z*: 937.23 [M+1]+.

Synthesis of 10 a

A mixture of [Ru]Cl (200 mg, 0.27 mmol), **1a** (96 mg, 0.41 mmol), and KPF₆ (126 mg, 0.69 mmol) in MeOH (40 mL) was heated to 60 °C for 1 day. The crude product was processed similarly to that for **9a**. The yellow solution was purified by flash chromatography on a silica gel column (hexanes/diethyl ether 9:1) to give **10a** (24.7 mg, 37% yield). ¹H NMR (400.1 MHz, CDCl₃): δ = 7.13–7.03 (m, 4H; Ph), 5.54 (m, 2H; = CH, =CH), 3.53 (br, 1H; CH), 3.24 (s, 3H; OMe), 2.89 (d, ³*J*(H,H) = 12.4 Hz, 1H; SCH₂), 2.77 (t, ³*J*(H,H) = 12.0 Hz, 1H; SCH₂), 2.41 (m, 1H; CH), 2.12 (m, 2H; CH₂), 1.33 ppm (s, 3H; Me); ¹³C NMR (100.6 MHz, CDCl₃): δ = 135.68, 133.16, 130.83 (Ph), 130.33 (=CH), 126.57, 126.35, 124.29 (Ph), 123.65 (=CH), 75.01 (C), 48.34 (OMe), 40.48 (CH), 39.59 (CH), 34.33 (CH₂), 2.2.79 (CH₂), 21.63 ppm (Me); EI-MS: *m/z*: 246.1078. Pure compound **10a** was not obtained.

Synthesis of 10 a'

Compound **10a'** (21 mg, 30% yield) was similarly prepared from a mixture of [Ru]Cl (200 mg, 0.27 mmol), **1a** (96 mg, 0.41 mmol), and KPF₆ (126 mg, 0.69 mmol) in EtOH (40 mL) at 60 °C for 1 day. ¹H NMR (400.1 MHz, CDCl₃): δ =7.18–7.04 (m, 4H; Ph), 5.55 (m, 2H; =CH, = CH), 3.56 (br, 1H; CH), 3.48 (q, ³J(H,H)=7.0 Hz, 2H; OCH₂), 2.93 (m, 1H; SCH₂), 2.81 (t, ³J(H,H)=12.1 Hz, 1H; SCH₂), 2.40 (m, 1H; CH), 2.12 (m, 2H; CH₂), 1.33 (s, 3H; Me), 1.21 ppm (t, ³J(H,H)=7.0 Hz, 3H; Me); ¹³C NMR (100.6 MHz, CDCl₃): δ =135.87, 133.22, 130.91 (Ph), 130.33 (=CH), 126.66, 126.41, 124.35 (Ph), 123.85 (=CH), 74.93 (C), 55.69 (OCH₂), 40.93 (CH), 39.65 (CH), 34.84 (CH₂), 23.01 (SCH₂), 22.46 (Me),

AN ASIAN JOURNAL

16.07 ppm (Me); elemental analysis calcd (%) for C₁₆H₂₀OS: C 73.80, H 7.74; found: C 73.96, H 7.83; EI-MS: m/z: 260.1235.

Synthesis of 11 a

The mixture of $\mathbf{3a}$ and $\mathbf{7a}$ was passed through a neutral $\mathrm{Al}_2\mathrm{O}_3$ column eluted with diethyl ether/CH2Cl2. A yellow band and the second olivecolored band were collected separately followed by drying under vacuum to result in 11a (71 mg, 46%) and 3a (90 mg, 49%). Data of 11a: ¹H NMR (400.2 MHz, CD₂Cl₂): $\delta = 7.72-6.68$ (m; Ph), 4.28 (s, 5H; Cp), 3.69 (s, 2H; CH₂), 1.96 ppm (s, 3H; Me); ¹³C NMR (100.6 MHz, CD₂Cl₂): $\delta = 154.62$ (t, ²*J*(C,P) = 15.3 Hz; Ca), 149.68, 143.29, 139.92–124.49 (Ph), 85.95 (Cp), 27.24(CH₂), 18.80 ppm (Me); ³¹P NMR (162.0 MHz, CD₂Cl₂): $\delta = 51.11 \text{ ppm } (s; \text{PPh}_3);$ elemental analysis calcd (%) for C₅₅H₄₆P₂RuS: C 73.23, H 5.14; ESI-MS: m/z: 903.18 [M+1]⁺. Pure complex 11a was not obtained.

Synthesis of 12 a

HCl (1 M, 0.08 mL) was added to a solution of 11a (72 mg, 0.08 mmol) in CHCl₂ (10 mL). The resulting solution was stirred at ambient temperature for 1 day, and CH₃Cl was removed under vacuum. The crude was purified by flash chromatography on a silica gel column (hexanes/EA 4:1) to give **12a** (14.5 mg, 86 % yield). ¹H NMR (400.1 MHz, CDCl₃): $\delta =$ 7.77 (d, ${}^{3}J(H,H) = 7.6$ Hz, 1H; Ph), 7.54 (d, ${}^{3}J(H,H) = 7.6$ Hz, 1H; Ph), 7.44 (dd, ${}^{3}J(H,H) = 7.4$ Hz, ${}^{4}J(H,H) = 1.4$ Hz, 1H; Ph), 7.23 (m, 4H; Ph), 3.84 (s, 2H; SCH₂), 2.43 ppm (s, 3H; Me); ^{13}C NMR (100.6 MHz, $CDCl_3$): $\delta = 135.20, 134.68, 134.23, 133.58, 132.66, 129.90, 128.12, 127.42,$ 127.07, 126.23, 126.06, 124.08 (Ph), 27.32 (SCH₂), 19.90 ppm (Me); elemental analysis calcd (%) for C₁₄H₁₂S: C 79.20, H 5.70; found: C 78.78, H 5.84; EI-MS: m/z: 212.0660.

Synthesis of 13 a

NEt₃ (5 mL) and CH₃CN (10 mL) in air were added to a flask that contained 4a (300 mg, 0.36 mmol). The flask was opened to air, and the mixture was stirred at room temperature for 1 day. The originally brown solution turned into a dark solution. Then solvent was removed under vacuum. The residue was purified by flash chromatography (silica gel, hexanes/diethyl ether 4:1) to afford 13a (46.4 mg, 80%). ¹H NMR (400.1 MHz, CDCl₃): δ=10.12 (s, 1 H; CHO), 8.04 (s, 1 H; =CH), 7.95 (d, ³*J*(H,H) = 7.9 Hz, 1H; Ph), 7.91 (m, 1H; Ph), 7.51 (m, 1H; Ph), 7.44 ppm (m, 1H; Ph); 13 C NMR (100.6 MHz, CDCl₃): $\delta = 184.65$ (CH=O), 134.40 (=CH), 128.17, 126.27, 125.27, 123.34 ppm (Ph); elemental analysis calcd (%) for C₉H₆OS: C 66.64, H 3.73; found: C 66.50, H 3.79; EI-MS: *m*/*z*: 162.0139.

Synthesis of 14b

A mixture of [Ru]Cl (200 mg, 0.28 mmol), 1b (119 mg, 0.55 mmol), KPF₆ (76 mg, 0.41 mmol), and $\ensuremath{PPh_3}$ (217 mg, 0.83 mmol) in MeOH (25 mL) was stirred at ambient temperature for 1 day. The resulting yellow solvent was removed under vacuum, and CH2Cl2 was used to extract the crude product. The mixture was filtered through Celite to remove insoluble precipitates. The filtrate was concentrated to approximately 5 mL and added to a stirred diethyl ether (60 mL) to produce the yellow precipitates, which were filtered and dried under vacuum to give complex 14b (298 mg, 94 % yield). ¹H NMR (400.1 MHz, CDCl₃): $\delta = 7.32-6.72$ (m, 49 H; Ph), 5.32 (dd, ${}^{4}J(H,H) = 17.7$ Hz, ${}^{4}J(H,H) = 2.0$ Hz, 1H; C γ H), 4.93 (t, ${}^{3}J(H,H) = 7$ Hz, 1 H;=CH), 4.30 (dd, ${}^{3}J(H,H) = 11.3$ Hz, ${}^{2}J(H,H) =$ 8.1 Hz, 1H; OCH₂), 4.22 (s, 5H; Cp), 3.72 (dd, ${}^{3}J(H,H) = 11.3$ Hz, ${}^{2}J$ -(H,H)=8.1 Hz, 1H; OCH₂), 1.78 (s, 1H; Me), 1.63 ppm (s, 1H; Me); ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 155.44$ (Ph), 138.22 (=C(Me)₂), 137.81-120.25 (Ph), 118.86 (=CH), 118.06 (Cβ), 111.24 (Ph), 97.66 (d, ²J- $(C,P) = 9.2 \text{ Hz}; C\alpha), 84.58 (Cp), 64.71 (OCH₂), 33.33 (d, ¹$ *J* $(C,P) = 47.1 Hz; C\gamma), 25.81 (Me), 18.16 ppm (Me); ³¹P NMR (162.0 MHz, 162.0 MHz, 162.0 MHz, 162.0 MHz), 18.16 ppm (Me); ³¹P NMR (162.0 MHz, 162.0 MHz, 162.0 MHz), 18.16 ppm (Me); ³¹P NMR (162.0 MHz, 162.0 MHz), 18.16 ppm (Me); ³¹P NMR (162.0 MHz), 18.16 ppm (Me); ³¹P NMR (Me); [$] CDCl₃): $\delta = 50.66$, 48.79 (dd, ²*J*(P,P) = 35.2 Hz; PPh₃), 14.82 ppm (s; CPPh₃); elemental analysis calcd (%) for C₇₃H₆₄F₆OP₄Ru: C 67.64, H 4.98; found: C 67.55, H 5.06; ESI-MS: m/z: 1151.32 [M]+.

Chem. Asian J. 2014, 9, 602-611

Synthesis of 2b and 5b

Complex 14b (300 mg, 0.26 mmol) in CH₂Cl₂ was passed through a column packed with neutral Al₂O₃ eluted with diethyl ether and EA. Collection of the yellow band followed by drying under vacuum resulted in a crude mixture. The crude mixture was dissolved in diethyl ether and was passed through a neutral Al2O3 column eluted with hexanes/diethyl ether. Collection of the yellow band followed by drying under vacuum resulted in the product 5b (140 mg, 80% yield). ¹H NMR (400.1 MHz, CDCl₃): $\delta = 7.79 - 7.38$ (m; Ph), 5.01 (s, 1H; =CH), 4.80 (s, 1H; =CH), 4.64 (d, ${}^{3}J(H,H) = 10.9$ Hz, 1H; OCH₂), 4.62 (t, ${}^{3}J(H,H) = 9.45$ Hz, 1H; OCH₂), 4.18 (s, 5H; Cp), 4.12 (s, 1H; CγH), 2.60 (d, ³*J*(H,H)=9.3 Hz, 1H; CH), 2.01 ppm (s, 3H; Me); ¹³C NMR (100.6 MHz, CDCl₃): $\delta =$ 153.09–116.22 (Ph, =C), 109.88 (=CH₂), 108.74 (C β), 98.14 (t, ²J(C,P) = 26.9 Hz; Ca), 85.15 (Cp), 66.16 (OCH₂), 43.27 (CH), 36.05 (Cγ), 22.71 ppm (Me); ³¹P NMR (162.0 MHz, CDCl₃): $\delta = 51.45$, 50.75 ppm $(2d, {}^{2}J(P,P)=37.5 \text{ Hz}, PPh_{3})$; elemental analysis calcd (%) for C₅₅H₄₈OP₂Ru: C 74.39, H 5.45; found: C 74.60, H 5.54; ESI-MS: *m/z*: 889.23 [M+1]+

A solution of HBF4·Et2O (48%, 0.02 mL, 0.11 mmol) in dry diethyl ether (20 mL) was added dropwise at 0°C to a stirred solution of 5b (140 mg, 0.16 mmol) in diethyl ether (10 mL). Insoluble solid precipitates formed immediately, but the addition was continued until no further solid was formed. The solution was then decanted, and the slightly orange solid was washed with diethyl ether and dried under vacuum to yield 2b (116 mg, 82 % yield). ¹H NMR (400.2 MHz, CDCl₃): $\delta = 7.27-6.76$ (m; Ph), 5.09 (s, 1H; =CH₂), 5.03 (s, 5H; Cp), 4.86 (s, 1H; =CH₂), 4.66 (s, 1H; OCH₂), 4.48 (d, ${}^{3}J(H,H) = 8.0$ Hz, 1H; C β H), 4.20 (s, 1H; OCH₂), 4.05 (dd, ${}^{3}J(H,H) = 8.4$ Hz, ${}^{3}J(H,H) = 4.9$ Hz, 1H; C γ H), 2.53 (m, 1H; CH), 1.79 ppm (s, 3H; Me); 13 C NMR (125.8 MHz, CD₂Cl₂): $\delta = 347.16$ $(t, {}^{2}J(C,P) = 15.2 \text{ Hz}; C\alpha), 154.10-117.13 (Ph, =C), 116.08 (=CH_{2}), 112.92$ (Cβ), 94.84 (Cp), 66.20 (OCH₂), 43.78 (CH), 33.75 (Cγ), 23.47 ppm (Me); ³¹P NMR (162.0 MHz, CDCl₃): $\delta = 42.52$, 40.28 ppm (2d, ²J(P,P) = 26.7 Hz; PPh₃); ESI-MS: m/z: 889.23 [M]⁺. Pure complex 2b was not obtained.

Synthesis of 7b

A mixture of [Ru]Cl (400 mg, 0.55 mmol), 1b (239 mg, 1.10 mmol), and KPF₆ (203 mg, 1.10 mmol) in MeOH (30 mL) was stirred at 60 °C for 1 day. The crude mixture was obtained similarly to that for 14b. The filtrate was concentrated to approximately 5 mL and added to stirred diethyl ether (60 mL) to produce the olive-colored precipitates. The powder was collected, washed with diethyl ether, and dried under vacuum to give **7b** (125 mg, 52 % yield). ¹H NMR (400.1 MHz, CDCl₃): $\delta = 7.66-6.78$ (m; Ph, =CH), 4.90 (s, 5H; Cp), 4.07 (d, ${}^{3}J(H,H) = 10.3$ Hz, 1H; OCH₂), 4.04 (m, 1H; C β H₂), 3.57 (t, ${}^{3}J$ (H,H)=10.3 Hz, 1H; OCH₂), 2.48 (m, 1H; $C\beta H_2$, 2.88 (d, ${}^{3}J(H,H) = 9.4$ Hz, 1H; C γ H), 2.29 (m, 1H; CH), 1.21 ppm (s, 3H; Me); ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 314.50$ (t, ²*J*(C,P)=Hz; Cα), 153.73-116.90 (Ph), 151.98 (=CH), 94.90 (Cp), 62.68 (CβH₂), 61.50 (OCH_2) , 39.21 (CH), 34.53 (C γ H), 23.68 ppm (Me); ³¹P NMR (162.0 MHz, CDCl₃): $\delta = 45.08$, 44.33 ppm (2 d, ²*J*(P,P) = 28.74 Hz; PPh₃); ESI-MS: m/z: 889.23 $[M]^+$. Pure complex **7b** was not obtained.

Synthesis of 10b

A mixture of [Ru]Cl (500 mg, 0.69 mmol), 1b (298 mg, 1.38 mmol), and KPF₆ (190 mg, 1.30 mmol) in MeOH (50 mL) was stirred at ambient temperature for 1 day. Solvent of the resulting brownish-black solution was removed under vacuum, and CH2Cl2 was used to extract the crude product. The mixture was filtered through Celite to removed insoluble precipitates. The crude mixture was processed similarly to that for 9a. The yellow solution was purified by flash column chromatography over an Al₂O₃ column by eluting with a mixture of hexanes/diethyl ether (8:1) to give **10b** (192 mg, 61 %). ¹H NMR (400.1 MHz, CDCl₃): $\delta = 7.17$ (d, ³J-(H,H) = 7.6 Hz, 1H; Ph), 7.10 (t, ${}^{3}J(H,H) = 7.6$ Hz, 1H; Ph), 6.90 (t, ${}^{3}J$ -(H,H) = 7.3 Hz, 1H; Ph), 6.83 (d, ${}^{3}J(H,H) = 8.2$ Hz, 1H; Ph), 5.65 (d, ${}^{3}J$ - $(H,H) = 10.0 \text{ Hz}, 1 \text{ H}; = CH_2), 5.53 \text{ (m, } 1 \text{ H}; = CH_2), 4.35 \text{ (ddd, } ^2J(H,H) = 10.0 \text{ Hz}, 1 \text{ H}; = CH_2), 5.53 \text{ (m, } 1 \text{ H}; = CH_2), 4.35 \text{ (ddd, } ^2J(H,H) = 10.0 \text{ Hz}, 1 \text{ H}; = CH_2), 5.53 \text{ (m, } 1 \text{ H}; = CH_2), 5$ 10.6 Hz, ${}^{3}J(H,H) = 3.4$ Hz, ${}^{5}J(H,H) = 1.3$ Hz, 1H; OCH₂), 3.69 (t, ${}^{2}J$ -(H,H)=10.8 Hz, 1H; OCH₂), 3.38 (s, 1H; CH), 3.30 (s, 3H; OMe), 2.42 (m, 1H; CH), $2.07(m, 2H; CH_2)$, 1.32 ppm (s, 3H; Me); ${}^{13}C \text{ NMR}$

AN ASIAN JOURNAL

(100.6 MHz, CDCl₃): δ = 154.82 (OPh), 129.63, 127.45, 124.56, 120.52, 116.78 (Ph), 129.38 (=CH₂), 123.30 (=CH₂), 73.76 (C), 63.58 (OCH₂), 48.30 (OMe), 38.20 (CH), 36.44 (CH), 34.35 (CH₂), 21.76 ppm (Me); elemental analysis calcd (%) for C₁₅H₁₈O₂: C 78.23, H 7.88; found: C 77.86, H 8.14; EI-MS: *m/z*: 230.1307.

Synthesis of 10b'

Compound **10b'** (160 mg, 47% yield) was similarly prepared from a mixture of [Ru]Cl (500 mg, 0.69 mmol), **1b** (298 mg, 1.38 mmol), and KPF₆ (190 mg, 1.30 mmol) in EtOH (50 mL) at 60°C for 1 day. ¹H NMR (400.1 MHz, CDCl₃): δ =7.15 (t, ³*J*(H,H)=7.6 Hz, 1H; Ph), 7.08 (d, ³*J*-(H,H)=7.6 Hz, 1H; Ph), 6.89 (t, ³*J*(H,H)=7.4 Hz, 1H; Ph), 6.81 (d, ³*J*-(H,H)=8.2, 1H; Ph), 5.64 (d, ³*J*(H,H)=10.1 Hz, 1H; eCH), 5.54 (m, 1H; eCH), 4.36 (m, 1H; OCH₂), 3.70 (t, ²*J*(H,H)=10.9 Hz, 1H; OCH₂), 3.51 (m, 2H; OCH₂), 3.37 (s, 1H; CH), 2.42 (m, 1H; CH), 2.08 (m, 2H; CH₂), 1.32 (s, 3H; Me), 1.98 ppm (t, ³*J*(H,H)=7.0 Hz, 3H; OCH₂Me); ¹³C NMR (100.6 MHz, CDCl₃): δ =154.89 (OPh), 129.63, 127.47, 124.73, 120.54, 116.81 (Ph), 129.36 (=CH₂), 123.47 (=CH₂), 73.60 (C), 63.83 (OCH₂), 55.64 (OCH₂Me); elemental analysis calcd (%) for C₁₆H₂₀O₂: C 78.65, H 8.25; found: C 78.34, H 8.41; EI-MS: *m/z*: 244.1463.

Synthesis of 15 c

A mixture of [Ru]Cl (300 mg, 0.41 mmol), **1c** (109 mg, 0.53 mmol), and KPF₆ (189.0 mg, 1.03 mmol) in MeOH (40 mL) was stirred at ambient temperature for 2 days. The crude mixture was obtained similarly to that for **3a**. The crude mixture in CH₂Cl₂ (5 mL) was added to stirred hexanes (60 mL) to produce the red precipitates, then filtered. The powder was dried under vacuum to give complex **15c** (348 mg, 86% yield). Spectroscopic data of **15c**: ¹H NMR (400.1 MHz, [D]acetone): δ = 7.87 (d, ³*J*-(H,H) = 9.8 Hz, 1 H; CβH), 7.75–7.04 (m, 35 H; Ph, CγH), 4.81 ppm (s, 5H; Cp); ¹³C NMR (100.6 MHz, CDCl₃): δ = 247.10 (t, ²*J*(C,P) = 13.1 Hz; Ca), 148.97 (Ph), 144.43 (Cβ), 135.36–123.06 (Ph, Cγ), 91.32 ppm (Cp); ³¹P NMR (162.0 MHz, CDCl₃): δ = 44.25 ppm (s; PPh₃); elemental analysis calcd (%) for C₅₀H₄₁F₆P₃RuS: C 61.16, H 4.21; found: C 60.86, H 4.18; ESI-MS: *m/z*: 837.14 [*M*]⁺.

X-ray Structure Determination of 3a and 15c

Single crystals of complexes **3a** and **15c** suitable for an X-ray diffraction study were glued to a glass fiber and mounted on a SMART CCD diffractometer. The diffraction data were collected using 3 kW sealed-tube $Mo_{K\alpha}$ radiation (T=295 K). The exposure time was 5 s per frame. Siemens area detector absorption (SADABS)^[36] corrections were applied, and decay was negligible. Data were processed, and the structure was solved and refined by the SHELXTL^[37] program. Hydrogen atoms were placed geometrically using the riding model with thermal parameters set to 1.2 times that for the atoms to which the hydrogen is attached and 1.5 times that for the methyl hydrogen atoms.

CCDC 947596 (**3a**) and 947597 (**15c**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgements

We thank the National Science Council, Taiwan for financial support.

- [2] a) T. Yoneya, K. Taniguchi, R. Nakamura, T. Tsunenari, I. Ohizumi, Y. Kanbe, K. Morikawa, S. Kaiho, H. Yamada-Okabe, *Anticancer Res.* 2010, *30*, 873–878; b) Y. Kanbe, M. H. Kim, M. Nishimoto, Y. Ohtake, T. Tsunenari, K. Taniguchi, I. Ohizumi, S. I. Kaiho, Y. Nabuchi, S. Kawata, K. Morikawa, J. C. Jo, H. A. Kwon, H. S. Lim, H. Y. Kim, *Bioorg. Med. Chem. Lett.* 2006, *16*, 4090–4094.
- [3] Y. Chen, Q. Zhang, B. Zhang, P. Xia, Y. Xia, Z. Y. Yang, N. Kilgore, C. Wild, S. L. Morris-Natschke, K. H. Lee, *Bioorg. Med. Chem.* 2004, *12*, 6383–6387.
- [4] a) L. Zimmer, G. Fournet, B. Joseph, G. Guillaumet, D. L. Bars, Nucl. Med. Biol. 2003, 30, 541–546; b) M. E. Castro, P. J. Harrison, A. Pazos, T. Sharp, J. Neurochem. 2000, 75, 755–762.
- [5] Comprehensive Heterocyclic Chemistry III (Eds.: A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, R. J. K. Taylor), Elsevier, Amsterdam, 2008.
- [6] a) B. M. Trost, F. D. Toste, A. B. Pinkerton, *Chem. Rev.* 2001, 101, 2067–2096; b) V. Ritleng, C. Sirlin, M. Pfeffer, *Chem. Rev.* 2002, 102, 1731–1769; c) V. Cadierno, M. P. Gamasa, J. Gimeno, *Coord. Chem. Rev.* 2004, 248, 1627–1657; d) B. M. Trost, A. McClory, *Chem. Asian J.* 2008, 3, 164–194.
- [7] a) K. Kirchner, M. J. Calhorda, R. Schmid, L. F. Veiros, J. Am. Chem. Soc. 2003, 125, 11721–11729; b) Y. Yamamoto, T. Arakawa, R. Ogawa, K. Itoh, J. Am. Chem. Soc. 2003, 125, 12143–12160; c) Y. Nishibayashi, H. Imajima, G. Onodera, M. Hidai, S. Uemura, Organometallics 2004, 23, 26–30; d) Y. Nishibayashi, H. Imajima, G. Onodera, S. Uemura, Organometallics 2005, 24, 4106–4109; e) C. Bruneau, P. H. Dixneuf, Angew. Chem. 2006, 118, 2232–2260; Angew. Chem. Int. Ed. 2006, 45, 2176–2203.
- [8] a) S. Datta, A. Odedra, R. S. Liu, J. Am. Chem. Soc. 2005, 127, 11606-11607; b) A. Odedra, S. Datta, R. S. Liu, J. Org. Chem. 2007, 72, 3289-3292; c) K. Fukamizu, Y. Miyake, Y. Nishibayashi, Angew. Chem. 2009, 121, 2572-2575; Angew. Chem. Int. Ed. 2009, 48, 2534-2537; d) C. Nieto-Oberhuber, S. López, A. M. Echavarren, J. Am. Chem. Soc. 2005, 127, 6178-6179; e) M. Y. Lin, A. Das, R. S. Liu, J. Am. Chem. Soc. 2006, 128, 9340-9341; f) E. Jiménez-Núñez, C. K. Claverie, C. Bour, D. J. Cárdenas, A. M. Echavarren, Angew. Chem. 2008, 120, 8010-8013; Angew. Chem. Int. Ed. 2008, 47, 7892-7895; g) H. W. Ma, Y. C. Lin, S. L. Huang, Org. Lett. 2012, 14, 3846-3849.
- [9] a) M. Y. Lin, S. J. Maddirala, R. S. Liu, Org. Lett. 2005, 7, 1745–1748; b) S. T. Diver, A. J. Giessert, Chem. Rev. 2004, 104, 1317–1382; c) H. W. Frühauf, Chem. Rev. 1997, 97, 523–596; d) N. Chatani, T. Morimoto, Y. Fukumoto, S. Murai, J. Am. Chem. Soc. 1998, 120, 5335–5336; e) N. M. Kablaoui, F. A. Hicks, S. L. Buchwald, J. Am. Chem. Soc. 1996, 118, 5818–5819; f) Y. J. Feng, J. X. Lo, Y. C. Lin, S. L. Huang, Y. Wang, Y. H. Liu, Organometallics 2013, 32, 6379–6387.
- [10] a) M. Tobisu, N. Chatani, T. Asaumi, K. Amako, Y. Ie, Y. Fukumoto, S. Murai, J. Am. Chem. Soc. 2000, 122, 12663–12674; b) N. Chatani, M. Tobisu, T. Asaumi, S. Murai, Synthesis 2000, 925–928; c) T. Shibata, N. Toshida, K. Takagi, Org. Lett. 2002, 4, 1619–1621; d) M. Takimoto, M. Mori, J. Am. Chem. Soc. 2002, 124, 10008–10009.
- [11] a) I. Ojima, M. Tzamarioudaki, Z. Li, R. J. Donovan, *Chem. Rev.* 1996, 96, 635–662; b) B. M. Trost, M. J. Krische, *Synlett* 1998, 1–16; c) S. Oi, I. Tsukamoto, S. Miyano, Y. Inoue, *Organometallics* 2001, 20, 3704–3709; d) V. Michelet, P. Y. Toullec, J. P. Genêt, *Angew. Chem.* 2008, 120, 4338–4386; *Angew. Chem. Int. Ed.* 2008, 47, 4268–4315; e) C. Nieto-Oberhuber, M. P. Muñoz, S. López, E. Jiménez-Núñez, C. Nevado, E. Herrero-Gómez, M. Raducan, A. M. Echavarren, *Chem. Eur. J.* 2006, 12, 1677–1693.
- [12] a) Y. Nishibayashi, Y. Inada, M. Hidai, S. Uemura, J. Am. Chem. Soc. 2003, 125, 6060-6061; b) M. Daini, M. Yoshikawa, Y. Inada, S. Uemura, K. Sakata, K. Kanao, Y. Miyake, Y. Nishibayashi, Organometallics 2008, 27, 2046-2051; c) Y. Yamauchi, Y. Miyake, Y. Nishibayashi, Organometallics 2009, 28, 48-50; d) K. Sakata, Y. Miyake, Y. Nishibayashi, Chem. Asian J. 2009, 4, 81-88; e) C. P. Chung, C. C. Chen, Y. C. Lin, Y. H. Liu, Y. Wang, J. Am. Chem. Soc. 2009, 131, 18366-18375.

a) A. Goel, A. Kumar, A. Raghuranshi, *Chem. Rev.* 2013, *113*, 1614–1640; b) V. I. Cohen, R. E. Gibson, R. C. Reba, *J. Pharm. Sci.* 1987, *76*, 848–850; c) S. Salamone, C. Colin, I. Grillier-Vuissoz, S. Kantz, S. Mazerbourg, S. Flament, H. Martin, L. Richert, Y. Chapleur, M. Boisbrum, *Eur. J. Med. Chem.* 2012, *51*, 206–215; d) J. M. Batista, Jr., A. N. L. Batista, M. J. Kato, V. S. Bolzani, S. N. López, L. A. Nafie, M. Furlan, *Tetrahedron Lett.* 2012, *53*, 6051–6054; e) Y. L. Shi, M. Shi, *Org. Biomol. Chem.* 2007, *5*, 1499–1504.

CHEMISTRY

AN ASIAN JOURNAL

- [13] a) Y. Nishibayashi, M. Yoshikawa, Y. Inada, M. Hidai, S. Uemura, J. Am. Chem. Soc. 2004, 126, 16066–16072; b) K. Fukamizu, Y. Miyake, Y. Nishibayashi, J. Am. Chem. Soc. 2008, 130, 10498–10499.
- [14] a) Y. S. Yen, Y. C. Lin, S. L. Huang, Y. H. Liu, H. L. Sung, Y. Wang, J. Am. Chem. Soc. 2005, 127, 18037–18045; b) C. W. Cheng, Y. C. Kuo, S. H. Chang, Y. C. Lin, Y. H. Liu, Y. Wang, J. Am. Chem. Soc. 2007, 129, 14974–14980.
- [15] a) M. I. Bruce, P. J. Low, E. R. T. Tiekink, J. Organomet. Chem. 1999, 572, 3–10; b) P. Y. Chiang, Y. C. Lin, Y. Wang, Y. H. Liu, Organometallics 2010, 29, 5776–5782.
- [16] M. A. Bennett, L. Y. Goh, A. C. Willis, J. Am. Chem. Soc. 1996, 118, 4984–4992.
- [17] R. Y. C. Shin, M. A. Bennett, L. Y. Goh, W. Chen, D. C. R. Hockless, W. K. Leong, K. Mashima, A. C. Willis, *Inorg. Chem.* 2003, 42, 96–106.
- [18] a) V. Cadierno, M. P. Gamasa, J. Gimeno, M. González-Cueva, E. Lastra, J. Borge, S. García-Granda, E. Pérez-Carreño, Organometallics 1996, 15, 2137–2147; b) M. A. Esteruelas, A. V. Gómez, A. M. López, J. Modrego, E. Oñate, Organometallics 1997, 16, 5826–5835; c) H. Werner, A. Stark, P. Steinert, C. Grünwald, J. Wolf, Chem. Ber. 1995, 128, 49–62; d) J. A. Pino-Chamorro, E. Bustelo, M. C. Puerta, P. Valerga, Organometallics 2009, 28, 1546–1557.
- [19] a) V. Cadierno, M. P. Gamasa, J. Gimeno, M. C. López-González, J. Borge, S. García-Granda, *Organometallics* 1997, *16*, 4453–4463;
 b) M. A. Esteruelas, A. V. Gómez, A. M. López, J. Modrego, E. Oñate, *Organometallics* 1998, *17*, 5434–5436.
- [20] a) V. Cadierno, M. P. Gamasa, J. Gimeno, C. González-Bernardo, Organometallics 2001, 20, 5177-5188; b) Y. Arikawa, T. Asayama, C. Tanaka, S. Y. Tashita, M. Tsuji, K. Ikeda, K. Umakoashi, M. Onishi, Organometallics 2008, 27, 1227-1233; c) Y. Nishimura, Y. Arikawa, T. Inoue, M. Onishi, Dalton Trans. 2005, 930-937; d) H. D. Hansen, J. H. Nelson, Organometallics 2000, 19, 4740-4755.
- [21] a) S. Sproules, K. Wieghardt, *Coord. Chem. Rev.* 2010, 254, 1358–1382; b) Z. N. Chen, N. Zhao, Y. Fan, J. Ni, *Coord. Chem. Rev.* 2009, 253, 1–20; c) X. Y. Tang, H. X. Li, J. X. Chen, Z. G. Ren, J. P. Lang, *Coord. Chem. Rev.* 2008, 252, 2026–2049; d) T. Konno, *Bull. Chem. Soc. Jpn.* 2004, 77, 627–649.
- [22] a) M. Mellah, A. Voituriez, E. Schulz, *Chem. Rev.* 2007, 107, 5133–5209; b) A. M. Masdeu-Bultó, M. Diéguez, E. Martin, M. Gómez, *Coord. Chem. Rev.* 2003, 242, 159–201; c) H. Pellissier, *Tetrahedron* 2007, 63, 1297–1330.
- [23] a) M. Shibue, M. Hirotsu, T. Nishioka, I. Kinoshita, *Organometallics* 2008, 27, 4475–4483; b) M. Tamura, K. Tsuge, A. Igashira-Kamiyama, T. Konno, *Inorg. Chem.* 2011, *50*, 4764–4771; c) R. A. Begum,

A. A. Farah, H. N. Hunter, A. B. P. Lever, *Inorg. Chem.* 2009, 48, 2018–2027.

- [24] F. A. Beckford, G. Leblanc, J. Thessing, M. Shaloski Jr., B. J. Frost, L. Li, N. P. Seeram, *Inorg. Chem. Commun.* 2009, *12*, 1094–1098.
- [25] F. Y. Tsai, H. W. Ma, S. L. Huang, Y. C. Lin, Y. Wang, Y. H. Liu, *Chem. Eur. J.* 2012, 18, 3399–3407.
- [26] a) K. Cariou, B. Ronan, S. Mignani, L. Fensterbank, M. Malacria, Angew. Chem. 2007, 119, 1913–1916; Angew. Chem. Int. Ed. 2007, 46, 1881–1884; b) G. Verniest, A. Padwa, Org. Lett. 2008, 10, 4379– 4382; c) Y. N. Niu, Z. Y. Yan, G. L. Gao, H. L. Wang, X. Z. Shu, K. G. Ji, Y. M. Liang, J. Org. Chem. 2009, 74, 2893–2896.
- [27] G. Lena, J. A. Trapani, V. R. Sutton, A. Ciccone, K. A. Browne, M. J. Smyth, W. A. Denny, J. A. Spicer, J. Med. Chem. 2008, 51, 7614-7624.
- [28] a) E. A. Lewis, W. B. Tolman, Chem. Rev. 2004, 104, 1047–1076;
 b) S. S. Stahl, Angew. Chem. 2004, 116, 3480–3501; Angew. Chem. Int. Ed. 2004, 43, 3400–3420; c) M. Suzuki, Acc. Chem. Res. 2007, 40, 609–617.
- [29] a) L. Ye, L. Cui, G. Zhang, L. Zhang, J. Am. Chem. Soc. 2010, 132, 3258–3259; b) L. Ye, W. He, L. Zhang, J. Am. Chem. Soc. 2010, 132, 8550–8551; c) J. Xiao, X. Li, Angew. Chem. 2011, 123, 7364–7375; Angew. Chem. Int. Ed. 2011, 50, 7226–7236.
- [30] a) E. P. Kündig, B. Bourdin, G. Bernardinelli, Angew. Chem. 1994, 106, 1931–1934; Angew. Chem. Int. Ed. Engl. 1994, 33, 1856–1858;
 b) M. E. Bruin, E. P. Kündig, Chem. Commun. 1998, 2635–2636;
 c) T. Matsubara, N. Koga, D. G. Musaev, K. Morokuma, J. Am. Chem. Soc. 1998, 120, 12692–12693;
 d) T. Matsubara, N. Koga, D. G. Musaev, K. Morokuma, N. Koga, D. G. Musaev, K. Morokuma, Organometallics 2000, 19, 2318–2329.
- [31] M. C. Lui, C. P. Chung, W. C. Chang, Y. C. Lin, Y. Wang, Y. H. Liu, Organometallics 2009, 28, 5204–5211.
- [32] M. Jiménez-Tenorio, M. D. Palacios, M. C. Puerta, P. Valerga, J. Organomet. Chem. 2004, 689, 2776–2785.
- [33] a) S. Pavlik, K. Mereiter, M. Puchberger, K. Kirchner, J. Organomet. Chem. 2005, 690, 5497–5507; b) H. Kopf, C. Pietraszuk, E. Hübner, N. Burzlaff, Organometallics 2006, 25, 2533–2546.
- [34] M. I. Bruce, N. J. Windsor, Aust. J. Chem. 1977, 30, 1601-1604.
- [35] M. M. Coulter, P. K. Dornan, V. M. Dong, J. Am. Chem. Soc. 2009, 131, 6932–6933.
- [36] R. H. Blessing, Acta. Crystallogr. Sect. A 1995, 51, 33-38.
- [37] SHELXTL: Structure Analysis Program, version 5.04, Siemens Industrial Automation Inc., Madison, 1995.

Received: September 16, 2013 Published online: November 21, 2013