Ketone Reduction by Titanocene Borohydride

Michael C. Barden and Jeffrey Schwartz*

Department of Chemistry, Princeton University, Princeton, New Jersey, 08544-1009

Received May 30, 1995

Introduction

Classically, reduction of ketones by sodium borohydride is done in protic solvents; ketone reduction in aprotic media usually requires activation, often by a metal complex, including those of Al,¹ Ca,² Co,³ Fe,^{3a} Li,^{1,4} Mg,^{2a,c} Ni,^{3d} U,⁵ Zn,⁶ Zr,⁷ and several lanthanides.^{2b,3b,8} Most metal-activated procedures involving simple ligation are no more stereoselective than is reduction using NaBH₄ alone: reduction of the archetypal substrate 4-tertbutylcyclohexanone occurs with low stereoselectivity for most; notable exceptions use $CeCl_3$ (*trans.cis* = 94:6)^{8c,e} or UCl₄ (*trans:cis* = 93:7)⁵ for borohydride activation.⁹ Sodium borohydride has long been known to react with Cp_2TiCl_2 to give Cp_2TiBH_4 (Scheme 1),¹⁰ a species we have shown to be a powerful reagent for reduction of organic halides.¹¹ We now report that Cp₂TiBH₄, easily prepared either independently or in situ, effects reduction of ketones to the corresponding alcohols in DME rapidly, in excellent yield, and with high stereoselectivity, which makes it a reagent of practical value for use in aprotic media.

Results and Discussion

Reductions were conducted by slowly adding ketone to titanocene borohydride, Cp₂TiBH₄ (1), in dry DME at

(3) (a) Kashima, C.; Yamamoto, Y. Chem. Lett. 1978, 1285. (b) Adams, C. Synth. Commun. 1984, 14, 1349. (c) Okamoto, T.; Oka, S. J. Mol. Cat. 1984, 23, 107. (d) Back, T. G.; Baron, D. L.; Yang, K. J. Org. Chem. 1993, 58, 2407.

(4) (a) Ritchie, C. D. Tetrahedron Lett. **1963**, 30, 2145. (b) Handel, H.; Pierre, J.-L. Tetrahedron Lett. **1976**, 24, 2029. (c) Risbood, P. A.; Ruthven, D. M. J. Org. Chem. **1979**, 44, 3969. (d) Soai, K.; Yamanoi, T.; Hitoshi, H. J. Organomet. Chem. **1985**, 290, C23.

(5) Adam, R.; Villiers, C.; Ephritikhine, M.; Lance, M.; Nierlich, M.; Vigner, J. New J. Chem. 1993, 17, 455.

S.; Sakurai, Y.; Ito, K. Synthesis 1988, 995. (c) Tamami, B.; Gourdar-zian, N. J. Chem. Soc., Chem. Commun. 1994, 1079.

(8) (a) Luche, J.-L. J. Am Chem. Soc. 1978, 100, 2226. (b) Gemal, A. L.; Luche, J.-L. J. Am. Chem. Soc. 1979, 101, 5848. (c) Gemal, A. L.; Luche, J.-L. J. Am. Chem. Soc. 1981, 103, 5454. (d) Komiya, S.; Tsutsumi, O. Bull. Chem. Soc. Jpn. 1987, 60, 3423. (e) Molander, G. A. Chem. Rev. 1992, 92, 29.

(9) In fact, two different alcohols from the reduction of 2 equiv of 4-tert-butylcyclohexanone by $U(BH_4)_4$ can be isolated; the ROH from $U(BH_4)_3(OR)$ (trans.cis = 95:5) and ROH from BH_2OR (86:14).

(10) (a) Nöth, H.; Hartwimmer, R. Chem. Ber. 1960, 93, 2338. (b) Lucas, C. R. Inorg. Synth. 1977, 17, 91. (11) (a) Liu, Y.; Schwartz, J. J. Org. Chem. 1994, 59, 940. (b) Liu,

Y.; Schwartz, J. Tetrahedron 1995, 51, 4471.

Scheme 1. Preparation of Cp₂TiBH₄

$$Cp_2TiCl_2$$
 + NaBH₄ - Cp₂TiBH₄ + H₂ + BH₃
- NaCl 1

room temperature. Alternatively, 1 can be prepared in situ by simply mixing titanocene dichloride and sodium borohydride in dry DME and used without further isolation (Table 1). When THF is used instead of DME, the *in situ* production of **1** was severely retarded, and after 2 days, only Cp₂TiCl could be isolated.¹² However when recrystallized 1 was dissolved in THF, ketone reduction took place as before to give, for example, 2-decanol from 2-decanone in 98% yield.

The stereoselectivity of reduction of 4-tert-butylcyclohexanone to 4-tert-butylcyclohexanol by 1 can be compared with BH₄⁻ activation by other metal salts (Table 2); reduction using 1 is fast, high yielding (97%), and stereoselective (trans:cis = 97:3). Borane is produced in the *in situ* synthesis of 1, and it is likely that BH_3 is also produced when 1 reacts with 1 equiv of ketone. However, if 1,4-diazabicyclo[2.2.2]octane (DABCO; 1 equiv), which strongly coordinates BH_{3} ,¹³ is added to the DME solution of 1 prior to addition of 4-tert-butylcyclohexanone, no change in the reaction profile is observed. Indeed, Et_3N , another strongly BH₃-coordinating agent,¹³ can be used even as solvent with no noticeable change in reduction yield or stereoselectivity.¹⁴ Since BH₃ is a relatively stereochemically unselective reducing agent (Table 2), competitive ketone reduction by BH₃ is apparently negligible.

We propose that 1 reacts with a ketone to form Cp₂Ti-H(ketone), 2, which transfers hydride to the carbonyl carbon to give titanocene(III) alkoxide 3.15 Hydrolytic or silylative workup of 3 yields the product alcohol or silyl ether (Scheme 2). In support of this proposal, we note that EPR analysis of 1 dissolved in acetophenone shows a doublet attributed to 2, which is centered at g = 1.980(a = 4.0 G). This signal slowly decays and is replaced by a broad singlet identical to that of independently prepared $Cp_2TiOC(H)(CH_3)C_6H_5^{16}$ (g = 1.976), which is typical for Ti(III). We had previously observed¹¹ by ${}^{11}B$

⁽¹⁴⁾ Representative data for reduction of 4-tert-butylcyclohexanone in the presence of increasing equivalent amounts of triethylamine are listed below:

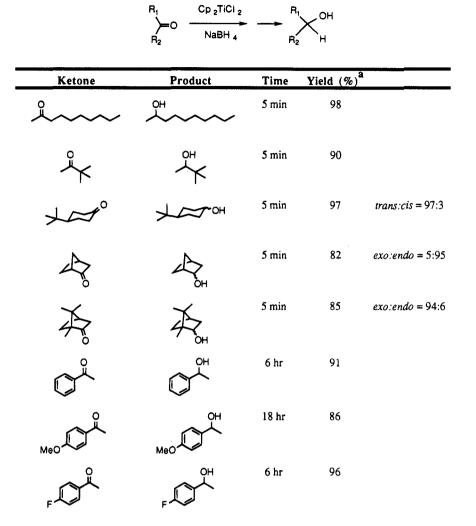
Equiv. Et3N	% Yield	trans: cis
0	99	96:4
0.5	100	94:6
1.0	90	96:4
2.0	94	96:4
5.0	97	97:3
10.0	93	97:3
100.0	99	97:3

(15) It is interesting that Cp₂ZrHCl is no more stereoselective a reagent for reduction of 4-tert-butylcyclohexanone (trans:cis = 85:15) than is NaBH₄. Perhaps the higher coordination number of the Zr reagent relative to the Ti one results in weaker coordination of the ketone to Zr than to Ti in the transition state for carbonyl group reduction.

(16) Lappert, M. F.; Sanger, A. R. J. Chem. Soc. (A) 1971, 1314.

© 1995 American Chemical Society

⁽¹⁾ Brown, H. C. Boranes in Organic Chemistry; Cornell University Press: Ithaca, NY, 1972; p 216. (2) (a) Kollonitsch, J.; Fuchs, O.; Gabor, V. Nature 1954, 173, 125.


⁽b) Fujii, H.; Oshima, K.; Utimoto, K. Chem. Lett. 1991, 1847. (c) Matsubara, S.; Takahashi, H.; Utimoto, K. Chem. Lett. 1992, 2173.

⁽⁶⁾ For example see: (a) Nakata, T.; Tanaka, T.; Oishi, T. Tetrahe-dron Lett. 1983, 24, 2653. (b) DiPardo, R. M.; Brock, M. G. Tetrahedron Lett. 1983, 24, 4805. (c) Ito, Y.; Yamaguchi, M. Tetrahedron Lett. 1983, 24, 5385. (d) Oishi, T.; Nakata, T. Acc. Chem. Res. 1984, 17, 338. (e) Evans, D. A.; Ennis, M. D.; Le, T. J. Am. Chem. Soc. 1984, 106, 1154. (f) Takahashi, T.; Miyazawa, M.; Tsuji, J. Tetrahedron Lett. 1985, 26, 5120. (c) Current of C. Paref, L. P. Z., etti, M. T. Tetrahedron Lett. 5139. (g) Guanti, G.; Banfi, L. R.; Zannetti, M. T. *Tetrahedron Lett.* **1993**, 34, 5483. (h) Zhang, H.-C.; Costanzo, M. J.; Maryanoff, B. E. *Tetrahedron Lett.* Tetrahedron Lett. 1994, 35, 4891. (7) (a) Sorrell, T. N. Tetrahedron Lett. 1978, 50, 4985. (b) Itsuno,

⁽¹²⁾ Coutts, R. S. P.; Wailes, P. C.; Martin, R. L. J. Organomet. Chem. 1973, 47, 375

 ^{(13) (}a) Lance, C. F. Aldrichchim. Acta 1971, 6, 21. (b) Brown, H.
 C.; Murray, L. T. Inorg. Chem. 1984, 23, 2746.

Table 1. Reduction of ketones to alcohols by Cp₂TiCl₂/NaBH₄

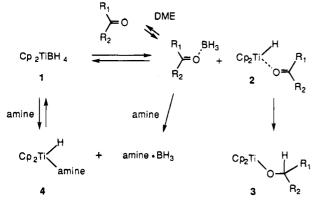
aYields were determined by GC analysis of silvlated product alcohol derivatives.

Table 2. Reduction of 4-tert-Butylcyclohexanone (25 °C)

reagent	solvent	time	yield (%)	trans:cis	ref
BH ₃ ^a	diglyme	1 h	90	84:16	19a
BH ₃ ^b	THF	1 h	90	90:10	19
$Me_3N-BH_3^{\alpha}$	diglyme	3 d	55	83:17	19a
$(n-Bu)_4NBH_4$	THF	48 h	17	53:47	this work
NaBH ₄	THF	72 h	90	86:14	4b, this work
NaBH ₄	DME	48 h	88	85:15	4b, this work
LiBH4	THF	12 h	99	86:14	4b, this work
LiBH₄	DME	0.5 h	80	85:15	4b, this work
CeCl ₃ /NaBH ₄	MeOH/THF	5 min	100	94:6	10c,e
UCl₄/NaBH₄	THF	2 d	77	93:7	7
$Cp_2Zr(Cl)BH_4$	benzene	15 min	90	66:33	9a
Cp ₂ Zr(Cl)H	DME	8 h	90	85:15	this work
Cp ₂ TiBH ₄	THF	5 min	97	97:3	this work
Cp ₂ TiCl ₂ /NaBH ₄	DME	5 min	96	96:4	this work
Cp ₂ TiBH ₄ /DABCO	DME	5 min	96	97:3	this work

^a Steam bath. ^b Ice bath.

 NMR^{17} that reaction between 1 and N,N-dimethyloctylamine gives N,N-dimethyloctylamine BH_3 and, likely,


 \mathbf{x}

-0

Cp₂Ti-H(amine), 4. EPR analysis of the reaction between 1 and N,N-dimethyloctylamine shows a doublet for 4 (g = 1.976; a = 5.0 G). Since a typical "organic" radical has $g \approx 2.00$, the higher g value found for 2 vs 4 is consistent with 20% delocalization of unpaired spin density from Ti to the carbonyl carbon of 2; the 20% reduction in

⁽¹⁷⁾ Nöth, H.; Wrackmeyer, B. Nuclear Resonance Spectroscopy of Boron Compounds. In *NMR Basic Principles and Progress*; Diehl, P., Fluck, E., Kosfled, R., Eds.; Springer-Verlag: New York, 1978; Ch. 7, p 88; Table LXV, p 311.

Scheme 2. Reduction of Ketones by Cp₂TiBH₄

coupling constant is also as expected for such delocalization. $^{18}\,$

Clearly, efficient and stereoselective reduction of ketones to alcohols can now be easily achieved using easy to handle Cp_2TiCl_2 and NaBH₄, and this procedure represents a convenient alternative to currently employed methodologies. Work is now in progress to enable catalytic utilization of Ti in this process.

(19) (a) Jones, W. M. J. Am. Chem. Soc. **1960**, 82, 2528. (b) Buono, G.; Triantaphylides, C.; Peiffer, G. Synthesis **1982**, 1030.

Experimental Section

Materials. All manipulations were performed either on a vacuum line using standard Schlenk techniques or in a glove box with a purified nitrogen atmosphere. Dimethoxyethane (DME) and tetrahydrofuran (THF) were distilled from sodium/ benzophenone ketyl. Titanocene dichloride, ketones, alcohols (Aldrich), sodium borohydride (Johnson Matthey), and silylating reagents (Supelco) were commercially available and used as received.

General Procedure for Reductions. Ketone (2 mmol) in 5 mL of DME is added dropwise to a 5 mL DME solution of Cp₂-TiBH₄ (2.10 mmol). After 5 min, GC analysis of a hydrolyzed aliquot shows complete disappearance of the ketone. The reaction mixture is worked up by exposure to air and then by acetaldehyde addition (2 mL; to quench any residual borane or borohydride), stirred for 1 h, poured into 1 N NaOH, and extracted with Et₂O to give the alcohol. The crude residue can be treated with a silylating agent (Sylon BZT) and analyzed for quantitative determinations by GLC. It can then be purified by column chromatography and identified by the usual spectroscopic methods and compared with authentic samples. Alternatively, Cp₂TiBH₄ can be prepared *in situ* by adding 0.160 g (4.23 mmol) of NaBH₄ in 5 mL of DME to 0.5 g (2.01 mmol) of Cp₂TiCl₂, under dry nitrogen, and used without isolation.

EPR Spectra. A 2×10^{-3} M solution of Cp₂TiBH₄ in acetophenone is transferred in a dry-box to an EPR tube (containing a sealed capillary of 2,2-bis(4-tert-octylphenyl)-1-picrylhydrazyl (DOPH) as internal standard) and is sealed with a rubber septum. Spectra were obtained on a Bruker ESP 300 spectrometer. The spectrometer was routinely operated at microwave powers of 0.2-0.5 mW; no saturation was observed. Field modulations were kept below 0.2 G in order to enhance spectral resolution.

Acknowledgment. We thank the National Science Foundation for support of this research and Prof. Z. G. Soos for helpful discussions of EPR data.

JO9509768

⁽¹⁸⁾ Titanocene(III) hydrides are among the intermediates proposed in the catalytic hydrosilylation of esters and ketones ((a) Berk, S. C.; Kreuzer, K. A.; Buchwald, S. L. J. Am. Chem. Soc. 1991, 113, 5093.
(b) Berk, S. C.; Buchwald, S. L. J. Org. Chem. 1992, 57, 3751. (c) Barr, K. J.; Berk, S. C.; Buchwald, S. L. J. Org. Chem. 1994, 59, 4232. (d) Halterman, R. L.; Ramsey, T. M.; Chen, Z. J. Org. Chem. 1994, 59, 2642. (e) Carter, M. B.; Schiøtt, B.; Gutierrez, A.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 11667). There may be significant structural differences between the active reducing agent in the catalyst system (Cp₂TiCl₂, BuLi, (EtO)₃SiH, THF, two days) reduced 4-tert-butylcyclohexanone to 4-tert-butylcyclohexanol (74%), but with only poor stereoselectivity (trans.cis = 78:22).