

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 4323-4327

Discovery of novel prostaglandin analogs of PGE₂ as potent and selective EP₂ and EP₄ receptor agonists

Yufang Xiao,^{a,*} Gian Luca Araldi,^{a,†} Zhong Zhao,^{a,‡} Nadia Brugger,^a Srinivasa Karra,^a David Fischer^b and Elizabeth Palmer^b

^aDepartment of Medicinal Chemistry, EMD Serono Research Institute, Inc., Rockland, MA 02370, USA ^bDepartment of Lead Discovery, EMD Serono Research Institute, Inc., Rockland, MA 02370, USA

> Received 20 March 2007; revised 4 May 2007; accepted 9 May 2007 Available online 16 May 2007

Abstract—Analogs of PGE₂ with introduction of diene groups at the ω -side chain have been synthesized and evaluated for their binding affinity for EP₂ and EP₄ receptors. An optimized analog (compound **9b**) showed high potency and selectivity for the EP₄ receptor over other known receptors. © 2007 Elsevier Ltd. All rights reserved.

Prostaglandins are lipid mediators derived from arachidonic acid.¹ Prostaglandin E_2 (PGE₂, Fig. 1) is the most well-known prostanoid derivative and exhibits a broad range of biological actions in diverse tissues through the binding to specific receptors present in the plasma membranes. It is well known that prostaglandin E_2 (PGE₂) is a potent agonist of the four subtypes of PGE receptors, designated EP₁, EP₂, EP₃, and EP₄, which mediate a wide variety of biological activities, including bronchodilation, fertility, bone resorption, and inflammation.¹ Of these four receptors, three are involved in modulation of cAMP levels.² EP₁ receptor is involved in regulating intracellular calcium levels. Activation of EP₃ receptor results in a reduction of intracellular cAMP level, and EP₂ receptor and EP₄ receptor increase the intracellular cAMP level, which is linked to the treatment of infertility. EP2 and EP4 receptor agonists have been proved to be beneficial for the treatment of preterm labor by suppressing uterine contraction and inducing oophorus maturation required for fertilization during and after ovulation.^{1b}

* Corresponding author. Tel.: +1 781 681 2816; fax: +1 781 681 2939; e-mail: yufang.xiao@emdserono.com

PGE₂ easily undergoes acid- or base-catalyzed elimination of the 11-hydroxy to give the more stable α , β -unsaturated ketone system. PGE₂, metabolized by enzymes, undergoes rapid oxidation of the 15-hydroxy group to a ketone, β -oxidation of the carboxylic acid chain to generate acetic acid and the dinor PG acid, and ω -oxidation at C-20 to produce the 20-hydroxy and carboxylic acid.³ The metabolites of PGE₂, though inactive against the PGE receptors, produce numerous side effects.³ PGE₂ also shows no selectivity for the EP₁₋₄ receptors (in-house binding affinity data shown in Table 1). Until now, efforts to improve the selectivity and chemical stability of PGE₂ have been focused on only two general

Figure 1. PGE₂ and prostaglandin diene derivative.

Keyword: Prostaglandin.

[†] Present address: Forest Laboratories, 45 Adams Ave., Hauppague, NY 11788, USA.

[‡] Present address: Genzyme Corporation, 153 Second Ave., Walthman, MA 02451, USA.

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2007.05.025

O N R	ĸ	$h - EP_1$ K_i (nM)	n-EP ₂ K _i (nM)	EC_{50} (nM)	K_{i} (nM)	K_{i} (nM)	h-EP ₄ EC ₅₀ (nM)
1a PGE2		>10,000 9.1	125.5 4.9	16	9000 0.33	2.5 0.79	0.002
9a		10,000	134	222	10,000	181	15
9b		10,000	60	35	10,000	4	0.1
16			88	197		25	2
17			1850			45	4
18			802			443	
19			29	23		145	21
20			173			24	3
21			60			117	
22			749	>10,000		29	0.5

Table 1. y-Lactam diene derivatives

chemical modifications,⁴ i.e., Replacement of the α -alkenyl side chain with the more chemically stable phenylethyl group and substitution of γ -lactam ring for the 11-hydroxy cyclopentanone (structure **1a** in Fig. 1).⁴

Our goal was to develop PGE_2 analogs with different selectivity and high potency for EP_2 receptor or EP_4 receptor. This allowed an investigation of the new PGE_2 analogs in the treatment of infertility. In this report, we describe the synthesis and structure-activity relationship of a novel PGE_2 analog of general structure **1b** consisting of a phenylethyl moiety in the α -sidechain, a γ -lactam ring as a backbone, and a third, unprecedented modification: use of a diene as the ω side chain. The diene moiety was selected to circumvent oxidation of the hydroxy group at the ω -side chain.

Synthesis of a representative γ -lactam diene of general formula **1b** is shown in Scheme 1. Construction of the key intermediate, γ -lactam aldehyde 7, from 4-formyl

benzoic acid has been reported.4c-f Synthesis of the triphenylphosphonium bromide salt 6 started from commercially available methyl 3-oxoheptanoate. Treatment of 3-oxoheptanoate 2 with sodium hydride, followed by quenching with diethyl chlorophosphate, provided the only one isomer (Z) of enol phosphate 3 in 77%yield.⁵ The regioselective coupling of this enol phosphate 3 with 3 equiv of lithium dimethylcuprate at -35 °C smoothly introduced a methyl group in the desired product 4 in 77% yield.⁵ Reduction of ester 4 with DIBALH offered the allylic alcohol, which was converted into bromide 5 with treatment of the resulting alcohol with phosphorus tribromide in 69% yield in 2 steps. Reflux of bromide 5 with triphenylphosphine in toluene provided the triphenylphosphonium bromide salt 6 in 84% yield.⁶ Treatment of triphenylphosphonium bromide salt 6 with *n*-butyllithium (2.5 N) at $0 \,^{\circ}\text{C}$ generated the phosphorus yield to react with the aldehyde 7, to produce inseparable diene 8a and 8b in a 1:1 ratio of the two isomers (8a: 13E,15E and 8b: 13Z,15E). After saponification of ester 8a and 8b into

Scheme 1. Reagents and conditions: (a) NaH, ClP(O)(OEt)₂, THF, $0 \degree C$; (b) MeMgCl, CuI, MeLi, THF, $-35 \degree C$; (c) DIBALH, ether, $-78 \degree C$; (d) PBr₃, petroleum ether $0 \degree C$; (e) PPh₃, PhMe, refux; (f) *n*-BuLi (2.5 N), THF, $0 \degree C$.; (g) NaOH (1 N), MeOH/H₂O, then reverse phase HPLC.

carboxylic acid with aqueous NaOH (1 N) in MeOH/ H_2O , the two carboxylic acid isomers (**9a** and **9b**)⁷ were separated through preparative reverse phase HPLC.

The original synthetic route, as shown in Scheme 1, involving the Wittig reaction of the aldehyde 7 with the triphenylphosphonium bromide salt 6 unfortunately provided a 1:1 ratio of two isomers and the final product was inconveniently separated through reverse phase HPLC. In order to avoid the inconvenient separation and to quickly scale-up compound 9b for the animal toxic study, we sought a regioselective formation of *cis* C=C double bond at C13–C14. Preliminary attempts to explore the utility of different bases (BuLi, KHMDS), solvents (THF, PhMe), and temperatures ($-78 \degree C$, $0 \degree C$, ambient temperature) failed to improve the regioselectivity of Wittig reaction.

Our efforts to selectively form the *cis* C=C double bond at C13–C14 then shifted from the Wittig reaction to the cross-coupling reactions, such as Stille reaction (in Scheme 2) and Suzuki cross coupling reaction (in Scheme 3).

Stille coupling partner 12 was prepared from 1-pentyne in 2 steps with an overall yield of 57%.⁸ Conversion of the aldehyde 7 with carbon tetrabromide and triphenyl-phosphine smoothly furnished vinyl dibromide 13 in 65% yield. Palladium-catalyzed stereoselective hydrogenolysis of 13 with *n*-Bu₃SnH yielded the desired Z-vinyl

Scheme 2. Reagents and conditions: (a) i—Cp₂ZrCl₂, AlMe₃, DCM, -10 °C; ii—I₂, THF; (b) Me₃SnSnMe₃, Pd(PPh₃)₄, THF; (c) CBr₄, PPh₃, DCM; (d) Bu₃SnH, Pd(PPh₃)₄, toluene; (e) Pd₂(dba)₃CHCl₃, PPh₃, reflux, THF, 3 h.

Scheme 3. Reagents and conditions: (a) BuLi, B(O*i*Pr)₃, THF, -78 °C; (b) Pd(PPh₃)₄, Ag₂CO₃, KOH, THF, 2 h, rt.

bromide 14 in 81% yield.⁹ The key cross coupling reaction of vinyl tin 12 and vinyl bromide 14 was carried out between PPh₃ and Pd₂(dba)₃CHCl₃ in THF, yielding 13–61% of the desired product **8b** (from 8 mmol scale to 0.6 mmol scale).¹⁰

Because of the low yield at Stille cross-coupling conditions on the large scale (over 8 mmol), the Suzuki cross coupling reaction was investigated next. Vinyl boronic acid **15** was obtained from iodide **11** by an exchange of iodo with lithium, and then trapping with triisopropyl borate in a 75% yield.¹¹ Only the desired product **8b** was obtained by this method in 27–68% yield (14–1.4 mmol scale).¹²

Receptor binding assays were performed on membranes prepared from HEK293 expressing the EP₁, EP₂, EP₃, and EP₄ receptors. A 100 µl reaction mixture containing 20 µg of membrane was mixed with [5,6,8,11,12, 14,15(*n*)-³H]prostaglandin E₂([³H]PGE₂) (Perkin-Elmer), along with increasing concentrations of test compounds in a final concentration of 1% DMSO. The compounds were diluted in 25 mM MES, 10 mM MgCl₂, 1 mM EDTA, pH 6 (binding buffer), containing 4% DMSO. [³H]PGE₂ was added at concentrations equal to previously determined K_d values for EP₁ (3 nM), EP₂ (8 nM), EP₃ (2 nM), and EP₄ (2 nM). For the EP₂ and EP₄ receptor membrane reactions, 500 μ g of wheatgerm agglutinin SPA (Scintillation Proximity Assay, Amersham) beads was added to the wells. All reaction mixtures were incubated at room temperature, with shaking, for 1 h. The EP_2 and EP_4 reactions were quantitated on a Topcount reader, whereas the EP_1 and EP₃ reactions were terminated by filtration through glass fiber (GF/C) unifilter plates (Whatman, catalog # 7700-4301) that were previously soaked in 0.5% PEI (polyethylinamine, Sigma). Unifilter plate wells were then washed 4 times with 200 µl of binding buffer and dried for 30 min at 50 °C. After sealing the bottom of the plates, 100 µl of scintillation cocktail (Ultima gold™ XR, Packard # 6013119) was added in the wells and filters were incubated for 1 h at rt and radioactivity remaining on filters was measured using a Topcount plate counter (Packard).

Production of cAMP in response to prostanoid compounds was measured in HEK293 cells transfected with EP₂ or EP₄ receptor, respectively. The cells were plated at a density of 20,000 cells/well in 96-well plates, one day prior to the assay. Stimulation was carried out in assay buffer (phenol red-free DMEM/F12, containing 0.1% BSA, 0.1 mM isobutylmethyl-xanthine, and 1% penicillin–streptomycin) for 60 min with increasing doses of test molecules. Following stimulation, cells were lysed and cAMP in the lysate was measured using a cAMP chemiluminescent assay kit (Tropix, Bedford, MA, USA) as per manufacturers' instructions.

The binding affinity data for the selected compounds listed in Table 1 revealed that compounds 9a (the 13E,15E isomer) and 9b (the 13Z,15E isomer) were coselective for EP₂ and EP₄ receptors. Notably, Compound 9b exhibited greater selectivity and potency for the EP₄ receptor ($K_i = 4 \text{ nM}$, EC₅₀ = 0.1 nM) than the EP₂ receptor ($K_i = 60 \text{ nM}$, EC₅₀ = 35 nM). Similarly, isomer 18 (13Z, 15E) showed selectivity for the EP₄ receptor, while its isomer, compound 19 (13E,15E), showed selectivity for EP₂ receptor. It means that the cis C=C double bond geometry at C13-C14 is a major factor contributing to improving the selectivity for EP₄ receptor over the EP_2 receptor. Compound 18, a methyl group at C-15, showed decreased binding affinity and potency for the EP₄ receptor by 100-fold, in comparison with compound 9b, a methyl group at C-16. It indicates that having a methyl group in the C-16 plays a crucial role in improving the EP₄ activity. Compound 16, which lacks a methyl group at either C-15 or C-16, almost retains EP₂ and EP₄ receptor activity, but showed decreased selectivity. Introduction of a shorter alkyl chain at C-16 (compounds 17 and 20) sharply decreased the binding affinity and potency for the EP_2 receptor. The replacement of an *n*-alkyl chain at C-16, with cycloalkyl and simple phenyl groups, (e.g., compounds 21 and 22) led to a decrease in EP_2 and EP_4 activity as well.

Compound **1a** wherein the hydroxy cyclopentanone ring has been replaced by a lactam was found to exhibit potent and selective agonist activity at EP_4 receptor and lack of the 11-hydroxy group in these lactam analogs might be responsible for the improvement of the selectivity for EP₄ receptor over the other receptors (1a vs PGE₂, 9b vs PGE₂).^{4b,d} The diene analogs (9b vs 1a) without the 15-hydroxy group still maintain the similar selectivity. It can be explained that the 15-hydroxy group or diene at ω -side chain residing in the hydrophobic pocket might have different flexibility and the different binding motifs.^{4d}

The rat pharmacokinetics data showed **9b** underwent slow degradation. The iv clearance rate of **9b** was measured to be 0.15 L/kg/h, which was a remarkable decrease in clearance rate in comparison with **1a** (iv in rat, CL: 2.5 L/kg/h, half-life time 0.78 h).^{4d} This slow clearance rate resulted in its prolonged half-life time (7.7 h). Its bioavailability was calculated to be 72.6% (rat, dosing with 1 mg/kg of **9b**). We also studied the utility of **9b** in animal models of the ovulation induction, Asthma, and Ulcerative Colitis. Preliminary result of diene **9b** showed very good efficacy in an in vivo mice ovulation induction model (CD-1 adult mice) with ED₅₀ = 1 mg/kg when administered orally.^{4e} The other discoveries will be reported in due course.

Conclusions. Analogs of PGE₂, wherein the hydroxy cyclopentanone ring has been replaced by a γ -lactam and a 15-hydroxy alkenyl group of the ω -chain side has been substituted by a diene, were found to be potent and selective agonist of the EP₂ and EP₄ receptors. In particular, it was determined that the C-15 hydroxy group present at the ω -side chain was not necessary. Furthermore, we found that incorporation of a methyl group at C-16 and *cis* C=C bond geometry at C13–C14 of the ω -side chain played important roles in the improvement of potency and selectivity for the specific subtypes of the EP₂ and EP₄ receptors. The rat PK data exhibited that compound **9b** had more stability during enzyme metabolization.

Acknowledgments

We gratefully acknowledge Dr. Ben Askew and Dr. Lesley Liu-Bujalski for proofreading.

References and notes

- (a) Funk, C. D. Science 2001, 294, 1871; (b) Narumiya, S.; Sugimoto, Y.; Ushikubi, F. Pharmacol. Rev. 1999, 79, 1193; (c) Regan, J. Life Sci. 2003, 74, 143; (d) Kobayashi, T.; Narumiya, S. Prostaglandins Other Lipid Mediat. 2002, 68–69, 557; (e) Sugimoto, Y.; Narumiya, S.; Ichikawa, A. Prog. Lipid Res. 2000, 39, 289; (f) Boie, Y.; Stocco, R.; Sawyer, N.; Slipetz, D.; Ungrin, M.; Neuschafer-Rube, F.; Puschel, G.; Metters, K.; Abranovitz, M. Eur. J. Pharmacol. 1997, 340, 227.
- Breyer, R. M.; Bagdassarian, C. K.; Myers, S. A.; Breyer, M. D. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 661.
- (a) Yamamoto, S. *Compr. Nat. Prod. Chem.* **1999**, *1*, 255;
 (b) Goto, M. P.; Goldman, A. S. *Handb. Exp. Pharmacol.* **1997**, *124*, 433 (Drug Toxicity in Embryonic Development I); (c) Collins, P. W.; Djuric, S. W. *Chem. Rev.* **1993**, *93*, 1533.

4. (a) Cameron, K. O.; Lefker, B. A.; Crawford, D. T.; DaSilva-Jardine, P.; DeNinno, S. L.; Gilbert, S.; Grasser, W. A.; Ke, H. Z.; Lu, B.; Owen, T. A.; Paralkar, V. M.; Thompson, D. D.; Tjoa, C. M.; Zamistoski, M. P.; Abstracts of Papers, 224th National Meeting of the American Chemical Society, Boston, MA, 2002; (b) Billot, X.; Chateauneuf, A.; Chauret, N.; Denis, D.; Greig, G.; Mathieu, M.-C.; Metters, K. M.; Slipetz, D. M.; Young, R. N. Bioorg. Med. Chem. Lett. 2003, 13, 1129; (c) Zhao, Z.; Bao, B.; Brugger, N.; Fischer, D.; Giachetti, C.; Golzio, L.; Karra, S.; Marinelli, P.; McKenna, S.; Palmer, E.; Reddy, A.; Xiao, Y.; Araldi, G. Abstracts of Papers, 228th National Meeting of the American Chemical Society, Boston, MA, 2004; (d) Elworthy, T. R.; Brill, E. R.; Chiou, S.-S.; Chu, F.; Harris, J. R.; Hendricks, R. T.; Huang, J.; Kim, W.; Lach, L. K.; Mirzadegan, T.; Yee, C.; Walker, K. A. M. J. Med. Chem. 2004, 47, 6124; (e) Brugger, N.; Bao, B.; Fischer, D.; Karra, S.; Mckenna, S.; Palmer, E.; Xiao, Y.; Zhao, Z.; Araldi, G. L. Abstracts of Papers, 230th National Meeting of the American Chemical Society, Washington, DC, 2005.; (f) Zhao, Z.; Araldi, G. L.; Reddy, P. A.; Xiao, Y.; Liao, Y.; Karra, S.; Brugger, N.; Fischer, D.; Palmer, E. Bioorg. Med. Chem. Lett. submitted for publication.

- 5. Sum, F.-W.; Weiler, L. Can. J. Chem. 1979, 57, 1431.
- 6. Yoda, H.; Oguchi, T.; Takabe, K. Tetrahedron: Asymmetry 1996, 7, 2113.
- 7. Compounds **9a** and **9b** were stable up to 1 week at acidic (pH 1), neutral (pH 7.4), and basic (pH 12) conditions. No isomerization or decomposition was observed during synthesis and other handling for binding and functional assays.
- (a) Negishi, E.; Van, H.; David, E.; King, A.; Okukado, N. *Synthesis* **1979**, 501; (b) Bellina, F.; Carpita, A.; Fontana, E.; Rossi, R. *Tetrahedron* **1994**, *50*, 5189.
- (a) Uenishi, J.; Kawahama, R.; Shiga, Y.; Yonemitsu, O.; Tsuji, J. *Tetrahedron Lett.* **1996**, *37*, 6759; (b) Uenishi, J.; Kawahama, R.; Yonemitsu, O.; Tsuji, J. J. Org. Chem. **1996**, *61*, 5716; (c) Uenishi, J.; Kawahama, R.; Yonemitsu, O.; Tsuji, J. J. Org. Chem. **1998**, *63*, 8965.
- 10. Milstein, D.; Stlle, J. K. J. Am. Chem. Soc. 1979, 101, 4992.
- 11. Uenishi, J.; Matsui, K.; Wada, A. Tetrahedron Lett. 2003, 44, 3093.
- 12. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.