SINGLET OXYGEN PHOTOOXYGENATION OF FURANS

ISOLATION AND REACTIONS OF (4+2)-CYCLOADDITION PRODUCTS (UNSATURATED SEC.-OZONIDES)

KLAUS GOLLNICK* and AXEL GRIESBECK

Institut für Organische Chemie der Universität, Karlstrasse 23, D-8000 München 2, West Germany

(Received in Japan 16 April 1984)

Abstract-Tetraphenylporphin-photosensitized oxygenations of furan (19), 2-methylfuran (26), 2-ethylfuran (39), furfurylalcohol (24), 2-acetylfuran (40), 2-methoxyfuran (42), 2,5-dimethylfuran (30), furfural (25) and 5methylfurfural (41) in non-polar aprotic solvents yield the corresponding monomeric unsaturated secondary ozonides due to a (4+2)-cycloaddition of singlet oxygen to these furans. With the exception of the ozonide derived from 25, the ozonides were isolated and characterized (¹H- and ¹³C-NMR spectra, etc.). In non-polar aprotic solvents, the ozonides derived from 19, 26 and 39 undergo thermal rearrangements to the corresponding cis-diepoxides and epoxylactones. Ozonide 31, derived from 30, however, dimerizes; only above about 60° is a cis-diepoxide formed from either 31 or its dimer. Rose bengal-photosensitized oxygenations of the furans in alcohols (MeOH, EtOH, i-PrOH) also produce the corresponding ozonides as the primary products of (4 + 2)-cycloadditions of singlet oxygen to these furans. However, reactions of the alcohols with the ozonides are too fast to allow the ozonides to be isolated. Instead, the same products are obtained as are isolated from reactions carried out by dissolving the ozonides in the alcohols. Depending on the structure of the ozonide, three pathways are available to ozonide/alcohol (ROH) interactions: (1) addition of ROH to yield alkoxy hydroperoxides; one out of several possible isomers is formed in a completely stereoselective and regiospecific reaction; (2) elimination of a bridgehead proton by ROH as a base, as observed with the ozonide derived from 19 to give hydroxy butenolide (78) in yields between 20 and 60%; and (3) ROH-attack on a carbonyl side-chain under elimination of the corresponding alkyl ester, as observed with furfural photooxygenation which yielded hydroxy butenolide (78) in high yields (> 95%). Interaction of ozonide 31 with tert.-butyl alcohol (t-BuOH) yields quantitatively cis-3-oxo-1-butenylacetate (81) by a Baeyer-Villiger-type rearrangement with vinyl group migration. Hydrogen-bonding between the alcohol and the peroxy group of the ozonides assist the heterolysis of the C-O bonds in the ozonides; the most stabilized cation develops. Front-attack of ROH on this cation explains the stereoselectivity as well as the regiospecificity of the alkoxy hydroperoxide formation; with a bulky alcohol like t-BuOH, ROH-attack on the cation is sterically hindered thus allowing a rearrangement to occur. 1,3-Dipolar cycloaddition of p-nitrophenyl azide to ozonide 31 proceeds stereoselectively to one of the isomers 87a/87b. Finally, kinetic results of furan photooxygenation in methanol show the following order of furan-reactivity towards singlet oxygen: 30 > 42> 26 > 19 > 41 > 25, with absolute rate constants ranging from 1.8×10^8 (with 30) to 8.4×10^4 M⁻¹s⁻¹ (with 25).

In 1944, Schenck¹ postulated that furanendoperoxides (= ozonides) should be formed as instable primary products when furans are subjected to sensitized or auto-sensitized photooxygenations. Two years later, Dufraisse and Ecary² succeeded in isolating an explosive product from 1,3-diphenylisobenzofuran (1), for which the structure of an ozonide (2) was suggested. In substance, ozonide 2 exploded at 18°; in solution it underwent a decomposition reaction to give o-dibenzoylbenzene (3).

In 1960, Wasserman and Liberles³ described some solvent-dependent transformations of the photooxygenation product, obtained from tetraphenylfuran and assumed to be the ozonide 4a.

Thus, when tetraphenylfuran was irradiated in oxygen-containing methanol in the presence of methylene blue as a sensitizer, cis-dibenzoylstilbene (5a) was isolated; if the reaction was carried out in

acetone, the oxirane derivative **6a** and the enolbenzoate **7a** were obtained. Similar observations were made by Lutz *et al.*⁴ in 1962, who showed that photooxy-genation of 2,5-diphenyl-3,4-di-*p*-bromophenylfuran in acetone resulted in the formation of an oxirane (**6b**) and an enolbenzoate (**7b**); however, the main product was the diepoxide **8b**.

Wasserman and Liberles³ explained the formation of 7 as occurring by a Baeyer-Villiger-type rearrangement of **4**, whereas LeRoux and Basselier⁵ assumed that a 1,2-dioxetane (9) rather than an ozonide (4) is formed during the photooxygenation reaction; 9 should suffer the usual cleavage to carbonyl compounds, in this case to the enolbenzoate 7.

In 1975, Wasserman and Saito⁶ showed that oxirane 6 was formed nearly quantitatively when tetraphenylfuran was irradiated in aqueous tetrahydrofuran in the presence of a sensitizer and oxygen. A rearrangement of 4a to give an intermediate carbonyl-oxide 10a followed by ring closure to 10b and a further rearrangement to 6a was discussed. Evidence for the carbonyl-oxide intermediate was provided by trapping 10a with diphenylsulfide yielding 5a and diphenylsulfoxide.⁶

A similar rearrangement to that observed by Lutz et $al.^4$ (**4b** \rightarrow **8b**) was reported by Wasserman⁷ in 1970: the bis-ozonide 11, assumed to be formed as the primary instable product from the corresponding furanophane, underwent a rearrangement in methylene chloride to bis-diepoxide 12.

In 1967, Dufraisse *et al.*⁸ showed that the ozonide 13 obtained from 2,5-diphenylfuran (14) undergoes a retro-(4+2)-cycloaddition reaction to yield furan 14 and molecular oxygen. That this oxygen is eliminated

as singlet oxygen was shown by Trozzolo and Fahrenholtz⁹ in 1970 by trapping ${}^{1}O_{2}$ with 1,3-cyclohexadiene as well as with rubrene.

More recently, Graziano et $al.^{10,11}$ studied the behavior of electron-acceptor substituted ozonides (15) in non-polar aprotic solvents, showing that the main reactions are retro-(4+2)-cycloadditions to 16 as well as rearrangements to oxiranes (17) and enolbenzoates (18).

Schenck^{1,12} studied the photosensitized oxygenation of furan and a series of alkyl-substituted furans. When furan (19) was irradiated in the presence of oxygen and rose bengal (RB) as a sensitizer in a 2:2:1 mixture of MeOH-EtOH-Me₂CO at -90° , Koch and Schenck¹³ isolated a product which exploded at about -10° ; it was reduced to maleic dialdehyde (21) in ether at -70° , and it was transformed into the pseudomethylester of cis- β -formylacrylic acid (= 4methoxybutenolide; 22) if treated with methanol. Butenolide 22 could be obtained directly, if 19 was photooxygenated in MeOH at room temp. The most likely structure of the instable peroxidic product is that of the ozonide 20.

Butenolide 23 was obtained when furfuryl alcohol $(24)^{14}$ and furfural $(25)^{15,16}$ were subjected to photosensitized oxygenations in ethanol.

The formation of butenolides was assumed to occur via the corresponding instable ozonides and alkoxyhydroperoxides since Schenck and Schulte-Elte¹⁷ succeeded in isolating the latter from 2-methylfuran $(26)^{17}$ and 2,5-dimethylfuran (30).^{17,18} Similarly, when

2-(3-hydroxybutyl)furan (34) was photooxygenated in $CHCl_3$, spiro compound 35 was obtained.¹⁹

Reduction of 28 and 32 as well as of 27 and 31 prepared in non-alcoholic solvents yielded the unsaturated 1,4-dicarbonyl compounds 29 and 33, respectively. On standing, the non-alcoholic solution of 31 gave rise to an isolable dimer.¹⁸

Recently, Adam and Takayama²⁰ tried to isolate ozonide 31 by irradiating 30 in CCl₄ at 0° in the presence of tetraphenyl porphyrin and oxygen followed by removal of the solvent by flash distillation at $-20^{\circ}/0.1$ Torr. They obtained a co-distillation of 31 and CCl₄ and observed ¹H-NMR signals at δ 6.02 and 1.70 (in CCl₄) which they attributed to the two olefinic protons and the 6 protons of the 2 Me groups of 31, respectively. Graziano et al.¹⁰ also reported on 31 in CCl_4 ; in this case, the chemical shifts were observed at δ 6.20 and 1.75 (in CCl₄). These signals probably belong to the dimer of 31 (= 38) rather than to the monomeric ozonide 31 (see ref. 27 and below). Feringa²¹ reported on the ¹H-NMR spectrum of 31 in CDCl₃, with signals at δ 6.38 (2 olefinic H) and 1.82 (2 Me-groups). These signals, however, certainly belong to the dimer of 31 (see below).

As described above, ozonides such as 2 suffer a thermal decomposition to 1,2-diacylbenzene (or, more generally, to a 1,2-diacylethylene, see $4 \rightarrow 5$, $15 \rightarrow 16$). The fate of the O atom that is lost during the reaction remained obscure. Wasserman⁶ as well as Adam and Rodriguez²² showed recently that an O atom may be transferred to suitable acceptors such as ethylenes, sulfides and ketones to yield oxiranes, sulfoxides and esters (by a Baeyer-Villiger oxidation), respectively. Adam²² concluded that the O-transfer occurred from an intermediate carbonyl-oxide (36) rather than from an instable dioxirane (37).

We have recommended the use of 2,5-dimethylfuran (30) as a standard singlet oxygen acceptor in methanolic solution in order to determine the limiting (or maximum) quantum yield of singlet oxygen formation from a given sensitizer in MeOH.^{23,24} More recently, we studied the solvent-dependence of various olefins and used 30 as a standard singlet oxygen acceptor to determine the limiting rate of singlet oxygen consumption.^{25,26} It was, therefore, necessary to study the primary product of singlet oxygen with 30 in a series of solvents, especially its subsequent thermal reactions, in order to assure that these thermal reactions do not interfere with the singlet oxygen reaction. The isolation of ozonide 31 and its subsequent thermal reactions were published recently;27ª these results will be discussed below in more detail together with our studies on furan (19), 2-methylfuran (26), 2-ethylfuran (39), 2(hydroxymethyl)furan (24), 2-acetylfuran (40), 2methoxyfuran (42), furfural (25) and 5-methylfurfural (41).

RESULTS AND DISCUSSION

1. Preparation and isolation of ozonides of furan and substituted furans

2,5-Dimethylfuran (30) consumes one molecule of oxygen when irradiated in oxygen-saturated aprotic solvents in the presence of typical singlet oxygen sensitizers such as tetraphenylporphin (TPP) (in CCl₄, CHCl₃, CFCl₃, CH₂Cl₂ and benzene) and rose bengal (RB) (in Me₂CO and acetonitrile) at 13°. Ozonide 31 was isolated by removing the solvent at low temps and reduced pressure (e.g. CFCl₃ at $-15^{\circ}/0.1$ Torr) followed by distillation of the remaining yellow oil at $5^{\circ}/10^{-3}$ Torr into a trap cooled to -78° .

The ¹H-NMR spectrum (in CDCl₃; TMS) of 31 shows a singlet at δ 6.25 (H_b, H_c) and another singlet at 1.70 (3H, 3Hd). The elemental analysis and the molecular weight determination are in accord with the structure of a monomeric ozonide 31. At low temperature $(< -15^\circ)$, small amounts (< 100 mg) of 31 could be stored for several days; larger amounts (> 100mg) of 31 had always the tendency to decompose violently (explosion!). In CCl₄ and CFCl₃, 31 dimerized slowly to peroxide 38; in benzene-petrol ether (2:1), the dimerization occurs more rapidly. At about 55-60°, the dimerization is fast and quantitative. Compound 38 is a yellowish crystalline compound which decomposes at 143°. Its ¹H-NMR spectrum shows two singlets at δ 6.31 (H_b , H_c) and 1.81 ($3H_a$, $3H_d$). The elemental analysis and the molecular weight determination are in accord with a dimer of 31; the ¹H-NMR spectrum shows that the dimer has structure 38.

Under similar conditions, photooxygenation of furan (19) and furan derivatives 24, 26 and 39-42 gave rise to ozonides (Table 1), which were isolated in substance in the cases of ozonide 20 (a crystalline compound which decomposes at about -15°) and the substituted ozonides 43 (crystalline, decomposition at about -20°), 45 (crystalline, decomposition at about -40°), and 27, 44 and 46 (oils). Ozonide 47 was only obtained in CFCl₃ solution; ozonide 48 from furfural (25), however, could not be obtained due to its rather slow formation on the one hand and its very fast rearrangement (see below) on the other hand.

With 2,5-dimethylfuran (30), we observed the production of a monomeric ozonide (31) which underwent dimerization to 38. The ozonides obtained from the other furans of Table 1 do not show such a dimerization reaction under similar conditions. Since we could not execute molecular weight determinations at low temps (note that decomposition occurred at temps below -15°), the products obtained might be the dimers of the ozonides rather than the monomeric ozonides. The ¹H-NMR spectra do not allow to decide this question, since we should assume that

Table 1. ¹H-NMR spectra of monomeric ozonides '0₂ \mathbb{R}^1 R² н, H_b/H_c H₄ 6.38 (s) H. 20 6.38 (s) 6.24 (s) H₄ H. CH₂OH (d) 6.62 (m)* 4.30 (m) 43 1.79 (s) 27 6.31 (m) 6.15 (m) H. CH₃(d) CH₃ (d) 6.25 (s) 1.70 (s) CH₃(a) 31 1.70 (s) CH2CH2 (e) (d) 44 6.40 (m)* e: 2.20 (g) H. d:1.17(t) $-CH_3(d)$ Н, 45 6.73 (m) 6.83 (m) 2.54 (s) н 0 CH₃ (a) CHO (d) 46 1.98 (s) 6.50 (d, J = 5.6)9.83 (s) 6.77 (d, J = 5.6)6.05 (m)* OCH₃ (d) 47 H, 3.72 (s) Н, CHO (d) 48

$$(H_{h} + H_{h} + H_{c})$$
.

monomeric and dimeric ozonides show very similar spectra (see 31 and 38). However, one would expect that the dimers are more stable : dimer 38 has a m.p. of 143° (dec), and it seems rather unlikely that, for example, the replacement of one Me group by a H atom (giving the dimer of ozonide 27) should result in destabilizing the dimer to such an extent that it decomposes at room temp. We believe, therefore, that we are dealing with the monomeric ozonides.

Why, then, do not all the ozonides form dimers? Obviously, if the bridgehead positions of the monomeric ozonides carry a H-atom or a "leaving group" such as CHO (as in 46), monomolecular reactions (for example, rearrangements) become much faster than the bimolecular dimerization reaction. Only if both bridgehead positions carry rather "inert" substituents (such as Me groups as in 31) become rearrangements slow enough to allow bimolecular dimerization processes to compete.

Reduction of ozonide 31 in benzene at 0° with an icecold solution of triphenylphosphane in petrol ether results in the formation of *trans*-3-hexene-2,5-dione (49). This dione is also formed if dimer 38 is reduced under these conditions. Similarly, ozonides 27 and 44 may be reduced to *trans*-acetylacrolein (50) and *trans*propionylacrolein (51), respectively.

2. Rearrangement reactions of ozonides in aprotic solvents

Formation of diepoxides and epoxylactones. If ozonide 31 is slowly heated in CCl₄ to about 55–60°, it dimerizes to 38. If, however, 31 is rapidly heated to temps above 60° (but distinctly below the reflux temp of

 CCl_4) it rearranges to diepoxide 52. This diepoxide is also obtained, if dimer 38 is heated to temps above 60° in CCl_4 .

Diepoxide 52 is isolated by distillation at $10^{\circ}/$ < 10^{-4} Torr as a colorless liquid which becomes resinous at room temp within a few hours. The ¹H-NMR spectrum of 52 shows two singlets at δ 3.42 (2 tert. H) and 1.58 (2 Me groups). Because of its tendency to turn resinous, heating of 31 to produce 52 should be rather rapid; otherwise, larger amounts of resinous material will accompany the formation of the diepoxide.

If ozonide 20 is kept in CCl_4 , $CHCl_3$ or CH_2Cl_2 at room temp for about 30 to 60 min, it rearranges completely to a mixture of diepoxide 53 and epoxylactone 54.³⁸

Diepoxide 53 was isolated from CCl₄ solns by sublimation at 70-80°/0.2 Torr as slightly yellowish crystals, m.p. 110-114° (dec), after CCl₄ and epoxylactone 54 were removed by distillation. The epoxylactone 54, a colorless oil, was obtained from CH₂Cl₂ solution by distillation at 50-55°/0.3 Torr. The structural assignments of 53 as a diepoxide and 54 as an epoxylactone are based on elemental analyses, ¹H- and ¹³C-NMR spectra.

Figure 1 shows the rearrangement of 20 in a 1:3 mixture of CDCl₃-CFCl₃ at 15°. At the beginning, only the two singlets H_a/H_d at δ 6.38 and H_b/H_c at 6.24 of ozonide 20 (see also Table 1) are present. After 5 min, the appearance of H_e and H_f of diepoxide 53 as singlets at δ

Fig. 1. Rearrangement of ozonide 20 to diepoxide 53 and epoxylactone 54. ¹H-NMR spectra in CDCl₃-CFCl₃ (1:3) at 15°.

5.50 and 3.75, respectively, becomes observable. After another 5 min, the signals of H_p , H_h and H_i of the epoxylactone 54 at δ 5.61, 3.87 and 2.80 start to appear.

The thermal rearrangement reactions of ozonide 20 are quite likely initiated by homolytic cleavage of the O—O bond to yield diradical 20a. Two-fold ringclosure would yield the *cis*-diepoxide 53. If the ringclosures occur in two steps, the 1,3-diradical 20b could be the common intermediate for both products, 53 and 54. The latter would be formed from 20b by a 1,2-H shift; increasing solvent polarity appears to favor such shifts.

Markos and Reusch²⁸ have shown that photolysis of epoxy-ketone (55) afford 1,3-diketones (57), probably via 1,3-diradicals (56); the migratory ability decreased in the order $Z = Ph_2CH > PhCH_2 > H > CH_2R$ > CH₃. In accord with this order, epoxylactone formation is observed with ozonides 20, 27 and 44 (see below), but not with ozonide 31.

Ozonides 27 and 44 obtained from 2-methyl- and 2ethylfuran, 26 and 39, respectively, rearrange at room temp in CCl₄ within 8-10 hr completely to the corresponding diepoxides (58 and 60) (> 90%) and epoxylactones (59 and 61) (< 5%). Distillation of the residues, obtained after removal of CCl₄, at about $10^{\circ}/ < 10^{-4}$ Torr into a trap cooled to -78° resulted in colorless oils which represent mixtures of 58/59(9:1) and 60/61(3:2). The tendency to turn rather rapidly into resinous products prohibited so far the isolation of the pure components. The ¹H-and ¹³C-NMR spectra of the mixtures, taken immediately after distillation, are in accord with structures 58-61.

Ozonides 43 and 45–47 (as well as 48 assumed to be the primary product when furfural (25) is photooxygenated in aprotic solvents) also undergo rapid thermal reactions in CCl_4 at room temp. We have made no attempt to characterize the resinous material.

3. Reactions of ozonides with alcohols

Photooxygenation of furans in alcoholic solutions. If ozonide 31 (or the dimer 38 of ozonide 31) is treated with alcohols such as MeOH, EtOH and i-PrOH, the 2alkoxy derivatives 62-64 of 2,5-dimethyl-5hydroperoxy-2,5-dihydrofuran are formed in quantitative yields. The hydroperoxides are more conveniently prepared by irradiating 30 in alcoholic solution in the presence of RB and O₂.

In principle, addition of ROH to 31 may result in the formation of the *cis*- as well as of the *trans*-5-

Fig. 2. ¹H-NMR spectrum of 63 in CDCl₃.

hydroperoxy-2-alkoxy derivative. The protondecoupled 13 C-NMR spectra of **62–64** show, however, only one set of 13 C-signals in each case, indicating that only one of the steric isomers is formed at a time.

In addition product 63, the two protons of the methylene group become diastereotopic and should thus give rise to two doublets of quartets. Figure 2 shows the ¹H-NMR spectrum of 63, and the expanded group of signals of the

group ($J_{H_a,H_b} = 3 \text{ cps}, J_{H_a,CH_3} = 6.75 \text{ cps}, J_{H_b,CH_3} = 7.25 \text{ cps}$).

It also shows that 63 represents only one of the steric isomers. (Similar observations are made with compounds 66, 72 and 75, see below.)

The most likely mechanism of ROH addition to 31 appears to be that of a nucleophilic substitution assisted by the concomitant formation of a H-bonded peroxy group according to Scheme 1.

According to path (a), which we presumed to be the more likely pathway,^{27a} **62–64** should represent the *trans*-isomers. However, the X-ray structure analysis of **62** revealed that this compound is the *cis*-isomer (*cis*-arrangement of OMe and OOH),^{27b} showing that the reaction of **31** with methanol proceeds according to path (b) rather than to path (a). Thus, **63** and **64** should also represent the *cis*-isomers.

Addition of ROH to ozonides 27, 44 and 47 also results in the formation of only one alkoxy hydroperoxide at a time, although four isomeric addition products could, in principle, be formed in each case. However, ROH-addition is not only entirely stereoselective, it is also regiospecific. Treatment of 65-67 with vanadium pentoxide in alcohol gives rise to the exclusive formation of the dehydration products, the butenolides 68-70. This result, together with the observation that the proton-decoupled ¹³C-NMR

Scheme 1.

Scheme 2.

spectra of all the alkoxy hydroperoxides prepared show only one set of 13 C-signals, is in accord with structures 65–67 from 27, 71–73 from 44, and 74–76 from 47.

The mechansim outlined in Scheme 1 and applied to ROH-addition to 27, 44 and 47 predicts the regiospecificity found, if we assume that the stability of the developing positive charge determines which of the two C—O bonds will be cleaved. It furthermore suggests the *cis*-arrangement of the OOH and OR groups in these compounds.

hydroperoxide 77 is the expected primary product of the ozonide/ROH interaction; in the case of methanol as a solvent, the methoxy-hydroperoxide 77 (R = Me) was detected by ¹H-NMR spectroscopy at low temp. Elimination of formic acid from 77 (R = Me) yields 68, possibly via intermediate 77a.

Addition of ROH to ozonide 20 in $CHCl_3$ at -20° (or photooxygenation of furan (19) in ROH) yields epoxylactone 54, hydroxy butenolide (78), and the alkoxy butenolides 22, 23 and 80.

We encountered epoxylactone 54 as a rearrangement product of 20 in aprotic solvents (see above). It was formed together with diepoxide 53. Polar solvents favored the production of 54. Since diepoxide 53 is stable in ROH, it is not a precursor of the butenolides 78 and 22, 23 and 80. We therefore believe that 54 is formed via biradicals 20a and 20b as in aprotic solvents, and that the polarity of ROH favors the exclusive 1,2-H shift in 20b to yield epoxylactone 54.

Under the reaction conditions applied by us, 78 and 22, 23 and 80 are not interconvertible. We therefore suggest that there are two polar processes of 20 with ROH which compete with the homolytic cleavage of the O-O bond in 20: first, the nucleophilic substitution to afford the alkoxy hydroperoxides 79

If ozonide **46** is treated with ROH (or if 5methylfurfural (**41**) is photooxygenated in ROH), alkoxy butenolides **68**–**70** and formic acid are obtained. According to the mechanism discussed above, alkoxy

which eliminate water to yield the alkoxy butenolides 22, 23 and 80, and second, the rearrangement of 20 to hydroxy butenolide (78) induced by a base-catalyzed proton elimination from the bridgehead position of 20, with ROH acting as the base (Scheme 2).

Interestingly enough, if furfural (25) is photooxygenated in MeOH and EtOH, the only products obtained would be the hydroxy butenolide (78) and the corresponding ester of formic acid.²⁹

If the interaction of the expected ozonide intermediate 48 with ROH would occur similar to that of the Me derivative 46 with ROH, we should obtain formic acid and the butenolides 22 and 23, respectively. Since formic acid and butenolides 22 and 23 are not converted to hydroxy butenolide (78) and the corresponding esters of formic acid under our reaction

conditions, the hydroxy butenolide (78) and methyl formate (or ethyl formate) are, in our opinion, the result of an attack of ROH on the CO group of 48. Competing processes, such as observed with the other furans, have obviously no chance to occur.

Thus, depending on the structure of the ozonide, there are three pathways open for interaction of ROH with an ozonide: (a) addition of ROH to give alkoxy hydroperoxides; this pathway is taken only if the developing cation is stabilized by an alkyl group or by an alkoxy group; (b) elimination of a bridgehead proton by ROH as the base; (c) attack of ROH on a side-chain carbonyl substituent and elimination of the corresponding alkyl ester. Homolysis of the O—O bond of the ozonide may compete with these reactions.

As we have seen above, ozonide 31 derived from 2,5dimethylfuran (30) reacts with MeOH, EtOH and i-PrOH to give the *cis*-isomer 62-64. If, however, 31 is reacted with t-BuOH, *cis*-3-oxo-1-butenylacetate (81) is quantitatively formed. ozonide exclusively. If we added *p*-nitrophenyl azide to 31 dissolved at 0° in CCl₄, we obtained an addition product (m.p. 110–113°, dec) at a yield of 83%. According to elemental analysis, molecular weight determination (osmometric in acetone), ¹H- and ¹³C-NMR spectra (the latter showing only one set of ¹³Csignals) a [3+2]-cycloaddition product of structure 87a or 87b was formed in a completely stereoselective 1,3-dipolar cycloaddition reaction. Further reactions are presently carried out in our laboratory.

5. Kinetic results

Photooxygenation of furans in methanolic solution. Our method of determination of β -values defined as k_d/k_r (M), with $k_d = 1$ /lifetime of ¹O₂, and k_r = rate constant of ¹O₂-reaction with a substrate, was recently

An attack of t-BuOH on 31 according to that of MeOH of Scheme 1 appears to be sterically hindered; tbutoxy hydroperoxide 83 could not be detected. Since interactions of t-BuOH with 31 corresponding to paths (b) and (c) as discussed above are impossible to occur, and since O-O bond homolysis of 31 is too slow, a Baeyer-Villiger-type rearrangement of 31 to 81 with vinyl group migration rather than Me group migration gets a chance to take place. This rearrangement should be induced by t-BuOH-assisted heterolysis of a C-O bond to give 84 (cf. with Scheme 1). The rearrangement may then proceed via the carbonyl-oxide 85 and the dioxirane 86 to give the cis-oxo-enolacetate 81 which may be thermally rearranged to the corresponding trans-82. Baeyer-Villiger-type rearrangement of an ozonide via a carbonyl-oxide and the corresponding dioxirane was recently discussed by Adam and Rodriguez.30

4. Addition reactions to the C-C double bond of unsaturated ozonides

An out-look on further studies. Since unsaturated ozonides such as 31 are now easily available, addition reactions to the C—C double bond should be studied. Adam et al.³¹ have recently shown that treatment of 31 with diimine yields the corresponding saturated published.^{23,24a,25,26} β -values of furans, obtained from oxygen-uptake curves, are given in Table 2. With a singlet oxygen lifetime of 7×10^{-6} s in MeOH,³² the rate constants k_r^{MeOH} are shown in Table 2. Clennan and Mehrsheikh-Mohammadi³³ have recently determined k_r in methylene chloride for a series of furans; their results are also shown in Table 2. It is interesting to note that the same trend of k_r is observed for the two solutions. Furthermore, the absolute values, although determined by different methods, appear to be very similar for the two solvents. This result is in accord with the fact that (4+2)-cycloaddition reactions of singlet

Table 2. Absolute rates of singlet oxygen reactions with furans in methanolic solution at 13°

Furan	10 ² β(MeOH) (M)	10 ⁻⁷ k ^{MeOH} (M ⁻¹ s ⁻¹)	10 ⁻⁷ k ^{CH₂Cl₂* (M⁻¹s⁻¹)}
30	0.0781	18.3	13.0
42	0.0924	15.5	12.0
26	0.1400	9.9	6.2
19	1.607	0.89	1.2
41	8.412	0.17	_
25	169.80	0.0084	0.0051

* Ref. 33.

oxygen with cis-1,3-diene systems are insensitive towards the solvents^{25,26} suggesting a concerted Diels-Alder reaction occurs.

With furans 30, 42, 26 and 19, oxygen-uptake curves with time are linear and exactly the same if applied at concentrations distinctly larger than their half-value concentrations β (Table 2). Thus, these furans may be used to determine the limiting quantum yields of singlet oxygen formation or to determine the limiting rate of oxygen-consumption (see, e.g. refs 25, 26). 2,5-Dimethylfuran (30), however, is not only the fastest singlet oxygen acceptor of the furans studied here, but also gives rise to a rather stable ozonide the subsequent thermal reactions of which do not interfere with the singlet oxygen reaction of 30. 2,5-Dimethylfuran, an inexpensive chemical, is therefore recommended as a standard acceptor for kinetic studies of singlet oxygen reactions.

EXPERIMENTAL

Chemicals. Compounds 19, 26, 30, 39 and 42 (Ega) were used without further purification. Compounds 24, 40, 41 and 25 (Ega) were purified by distillation (24: $170-171^{\circ}/730$ Torr; 40: $61-63^{\circ}/12$ Torr; 41: $185-188^{\circ}/730$ Torr; 25: $160-163^{\circ}/730$ Torr). Solvents (Fluka, puriss. p.a.) were used without further purification. Rose bengal (RB) (Ega), purified by extraction with MeOH, polymer-bound rose bengal (p-RB) (Hydron), purified by Soxhlet-extraction with acetone, and mesotetraphenylporphin (TPP) prepared after ref. 34 and purified by chromatography on neutral alumina in hot CHCl₃,³⁵ were used as sensitizers.

Spectra. Proton-NMR spectra were recorded with CDCl₃ or mixtures of freon 11 (CFCl₃) and CDCl₃ as solvents on a Bruker WP-80-CW-spectrometer and on a Varian A-60-CWspectrometer with TMS as internal standard. ¹³C-NMR spectra were recorded on a Bruker WP-80-FT-spectrometer and on a Varian XL-100-FT-spectrometer using TMS as internal standard. IR spectra were recorded on a Perkin-Elmer-IR-spectrometer 125 as thin films. M.ps are uncorrected.

Irradiation. For kinetic studies and small preparative runs, a 25 ml irradiation unit with automatic O₂-consumption recording system^{36,37} was used. A 150 W Halogen-Bellaphot lamp (Osram) and a band filter, transparent between 480 and 570 nm (Hoya), was used for electronic excitation of RB and TPP. Both sensitizers were applied in concentrations of 2×10^{-4} , 4×10^{-4} , 6×10^{-4} and 10^{-3} M. The irradiation unit, the oxygen burette and the tubing connecting the unit with the burette were kept at $(13\pm0.1)^\circ$, by cooling with water; thermostat JULABO-P.

For preparative photooxygenations at low temps, a soln of the substrate in freon 11 (CFCl₃) and CDCl₃ with TPP as sensitizer (10^{-3} M) in a 3-necked 50 ml flask with an O₂ inlet and a bubble gauge, cooled with a dry ice/acetone bath was irradiated with a 500 W Halogen-Argaphoto lamp (Philips). The soln was periodically sampled and the sample analyzed by 'H-NMR spectroscopy at low temp. For preparative photooxygenations at 13°, a 150 ml irradiation unit with automatic O₂-consumption recording system was used.¹⁶ A 150 W Hg-high-pressure lamp (Philips) and a cut-off filter (< 380 nm) was used. The irradiation unit, the oxygen burette and the tubing connecting the unit with the burette were kept at (13 ± 0.1)° by cooling with water; thermostat LAUDA WB 20. CAUTION : Precautions should be taken according to the high instability of monomeric ozonides.

Products

1,4 - Dimethyl - 2,3,7 - trioxa - bicyclo - [2.2.1] - hept - 5 - ene 31. A soln of 500 mg 30 (5.2 mmol) in 25 ml CFCl₃ containing 500 mg p-RB was irradiated for 2.5 hr at 13°, after which time the O₂ consumption ceased and 5.2 mmol of O₂ was taken up. The solvent was removed at $-15^{\circ}/0.1$ Torr and the residue was distilled at $5^{\circ}/10^{-3}$ Torr into a trap cooled to -78° . The resulting yellowish oil (about 400 mg) violently exploded when warmed up to temps higher than -10° . In smaller amounts (< 100 mg), 31 could be stored some hours at room temp and CH-analysis and molecular weight could be obtained. ¹H-NMR: δ 1.70 (s, 6H); 6.25 (s, 2H). ¹³C-NMR: δ 13.48 (q, 2CH₃); 112.34 (s); 124.12 (d). Mol. weight: 128 (calc), 144 (osmometric in benzene). (Found: C, 56.25; H, 6.30. C₆H₈O₃ requires: C, 56.25; H, 6.29%.)

1,4,7,10 - Tetramethyl - 2,3,8,9,13,14 - hexaoxo - tricyclo - [8.2.1.1^{4.7}] - tetradeca - 5,11 - diene **38**. A soln of 1 g **30** (10.4 mmol) in a mixture of 80 ml benzene and 40 ml petrol ether containing 100 mg TPP was irradiated at 13° for 3 hr until the O₂ consumption ceased. After 24 hr at 20°, inspection of the ¹H-NMR spectrum showed that **31** was entirely converted into **38** in addition to some polymeric material. After removal of the solvents under reduced pressure, 10 ml ether and 10 ml petrol ether were added. After 2 hr, yellow crystals precipitated from the soln; 300 mg of **38**(23%) was isolated by filtration and sublimation at 120–130°/0.2 Torr. M.p. 143° (dec) (m.p. 154°¹⁸). ¹H-NMR & 51.82 (s, 12H); 6.34 (s, 4H). Mol. weight: 256 (calc), 254 (osmometric in benzene). (Found : C, 56.13; H, 6.42. C₁₂H₁₆O₆ requires: C, 56.25; H, 6.29%.)

General procedure for the preparation of monomeric ozonides at low temp. A soln of 340 mg 19 (5 mmol) and 5 mg TPP in a mixture of 10 ml CFCl₃ and 5 ml CDCl₃ was irradiated for 3 hr. During the irradiation, dry O₂ was bubbled through the soln which was kept at -78° . The soln was periodically analyzed by ¹H-NMR spectroscopy. After 2 hr the reaction was complete; the ozonide which precipitated from the soln was filtered off (glass frit at -60°). 2,3,7-*Trioxa-bicyclo*-[2.2.1]hept-5-ene **20**: colorless crystals which explode violently at temps above about -15° . ¹H-NMR: δ 6.24 (s, 2H); 6.38 (s, 2H). ¹³C-NMR: δ 102.98 (d); 131.39 (d).

The monomeric ozonides 43, 45, 27, 44, 46 and 47 were prepared according to the procedure described above, from furans 24, 40, 26, 39, 41, and 42, respectively. The physical and spectral data of these ozonides are as follows:

1 - Hydroxymethyl - 2,3,7 - trioxa - bicyclo - [2.2.1] - hept - 5 ene 43. Yellowish crystals, exploding above about -30° to -20° . ¹H-NMR (-70°): δ 4.30 (m, 2H); 5.17 (m, 1H, OH); 6.62 (m, 3H).

1 - Acetyl - 2,3,7 - trioxa - bicyclo - [2.2.1] - hept - 5 - ene 45. Yellow crystals, exploding at temps higher than -40° . ¹H-NMR (-70°): δ 2.54 (s, 3H, COCH₃); 6.73 (m, 1H); 6.83 (m, 2H).

1 - Methyl - 2,3,7 - trioxa - bicyclo - [2.2.1] - hept - 5 - ene 27. Oil, decomposition point ~ 0°. ¹H-NMR (-50°): δ 1.79 (s, 3H); 6.15 (m, 2H); 6.31 (m, 1H). ¹³C-NMR (-50°): δ 13.08 (q); 103.89 (d); 111.93 (s); 131.79 (d); 133.85 (d).

1 - Ethyl-2,3,7 - trioxa - bicyclo - [2.2.1] - hept - 5 - ene 44. Oil, decomposition point > -10° . ¹H-NMR (-60°): δ 1.17 (t, 3H); 2.20(q, 2H); 6.30(s, 1H); 6.40 (m, 2H). ¹³C-NMR (-50°): δ 7.99 (q); 20.21 (t); 103.74 (d); 114.77 (s); 131.59 (d); 132.81 (d). 1 - Methyl-2,3,7 - trioxa - bicyclo - [2.2.1] - hept - 5 - ene - 4-

aldehyd 46. Yellowish oil, decomposition point > $+10^{\circ}$. ¹H-NMR (-20°): δ 1.98 (s, 3H); 6.50 (d, 1H, J = 5.6 Hz); 6.77 (d, 1H, J = 5.6 Hz); 9.83 (s, 1H, CHO).

1 - Methoxy - 2,3,7 - trioxa - bicyclo - [2.2.1] - hept - 5 - ene 47. Obtained only in CFCl₃ soln. ¹H-NMR (-70°): δ 3.72 (s, 3H, OCH₃); 6.05 (m, 3H).

Reduction of ozonides 27, 31, 38 and 44 with triphenylphosphane

A soln of 2.05 g of triphenylphosphane (7.8 mmol) in 15 ml petrol ether was added slowly to a soln of 5.2 mmol 31 or 38 in 25 ml benzene cooled to 0°. After stirring the mixture for 1 hr, the ppt (triphenylphosphane oxide) was filtered off and the solvents removed at reduced pressure. Sublimation of the residue at 73-80°/10 Torr yielded 620 mg (93%) of yellowish needles of trans-3-hexen-2,5-dione 49 with m.p. 82-83° (m.p. 78°).¹⁸ ¹H-NMR: δ 2.28 (s, 6H); 6.67 (s, 2H). (Found: C, 64.26; H, 7.32. C₆H₈O₂ requires : C, 64.27; H, 7.19%.) The diones 50

and 51 were prepared from 27 and 44, respectively, as described for 49.

trans-3-Acetylacrolein **50**. B.p. 72–74°/10 Torr (b.p. 72°/13 Torr).¹⁸ ¹H-NMR : δ 2.35 (s, 3H); 6.69 (m, 2H); 9.68 (dd, 1H, CHO). (Found : C, 61.41; H, 6.08. C₅H₆O₂ requires : C, 61.22; H, 6.17%.)

trans-3-Propionylacrolein **51**. B.p. 88–91°/12 Torr. ¹H-NMR : δ 1.07 (t, 3H); 2.22 (q, 2H); 7.15 (m, 2H); 9.85 (dd, 1H, CHO). (Found : C, 64.22; H, 7.41. C₆H₈O₂ requires : C, 64.27; H, 7.19%.)

General procedure for the thermal conversion of ozonides

Thermal conversion was carried out on a soln (1%) of the ozonide in dry CCl₄ or in mixtures of CDCl₃ and freon 11. Only in the case of 30 was heating to 60° necessary to complete the thermal conversion. In the case of ozonides 20, 27 and 44, standing at room temp for some hours was sufficient for quantitative conversion of the ozonides.

2,5 - Dimethyl - 2,3:4,5 - diepoxy - 2,3,4,5 - tetrahydrofuran 52. After 10 min heating of a soln of 2 mmol 31 in 25 ml CCl₄ to 60°, the solvent was removed under reduced pressure and the residue distilled at 10°/10⁻⁵ Torr. The resulting colorless liquid slowly polymerizes and partly undergoes hydrolysis at room temp. ¹H-NMR : δ 1.58 (s, 6H); 3.42 (s, 2H). (Found : C, 56.31; H, 6.30. C₆H₈O₃ requires : C, 56.25; H, 6.29%.)

If a soln of the dimer 38 in CCl₄(1%) was heated for 20 min to 60°, inspection of the ¹H-NMR spectrum showed only signals of 52 in addition to broadened signals due to polymeric material.

2,3:4,5 - Diepoxy - 2,3,4,5 - tetrahydrofuran 53. After stirring a soln of 2.5 mmol 20 in 25 ml CCl₄ for 30 min at room temp, the solvent was removed under reduced pressure. The solid residue, distilled at 70-80°/0.2 Torr, gave 85 mg (34%) 53 as slight-yellow needles, m.p. 110-114° (dec). ¹H-NMR : δ 3.75(s, 2H); 5.50 (s, 2H). ¹³C-NMR : δ 50.01 (d, 2C); 91.02 (d, 2C). IR : 3450(s), 2920 (s), 1800 (vw), 1725 (vw), 1625 (w) cm⁻¹. MS : 100 (M⁺), 83 (100%), 55 (80%), 29 (40%). (Found : C, 47.49 ; H, 4.08. C₄H₄O₃ requires : C, 48.01 ; H, 4.03%.)

3,4-Epoxy-butyrolactone 54. A soln of 500 mg 20 (7 mmol) in 150 ml CH₂Cl₂ was stirred at room temp. After 30 min, inspection of the ¹H-NMR spectrum of the soln showed that 20 was entirely converted to 53 and 54 in a ratio of 62% to 38%. Removal of the solvent under reduced pressure and distillation of the residue at 50-55°/0.3 Torr, yielded 160 mg (22%) 54 as a colorless oil. ¹H-NMR : δ 2.80 (d, 2H); 3.87 (dt, 1H); 5.61 (d, 1H). ¹³C-NMR : δ 33.14 (t); 51.13 (d); 79.05 (d); 173.47 (s). (Found : C, 48.23; H, 4.11. C₄H₄O₃ requires : C, 48.01; H, 4.03%.)

2 - Methyl - 2,3: 4,5 - diepoxy - 2,3,4,5 - tetrahydrofuran 58. After 24 hr stirring of a soln of 170 mg 27 in 25 ml CCl₄ at room temp, inspection of the ¹H-NMR spectrum showed that 27 was entirely converted into 58 and 59 in a ratio of 90% to 10%. After removal of the solvent under reduced pressure, the residue was distilled at $10-15^{\circ}/10^{-5}$ Torr. The resulting colorless oil was a mixture of 90% 58 and 10% 4-methyl-3,4epoxy-butyrolactone 59 (according to the ¹H-NMR spectrum). All attempts to isolate the pure compounds by distillation or chromatographic methods failed since 58 and 59 rapidly polymerized at room temp. ¹H-NMR (58): δ 1.62 (s, 3H); 3.42 (m, 1H); 3.52 (m, 1H); 5.25 (d, 1H). ¹³C-NMR (58): δ 1.65 (s, 3H); 2.85 (s, 2H); 3.77 (s, 1H). ¹³C-NMR (59); δ 15.33 (q); 34.71 (t); 56.18 (d); 87.63 (s); 173.83 (s).

2 - Ethyl - 2,3:4,5 - diepoxy - 2,3,4,5 - tetrahydrofuran 60. A soln of 350 mg of 44 in 25 ml CH₂Cl₂ was stirred for 24 hr at 20°. Removal of the solvent under reduced pressure and distillation of the residue at $0^{\circ}/10^{-5}$ Torr yielded a mixture of 61% 60 and 39% 4-ethyl-3,4-epoxybutyrolactone 61. All attempts to isolate the pure compounds by distillation or chromatographic methods failed; 60 and 61 rapidly polymerized at room temp. ¹H-NMR (60): δ 1.03 (t, 3H); 1.97 (q, 2H); 3.69 (m, 2H); 5.40 (d, 1H). ¹³C-NMR (60): δ 8.62 (q); 23.35 (t); 51.04 (d); 54.02 (d); 88.52 (d); 102.33 (s). ¹H-NMR (61): δ 1.10 (t, 3H); 2.01 (q, 2H); 2.83 (s, 2H); 3.64 (s, 1H). ¹³C-

NMR (61): δ 8.01 (q); 21.77 (t); 34.41 (t); 54.89 (d); 91.22 (s); 173.69 (s).

General procedure for the preparation of alkoxy hydroperoxides

(a) A soln of 1 mmol of 27, 31, 44, 47 or the dimeric ozonide 38 in 15 ml CDCl₃ was dissolved in 50 ml of dry alcohol precooled to 0°. Warming up to 20° and stirring for 30 min, followed by removal of the solvent under reduced pressure ($30-40^{\circ}/10$ Torr), afforded alkoxy hydroperoxides in quantitative yields. Solid products were twice recrystallized from petrol ether and liquid alkoxy hydroperoxides were dried over silica gel for 24 hr.

(b) A soln of 10 mmol of 26, 30, 39 or 42 in 150 ml of dry alcohol in the presence of 1 g p-RB was irradiated at 13° until the O_2 -consumption ceased. After removal of the solvent under reduced pressure ($30-40^{\circ}/10$ Torr), solid products were twice recrystallized from petrol ether and liquid products were dried over silica gel for 24 hr. Physical, spectral and analytical data of 62-67 and 71-76 are shown in Table 3.

4-Methoxy-4-methyl-butenolide 68. A soln of 443 mg (3 mmol) 65 in 25 ml MeOH was added to a suspension of 900 mg (4.9 mmol) of vanadium pentoxide in 30 ml MeOH cooled to 0°. After stirring the mixture for 2 hr at room temp, the ppt was filtered off, and the solvent was removed at reduced pressure. Distillation of the residue at 25–33°/0.3 Torr yielded 275 mg (72%) of a colorless oil. ¹H-NMR : δ 1.65 (s, 3H); 3.22 (s, 3H); 6.20 (d, 1H, J = 6 Hz); 7.26 (d, J = 6 Hz). ¹³C-NMR : δ 23.47 (q); 51.26 (q); 109.65 (s); 124.03 (d); 155.08 (d); 170.44 (s). (Found: C, 56.01; H, 6.13. C₆H₈O₃ requires : C, 56.25; H, 6.29%.)

The butenolides 69 and 70 were prepared, as described for 68, from 66 and 67 with yields of 51% and 42%, respectively. Spectral and physical data for 69 and 70 are as follows:

4-Ethoxy-4-methyl-butenolide 69. Oil; b.p. 88–91°/12 Torr. ¹H-NMR: δ 1.18(t, 3H, J = 7 Hz); 1.65(s, 3H); 3.42(2 dq, 2H); 6.13 (d, 1H, J = 5.3 Hz); 7.19 (d, 1H, J = 5.3 Hz).

4 - iso - Propyloxy - 4 - methyl - butenolide 70. Oil; b.p. 50–53°/0.3 Torr. ¹H-NMR: 1.12 (d, 3H, J = 6 Hz); 1.17 (d, 3H, J = 6 Hz); 1.63 (s, 3H); 3.71 (sept., 1H); 6.17 (d, 1H, J = 6.5 Hz); 7.12 (d, 1H, J = 6.5 Hz).

2 - Formyl - 2 - hydroperoxy - 5 - methyl - 5 - methoxy - 2,5 - dihydrofuran 77

A soln of 100 mg of 41 (0.91 mmol) and 30 mg of RB in 20 ml MeOH was irradiated for 4 hr at -78° . Then the soln was warmed up to -15° and stirred for 2 hr. After removal of the solvent at $-15^{\circ}/10^{-4}$ Torr the residue was dissolved in CDCl₃ and the ¹H-NMR spectrum was recorded at -52° . ¹H-NMR (-52°): δ 1.92(s, 3H); 3.46(s, 3H); 6.38 (d, 1H, J = 4 Hz); 7.41 (d, 1H, J = 4 Hz); 9.44 (s, 1H, CHO).

When the soln of 77 in $CDCl_3$ was stirred for 1 hr at room temp, 77 had quantitatively eliminated formic acid and formed 68. Formic acid was distilled at 40-50°/10 Torr after the alcohol was removed at reduced pressure.

Similar observations were made with the photooxygenation reactions of 41 in EtOH or i-PrOH at 13°, where 69 and 70 were formed quantitatively.

4-Hydroxybutenolide **78**. A soln of 2 g **25** (20.8 mmol) in 150 mi MeOH (2×10^{-4} M soln of RB) was irradiated for 8 hr at 13°. After removal of the solvent at reduced pressure, the solid yellow residue was recrystallized from MeOH, yielding 1.1 g of **78** (53%). M.p. 49–53° (m.p. 55°).¹² ¹H-NMR : δ 5.68 (s, OH); 6.19 (d, 1H, J = 5.1 Hz); 6.24 (s, 1H); 7.36 (d, 1H, J = 5.1 Hz). ¹³C-NMR : δ 99.53 (d); 124.12 (d); 153.05 (d); 172.34 (s). (Found : C, 47.78; H, 4.05. C₄H₄O₃ requires : C, 48.01; H, 4.03%)

4-Methoxy-butenolide 22. A soln of 1 mmol 20 in 25 ml CHCl₃ cooled to -20° was dissolved in 10 ml of dry MeOH pre-cooled to -20° . Warming to 20° and stirring for 1 hr, followed by removal of the solvents and methyl formate (30- $32^{\circ}/730$ Torr), afforded a mixture of 44% 54, 21% 78 and 35% 22 (according to the 'H-NMR spectrum). Distillation at 45-48%/0.1 Torr yielded 22 as a colorless oil (22%). 'H-NMR : δ 3.41 (s, 3H); 5.73 (dd, 1H, J₁ = 1 Hz, J₂ = 1.2 Hz); 6.13 (dd, 1H,

Product	M.p. (°)	¹ H (CDCl ₃)(J/Hz)	¹³ C (CDCl ₃ /ppm	Formula	Analysis (%) Found (required)	
					C	Η
62	79–80	1.47 (s, 3H, CH ₃) 1.53 (s, 3H, CH ₃) 3.33 (s, 3H, OCH ₃) 5.99 (AB-system, 2H) 8.63 (s, 1H, OOH)	22.26 (q) 25.11 (q) 51.01 (q) 111.55 (s) 114.16 (s) 131.64 (d) 134.64 (d)	C ₇ H ₁₂ O ₄	52.62 (52.49)	7.65 (7.55)
63	oil	1.17 (t, 3H, J/7) 1.49 (s, 3H, CH ₃) 1.55 (s, 3H, CH ₃) 3.62 (m, 2H, O—CH ₂ —) 5.95 (AB-system, 2I 8.88 (s, 1H, OOH)	15.51 (q) 22.35 (q) 25.59 (q) 58.85 (t) 111.22 (s) 114.07 H) (s) 131.33 (d) 135.09 (d)	C ₈ H ₁₄ O ₄	55.25 (55.16)	8.13 (8.06)
64	oil	1.13 (d, 3H, J/6) 1.18 (d, 3H, J/7) 1.50 (s, 6H) 4.11 (qq, 1H, J/6/7) 5.93 (AB-system, 2H) 8.87 (s, 1H, OOH)	22.35 (q) 24.17 (q) 24.32 (q) 25.84 (q) 64.64 (d) 111.16 (s) 114.09 (s) 130.99 (d) 135.54 (d)	C9H16O₄	57.21 (57.43)	8.69 (8.57)
65	8082	1.54 (s, 3H) 3.23 (s, 3H, OCH ₃) 6.03 (m, 3H) 8.72 (s, 1H, OOH)	25.81 (q) 50.92 (q) 109.53 (d) 112.52 (s) 126.58 (d) 136.97 (d)	C ₆ H ₁₀ O ₄	49.3 7 (49.3 1)	6.73 (6.89)
66	74–76	1.16 (t, 3H) 1.54 (s, 3H), 3.48 (m, 2H, O—CH ₂ —) 6.02 (m, 3H) 8.67 (s, 1H, OOH)	15.38 (q) 26.08 (q) 58.85 (t) 109.47 (d) 112.21 (s) 125.93 (d) 137.73 (d)	C ₇ H ₁₂ O ₄	52.64 (52.49)	7.53 (7.55)
67	oil	1.02 (d, 3H, J/9.4) 1.12 (d, 3H, J/10) 1.57 (s, 3H) 4.02 (qq, 1H, J/9.4/10) 6.06 (m, 3H) 8.65 (s, 1H, OOH)	23.93 (q) 24.26 (q) 26.59 (q) 65.33 (d) 109.37 (d) 112.13 (s) 125.73 (d) 137.97 (d)	C ₈ H ₁₄ O ₄	55.18 (55.16)	7.93 (8.10)
71	9698	0.85 (t, 3H, J/7) 1.83 (q, 2H, J/7) 3.23 (s, 3H) 5.98 (m, 3H) 10.11 (s, 1H, OOH)	7.99 (q) 31.59 (t) 50.75 (q) 109.56 (d) 115.46 (s) 127.46 (d) 135.60 (d)	$C_7H_{12}O_4$	52.62 (52.49)	7.29 (7.55)
72	107-110	0.86 (t, 3H, J/7) 1.17 (t, 3H, J/7.2) 1.87 (q, 2H, J/7) 3.49 (2 dq, 2H) 5.97 (s, 1H) 6.00 (m, 2H) 9.78 (s, 1H, OOH)	8.06 (q) 15.39 (q) 31.84 (t) 58.70 (t) 109.53 (d) 115.19 (s) 126.79 (d) 136.33 (d)	Ċ ₈ H ₁₄ O ₄	55.27 (55.16)	7.99 (8.10)
73	oil	0.84 (t, 3H, J/7.4) 1.04 (d, 3H, J/9) 1.12 (d, 3H, J/10) 1.71 (q, 2H, J/7.4) 3.89 (qq, 1H, J/10/9) 5.89 (m, 3H) 8.99 (s, 1H, OOH)	8.14 (q) 24.02 (q) 24.61 (q) 32.09 (t) 65.41 (d) 109.24 (d) 112.61 (s) 126.06 (d) 137.12 (d)	C9H16O4	57.47 (57.43)	8.79 (8.57)
74	oil	3.59 (s, 3H) 3.75 (s, 3H) 5.94 (d, 1H, J/11) 6.12 (s, 1H) 6.17 (dd, 1H, J/11/5.8) 8.69 (s, 1H, OOH)	51.79 (q) 56.34 (q) 102.44 (d) 122.73 (d) 140.63 (d) 165.86 (s)	C ₆ H ₁₀ O,	44.78 (44.45)	6.14 (6.22)
75	oil	1.25 (t, 3H, J/7.2) 3.73 (s, 3H) 3.80 (2dq, 2H) 5.94 (m, 1H) 6.23 (m, 2H) 8.94 (s, 1H. OOH)	15.21 (q) 51.70 (q) 64.94 (t) 101.35 (d) 122.39 (d) 141.06 (d) 165.80 (s)	C ₇ H ₁₂ O ₅	47.60 (47.73)	7.09 (6.86)
76	oil	1.19 (d, 3H, J/11) 1.31 (d, 3H, J/12) 3.73 (s, 3H, OCH ₃) 4.13 (qq, 1H) 5.80–6.45 (m, 3H) 9.14 (s), 1H, OOH)	22.17 (q) 23.23 (q) 51.67 (q) 71.51 (d) 99.62 (d) 121.76 (d) 141.54 (d) 165.86 (s)	C ₈ H ₁₄ O ₅	50.17 (50.52)	7.63 (7.42)

Table 3. M.ps, ¹ H- and ¹³ C-NMR data, and elemental analysis of alkoxy hydroperoxides (62-67 and	71-76)
---	--------

 $J_3 = 5.2 \text{ Hz}, J_2 = 1.2 \text{ Hz}$; 7.09 (dd, 1H, $J_3 = 5.2 \text{ Hz}, J_1 = 1 \text{ Hz}$). (Found : C, 52.73; H, 5.21. C₅H₆O₂ requires : C, 52.63; H, 5.26%.)

Butenolides 23 and 80 were prepared as described for 22 with yields of 15% and 18%, respectively.

4-Ethoxy-butenolide 23. ¹H-NMR : δ 1.23 (t, 3H, J = 7 Hz); 3.63 (m, 2H); 5.65 (s, 1H); 6.03 (d, 1H, J = 4 Hz); 7.22 (d, 1H, J = 4 Hz).

4-iso-Propyloxy-butenolide 80. ¹H-NMR : δ 1.21 (d, 6H, J = 6.5 Hz); 3.99 (m, 1H); 5.64 (s, 1H); 6.16 (d, 1H, J = 5.6 Hz); 7.28 (d, 1H, J = 5.6 Hz).

cis-3-Oxo-1-butenylacetate **81**. A soln of 500 mg **30** (5.2 mmol) in a mixture of 18 ml t-BuOH and 7 ml CHCl₃ was irradiated in the presence of 500 mg p-RB until the O₂ consumption ceased (1.3 hr). Filtration of the sensitizer and removal of the solvent under reduced pressure (25°/10 Torr), followed by distillation at 67-70°/10 Torr yielded 440 mg of **81** (67%) as a yellow oil. ¹H-NMR : δ 2.29 (s, 3H); 2.41 (s, 3H); 5.45

(d, 1H, J = 7 Hz); 7.60 (d, 1H, J = 7 Hz). IR : 1760, 1670, 1355, 1175, 1060, 1005, 800, 687 cm⁻¹. (Found : C, 56.12; H, 6.24. C₆H₈O₃ requires : C, 56.25; H, 6.29%.)

Prolonged heating of **81** at temps above about 120° converted **81** quantitatively into the *trans*-isomer **82**: trans-3-Oxo-1-butenylacetate. b.p. 74-76°/10 Torr. ¹H-NMR: δ 2.25 (s, 3H); 2.31 (s, 3H); 5.85 (d, 1H, J = 13 Hz); 8.10 (d, 1H, J = 13 Hz); Hz). (Found : C, 55.82; H, 6.34. C₆H₈O₃ requires : C, 56.25; H, 6.29%.)

2,5 - Dimethyl - 7 - (4 - nitro - phenyl) - 7,8,9 - triaza - 3,4,10trioxa-tricyclo-[4.3.1^{2.5}0]-deca-8-ene 87

A soln of 269 mg 31 (2.1 mmol) in 25 ml CCl₄ was added to a soln of 345 mg *p*-nitrophenyl azide (2.1 mmol) in 30 ml CCl₄ pre-cooled to 0°. After 24 hr stirring at room temp, the ppt was filtered off and dried : 510 mg (83%); m.p. 110–113° (dec). MS : 232($M^+ - N_2 - O_2$, 1%). ¹H-NMR : δ 1.60(s, 3H); 1.90(s, 3H); 4.29 (d, 1H, J = 8.2 Hz); 5.31 (d, 1H, 8.2 Hz); 7.29 (d, 2H, 9.6

Hz); 8.28 (d, 2H, 9.6 Hz). ¹³C-NMR : δ 12.36 (q); 13.17 (q); 60.12(d); 89.32(d); 110.13(s); 111.07(s); 114.58(d); 125.85(d); 142.99 (s); 145.11 (s). Molecular weight: 292 (calc), 281 (osmometric in acetone). (Found : C, 49.19; H, 4.09; N, 19.25. C₁₂H₁₂N₄O₅ requires: C, 49.32; H, 4.14; N, 19.17%.)

Acknowledgement-Support by Fonds der Chemischen Industrie, Frankfurt am Main, Germany, is gratefully acknowledged.

REFERENCES

- ¹G. O. Schenck, Angew. Chem. 56, 101 (1944).
- ²C. Dufraisse and S. Ecary, C.R. Acad. Sci. Paris 233, 735 (1946).
- ³H. H. Wasserman and A. Liberles, J. Am. Chem. Soc. 82, 2086 (1960).
- ⁴ R. E. Lutz, W. J. Welstead Jr., R. G. Bass and J. I. Dale, J. Org. Chem. 27, 1111 (1962).
- ⁵ J. P. LeRoux and J. J. Basselier, C.R. Acad. Sci. Paris 271C, 461 (1970).
- ⁶H. H. Wasserman, I. Saito and F. J. Vinick, unpublished results; cited in T. Matsuura and I. Saito, *Photochemistry of Heterocyclic Compounds* (Edited by O. Buchardt), p. 456. Wiley, New York (1976).
- ⁷H. H. Wasserman and R. Kitzing, Tetrahedron Lett. 5315 (1969).
- ⁸C. Dufraisse, G. Rio and A. Ranjon, C.R. Acad. Sci. Paris 264, 516 (1967).
- ⁹ A. M. Trozzolo and S. R. Fahrenholtz, Ann. N.Y. Acad. Sci. 171, 61 (1970).
- ¹⁰ M. L. Graziano, M. R. Iesce and R. Scarpati, J. Chem. Soc. Perkin Trans. 1 2007 (1982).
- ¹¹ M. L. Graziano, M. R. Iesce, B. Carli and R. Scarpati, Synthesis 736 (1982).
- ¹²G. O. Schenck, Liebigs Ann. Chem. 584, 156 (1953).
- ¹³ E. Koch and G. O. Schenck, Chem. Ber. 99, 1984 (1966).
- ^{14a}G. O. Schenck and R. Appel, Naturwissenschaften 33, 122 (1946); ^bS. H. Schroeter, R. Appel, R. Brammer and G. O. Schenck, Liebigs Ann. Chem. 697, 42 (1966).
- ¹⁵G. O. Schenck and R. Brammer, unpublished results; see ref. 16.
- ¹⁶ K. Gollnick and G. O. Schenck, 1,4-Cycloaddition Reactions; the Diels-Alder Reaction in Heterocyclic Syntheses (Edited by J. Hamer), Ch. 10, p. 255. Academic Press, New York (1967).
- ¹⁷G. O. Schenck and K. H. Schulte-Elte, unpublished results; see ref. 16.
- ¹⁸C. S. Foote, M. T. Wuesthoff, S. Wexler, I. G. Burstain, R.

Denny, G. O. Schenck and K. H. Schulte-Elte, Tetrahedron 23, 2583 (1967).

- ¹⁹ B. L. Feringa and R. J. Butselaar, Tetrahedron Lett. 23, 1941 (1982).
- ²⁰ W. Adam and K. Takayama, J. Org. Chem. 44, 1727 (1979).
- ²¹ B. L. Feringa, Tetrahedron Lett. 22, 1443 (1981).
- ²² W. Adam and A. Rodriguez, J. Am. Chem. Soc. 102, 406 (1980).
- 23 K. Gollnick, Adv. Photochem. 6, 1 (1968).
- ²⁴⁰ K. Gollnick, T. Franken, G. Schade and G. Dörhöfer, Ann. N.Y. Acad. Sci. 171, 89 (1970);^bK. Gollnick, T. Franken and M. F. R. Fouda, Tetrahedron Lett. 22, 4049 (1981);^cK. Gollnick and M. F. R. Fouda, *Ibid.* 22, 4053 (1981).
- ²⁵ K. Gollnick and A. Griesbeck, *Tetrahedron Lett.* 25, 725 (1984).
- ²⁶ K. Gollnick and A. Griesbeck, Tetrahedron 40, 3235 (1984).
- ^{27a}K. Gollnick and A. Griesbeck, Angew. Chem. 95, 751 (1983); *Ibid.* Int. Ed. Engl. 22, 726 (1983); ^bK. Peters, E. M. Peters, H. G. v. Schnering, A. Griesbeck and K. Gollnick, Z. Kristallogr., in press.
- ²⁸C. S. Markos and W. Reusch, J. Am. Chem. Soc. 84, 1759 (1962).
- ²⁹ In contrast to our results, Schenck¹² obtained butenolides 22 and 23 from the mixtures of furfural (25) photooxygenation in MeOH and EtOH, together with methyl and ethyl formate, respectively. We believe that 22 and 23 are secondary products, generated by prolonged heating of 78 in MeOH and EtOH, respectively. Indeed, if we refluxed 78 in MeOH for 1 hr, 22 was formed in 20% yield; after 6 hr in 45% yield.
- ³⁰ W. Adam and A. Rodriguez, *Tetrahedron Lett.* 22, 3509 (1981).
- ³¹ W. Adam, H. J. Eggelte and A. Rodriguez, Synthesis 383 (1979).
- ³² P. B. Merkel and D. R. Kearns, J. Am. Chem. Soc. 94, 7244 (1972).
- ³³ E. L. Clennan and M. E. Mehrsheikh-Mohammadi, J. Am. Chem. Soc. 105, 5932 (1983).
- ³⁴G. H. Barnett, M. F. Hudson and K. M. Smith, J. Chem. Soc. Perkin Trans. 1 1401 (1975).
- ³⁵G. H. Barnett, M. F. Hudson and K. M. Smith, *Tetrahedron Lett.* 14, 2887 (1972).
- ³⁶ K. Gollnick, H. Paur and A. Griesbeck, manuscript in preparation.
- ³⁷ H. Paur, Dissertation, University of München (1982).
- ³⁸ Added in proof: Similarly, TPP-photosensitized oxygenation of 3-methylfuran in CH₂Cl₂ yielded 2-methyl-3,4-epoxy-butyrolactone (54%), 3-methyl-3,4-epoxy-butyrolactone (10%) and 3-methyl-2,3:4,5-diepoxy-2,3,4,5-tetrahydrofuran (23%): W. Grimminger and W. Kraus, Liebigs Ann. Chem. 1571 (1979).