Tetrahedron 64 (2008) 11420-11432

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Triazole-linked dendro[60]fullerenes: modular synthesis via a 'click' reaction and acidity-dependent self-assembly on the surface

Ilias M. Mahmud, Ningzhang Zhou, Li Wang, Yuming Zhao*

Department of chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X7

A R T I C L E I N F O

Article history: Received 20 June 2008 Received in revised form 8 August 2008 Accepted 20 August 2008 Available online 4 September 2008

ABSTRACT

A series of Fréchet-type dendron functionalized [60]fullerene derivatives that bear a 1,2,3-triazole linkage group, referred to as triazole-linked dendro[60]fullerenes, were prepared via a modular synthetic protocol based on a Cu-catalyzed [3+2] cycloaddition ('click') reaction. Electronic properties of these dendro[60]fullerenes were investigated by UV-vis spectroscopy and cyclic voltammetry. Interfacial supramolecular self-assembly behavior of these dendro[60]fullerenes was studied using atomic force microscopy (AFM). The resulting self-assemblies showed different nanoscale packing geometries and morphologies on the surface, which are controllable by parameters such as the generation of dendron, the nature of peripheral functionalities, and the experimental conditions (e.g., acidity) applied. Correlations between molecular structure and self-assembling outcome were surveyed and discussed. The results of this study suggest a new avenue to gain better 'bottom-up' control over the self-assembly of dendrimer–fullerene hybrid materials in terms of shape and size.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Ever since its first discovery in the early 1980s. [60]fullerene (C_{60}) has become one of the most intensively investigated carbon nanomaterials, in view of its aesthetic spherical molecular structure, extremely small size (ca. 0.7 nm in diameter), and rich electronic and photophysical properties resulting from its unique 3D electron delocalization.^{1,2} So far, the applications of C_{60} and its various derivatives have encompassed a great number of areas, ranging from molecular devices (e.g., photovoltaics,^{3–9} nonlinear optics^{10–13}), molecular machinery,^{14,15} supramolecular chemistry,^{16–21} to biomedicine (photodynamic therapeutic agents),²² and others. One of the design requirements for efficient use of C_{60} materials in various device applications is the capability of attaining micro- and nanoscopic ordering in the solid state or at the interface. In particular, spatially ordered C₆₀ acceptor domains on the length scale of the exciton diffusion are crucial to optimize the efficiency of C_{60} based bulk heterojunction photovoltaic cells.^{23–26} To achieve ordering of C₆₀ at the molecular or supramolecular level in a controlled manner is, however, not a trivial task.¹⁷ Significant challenges arise mainly from the fact that pristine C_{60} cages show a strong tendency to cluster via π - π stacking,^{27,28} totally lacking such directional interactions as can be found in metal-ligand

complexation or hydrogen bonding. To circumvent this hurdle, various approaches have been developed, including using templates^{29–31} and attaching other molecular moieties that can impart attributes of directional bonding.^{32–35}

Chemical functionalization of C₆₀ offers a facile way of modifying and tuning the properties of C_{60} based molecular materials. It is particularly advantageous in that control over molecular and supramolecular behaviors can be achievable through tailoring of molecular structures. One actively pursued research area in this regard is the preparation and characterization of supramolecular nano-assemblies of functionalized C₆₀ molecules. For instance, Nakamura and co-workers recently demonstrated that a type of 'shuttle-cock' shaped C₆₀ derivative with different molecular appendages was able to self-assemble into distinct nanometer-scale objects, such as columns³⁶ and lamellae.³⁷ Numerous amphiphilic C₆₀ derivatives^{17,35,38,16} that contain ionic moieties or polar groups were reported to form nanostructures with defined shapes (spheres, vesicles, needles, tubules, etc.) in the solid state or on surfaces through self-assembly, while the morphology and size of these nano-assemblies were dependent on factors such as molecular structures and experimental conditions.

Apart from [60]fullerene, various dendrimers constitute another important class of molecular building blocks for structurally defined and controllable nanostructures. To take advantage of the unique and extraordinary molecular and supramolecular properties of both C_{60} and dendrimers, hybrid molecular systems of C_{60} and dendrimers, called dendro[60]fullerenes, ^{39,40} have been

^{*} Corresponding author. Tel.: +1 709 737 8747; fax: +1 709 737 3702. *E-mail address:* yuming@mun.ca (Y. Zhao).

^{0040-4020/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2008.08.083

actively sought after in the recent literature. Representative studies include dendro[60]fullerenes consisting of Fréchet, 41,42 New-kome, 43,44 and depsipeptide types of dendrons. 45

The use of dendro[60]fullerenes to assemble nanoscale architectures is an attractive and challenging direction in the supramolecular chemistry of C_{60} . On one hand, the C_{60} cage tends to show a strong penchant for aggregation driven by hydrophobicity and π - π stacking forces.²⁷ On the other hand, numerous dendritic molecules have already demonstrated the ability to form ordered superstructures with (pre)determined geometries and hierarchical orders through the process of self-assembly.^{46,47} As for self-assembly using dendro[60]fullerenes,^{48,49} the control of shape and hierarchical morphology, however, has not yet reached the level achieved by some functional dendrimers^{50–52} or other types of C_{60} derivatives.^{34,53–55,37} There are two major hurdles, which have retarded progress towards precisely controlled dendro[60]fullerene self-assemblies, to overcome. First, the synthesis of dendro[60]fullerenes is not easy and usually requires multi-step synthesis and tedious purification procedures. Second, the selfassembly of C₆₀ derivatives is often complicated by the involvement of intricate intermolecular forces. Clear understanding of such forces is needed for the development of rational strategies for control and manipulation of self-assembling attributes. In this regard, synthesis and investigation of new dendro[60]fullerene varieties are crucially important.

This article is aimed at addressing the aforementioned challenging issues in dendro[60]fullerene supramolecular chemistry. We devised a modular synthetic strategy, on the basis of copiously documented accounts of 'click' chemistry,^{56–58} to allow for facile and rapid access to various dendro[60]fullerenes with complex

molecular structures. A series of Fréchet-type dendron functionalized C_{60} derivatives were designed, in which the dendrons and C_{60} moieties are covalently linked by a 1,2.3-triazole unit that is assembled via a Cu(I)-catalyzed Huisgen [3+2] cycloaddition ('click') reaction. It is worth mentioning that a similar 'click' protocol has been recently demonstrated by Nierengarten's group, which shows excellent efficiency in making C_{60} hexakis-adducts.⁵⁹ The self-assembly behavior of these new 1,2,3-triazole-linked dendro[60]fullerenes on the surface of mica was then investigated, and the detailed results are discussed in the following context.

2. Results and discussion

2.1. Synthesis of triazole-linked dendro[60]fullerenes

Two groups of Fréchet-type dendrons, ranging from first to third generations (**2–5**), were synthesized following a convergent protocol as reported in the literature⁶⁰ with suitable modifications. In order to examine the appendage group effects, one series of dendrons was prepared with phenyl groups on the periphery, while another was grafted with *meta*-bis(*n*-decyloxy) groups on each of the peripheral phenyl groups. Synthetic details for these dendrons are outlined in Scheme 1. The dendrons with azido pendants could be readily linked to a C_{60} core via a highly efficient 'click' reaction that was first developed by Sharpless and co-workers.⁶¹ For the 'click' reaction, an alkynyl functionalized C_{60} building block **8** was needed, and its synthesis was carried out via a Sonogashira coupling of *p*-bromobenzaldehyde with trimethylsilylacetylene (TMSA) followed by a 1,3-dipolar cycloaddition reaction as described in Scheme 2.⁶² Compound **8** was then desilylated with

Scheme 1. Synthesis of azido-functionalized dendron building blocks G1-G3. (a) K2CO3, 18-crown-6, acetone; (b) LiAlH4, THF; (c) CBr4, PPh3; (d) NaN3, DMSO.

Scheme 2. Synthesis of 1,2,3-triazole-linked dendro[60]fullerenes 9a-e via a 'click' reaction.

tetrabutylammonium fluoride (TBAF) in a solvent mixture of THF/ MeOH to form a terminal alkyne in situ, to which a suitable azidoattached dendron precursor was subsequently added together with Et₃N and a catalytic amount of Cul. The 'click' reaction generally went to completion within 12 h at ambient temperatures. The resulting 1,2,3-triazole-linked dendro[60]fullerene products showed satisfactory to good solubility in common organic solvents, and could be readily purified through a standard flash column chromatographic procedure. The yields of these 'click' reactions varied from 38 to 80% (see Scheme 2), in large part depending on the solubility of the dendro[60]fullerene products, for it was observed that the yields increased with increasing dendron generation as well as the number of solubilizing *n*-decyloxy chains attached.

The molecular structures of the dendro[60]fullerenes, 9a-e, were verified by IR, ¹H NMR, and MALDI-TOF mass spectrometric characterizations. All the MALDI-MS spectra of **9a-e** clearly showed molecular ion peaks, while the ¹H NMR spectra provided convincing evidence for the formation of the 1,2,3-triazole linkage group resulting from the 'click' reactions. ¹³C NMR characterizations were, however, of limited use in structural elucidation, due to the low concentrations that these dendro[60]fullerenes (9a-e) could achieve in chloroform. Figure 1 depicts the ¹H NMR spectra of **9a–e** where key proton signals corresponding to the linkage groups between the C_{60} cores and the dendron units are briefly assigned. Notice that the chemical shifts (δ) of these protons are virtually unchanged as the generation of dendron increases. This observation implies that the linkage groups are experiencing very similar chemical environments created by different dendron moieties. To facilitate discussions of the properties of these dendro[60]fullerenes in the following context, compounds **9a-e** are henceforth generally referred to as C_{60} – G_n –X, wherein G_n denotes the generation of dendron attached and X refers to the peripheral R' group designated in Scheme 1.

2.2. Electronic and electrochemical properties

Electronic properties of the dendro[60]fullerenes were investigated by UV–vis spectroscopy. Figure 2 depicts the normalized UV–vis spectra for **9a–e**, all of which show very similar low-energy absorption spectral profiles. The appreciable absorption shoulder bands ranging from ca. 300 to 520 nm are ascribed to the characteristic $\pi \rightarrow \pi^*$ electronic transitions on the C₆₀ core.⁶³ The spectral envelop in this region for **9a–e** varies slightly, which might be caused by the dendron effects, that is, the varying generation and functionality of the dendron moiety could have led to different

aggregation behaviors for **9a–e** in solution, resulting in subtly different absorption profiles.

Electrochemical properties for dendro[60]fullerenes **9a-d** were studied by cyclic voltammetry and the cyclic voltammograms obtained are given in Figure 3. In the positive potential region, 9a-d show no discernible redox currents. In the negative potential region, however, all four compounds display very rich redox characteristics attributable to the C_{60} core.⁶⁴ Compounds **9a** and **9b** that are functionalized with G_1 dendrons clearly show three quasi-reversible redox waves in the reduction window of their cyclic voltammograms (see Fig. 3a and b). These redox features can be assigned to sequential reduction steps on the C_{60} cage. For the G₂-functionalized compounds, **9c** and **9d** (see Fig. 3c and 3d), the cyclic voltammograms appear relatively complex and more difficult to assign. The three pairs of redox waves corresponding to the C₆₀ cage are vaguely identifiable and irreversible in nature. The loss of reversibility for these redox steps is likely due to the enhanced shielding effect on the electroactive C₆₀ core as the generation of dendron increases.^{69,70} The 1,2,3-triazole moiety formed during the 'click' reactions can be reckoned as an electron-accepting group in general. However, no discernible redox features could be assigned to the reduction of the triazole ring. The detailed redox potential data for **9a-d** are listed in Table 1.

2.3. Interfacial self-assembly behavior

The dendro[60]fullerenes **9a–d** were envisioned to have two regions that behave oppositely upon solvation in common organic solvents. The C_{60} core generally tends to show very poor solubility (solvophobic), whereas the Fréchet-dendron units are more solvent compatible (solvophilic) in nature. If this held true, the dendro[60]fullerenes would aggregate into hierarchically ordered supramolecular nanostructures, with the solvent amphiphilicity being a major driving force.⁶⁵ Also, the shape of molecular building components could be a key factor determining the morphology of self-aggregation. Several theoretical models have been developed to account for the morphological features of self-assemblies for amphiphiles.^{66–68} According to the shapes of the C_{60} – G_n –X (**9a–e**) building blocks, five scenarios of self-assembly morphologies (see Fig. 4) are considered most likely among numerous possible outcomes.

Supramolecular self-assemblies of dendro[60]fullerenes **9a–d** were prepared on surfaces by spin-coating. In the procedure, a few drops of the diluted solution of a corresponding dendro[60]fullerene in chloroform (ca. 10^{-5} – 10^{-6} M) were first

Figure 1. Comparison of ¹H NMR (500 MHz, CDCl₃) spectra for dendro[60]fullerenes 9a-e.

spin-cast on freshly cleaved mica surfaces at room temperature (spinning rate 2000 rpm). The resulting surfaces were further spun for a few more minutes, and the interfacial assemblies formed on mica were examined by atomic force microscopy (AFM) operating in non-contact mode.

Figure 5 shows the AFM images that depict the morphologies of the supramolecular assemblies by **9a–d** prepared from their diluted

Figure 2. UV-vis absorption spectra for dendro[60]fullerenes 9a-e measured in chloroform at room temperature.

chloroform solutions under neutral conditions. The assemblies of **9b** $(C_{60}-G_1-H)$ show an interesting surface pattern characterized by closely packed and cross-linked 'worm-like' nano-cylinders (see Fig. 5a). The heights of these cylinders were measured to be in the range of 40-100 nm. A molecular modeling study suggests that C_{60} - G_1 -H (**9b**) assumes a 'wedge-like' molecular shape, which should pack into cylindrical micelles according to the amphiphilic packing model.⁶⁷ Given that the span of C_{60} – G_1 –H (**9b**) is calculated to be only 2.5 nm, these cylindrical nanostructures must be made up of multiple layers of micelles. For C_{60} -G₂-H (**9d**), the morphology of interfacial assembly is markedly different; semi-spheroid nano-aggregates with randomly distributed sizes were observed (Fig. 5c) across the surfaces examined. Considering that the molecular shape of C₆₀-G₂-H resembles a 'truncated cone' more than a 'wedge' as a consequence of increased dendron generation, a spherical packing geometry would thus be a favored scenario, even though the shapes of assemblies of 9d, which are observed experimentally appear random and undefined. For *n*-decyl terminated dendro[60]fullerenes (C_{60} - G_n - C_{10}) **9a** (*n*=1), **9c** (n=2), and **9e** (n=3), spin-coating led to the formation of amorphous thin films with randomly structured aggregates across the surface. Such morphological features imply that the dendro[60]fullerenes very likely assemble in a lamellar architecture (as predicted in Fig. 4b) because of their good solubility in chloroform, although other morphological possibilities should not be ruled out in this case.

It was puzzling to us initially that no discrete spherical micellar structures as predicted in Fig. 4d and e were observed in the

Figure 3. Cyclic voltammograms of dendro[60]fullerenes 9a-d.

Table 1

Redox potentials a for $\mathbf{9a-d}$ measured in o-dichlorobenzene solutions at room temperature

Entry	$E_{\rm pc}$ (V)	E _{pa} (V)
9a	-0.69, -1.12, -1.69	-0.41, -0.81, -1.40
9b	-0.75, -1.12, -1.68	-0.40, -0.81, -1.40
9c	-0.80, -1.28, -1.67	-0.46, -0.845, -1.41
9d	-0.72, -1.03 (sh), -1.20	-0.50, -0.89, -1.03 (sh)

^a Potentials versus Ag/AgCl; working electrode: glassy carbon; counter electrode: Pt: 0.1 M Bu₄NBF₄ in o-DCB: scan rate: 100 mV s⁻¹.

interfacial assemblies of **9a-e** under neutral conditions. Especially, in the cases of the dendro[60]fullerenes with higher-generation dendrons (G₂ and G₃), molecular modeling suggests that these molecules assume a shape of a 'truncated cone' that in theory should lead to the formation of spherical assemblies.⁶⁷ Conducting similar spin-coating procedures using acidified solutions of 9a-e in chloroform, however, gave results in sharp contrast to those observed under neutral conditions. In these experiments, trifluoroacetic acid (TFA) was first added to the solutions of 9a-e in excess amounts. The solutions were then spin-coated on mica surfaces at room temperature. The interfacial assemblies prepared under these conditions were examined by AFM, and the results are shown in Figure 6. All of the acidified dendro[60]fullerenes 9a-e yielded discrete spherical nano-aggregates on the surface. The acid is believed to have protonated either the 1,2,3-triazole or the pyrrolidine ring or both. By doing so, the solvophobicity at the focal moieties of the dendron units was further exaggerated. This seems to be a key factor leading to the formation of spherical nano-assemblies. Notably, for the C_{60} – G_n –H type of dendro[60]fullerenes (**9b** and **9d**), the nanospheres formed vary significantly in size, while the C_{60} – G_n – C_{10} type of molecules (**9a**, **9c**, and **9e**) afforded ordered arrays of nanospheres with relatively uniform sizes.

Statistical analysis on the vertical diameters of the nanospheres for each sample in Figure 6 is quite informative in terms of their possible morphologies and hierarchical orders. Fig. 7a and b reveals the effect of *n*-decyl chains on the size

Figure 4. Possible self-assembly morphologies for dendro[60]fullerenes. (a) Cylinder, (b) bilayer lamella, (c) bilayer vesicle, (d) monolayer spherical micelle, and (e) multi-layer spherical micelle.

Figure 5. AMF images of interfacial self-assemblies of 9a-e. Samples were prepared by spin-coating neutral solutions (ca. 10⁻⁵-10⁻⁶ M) on freshly cleaved mica surfaces.

distributions of the nanospheres. It is clearly seen that the C₆₀–G_n–H molecules gave rise to much wider size distributions than those of the C₆₀–G_n–C₁₀ molecules. The fact that the phenyl peripheral groups in C₆₀–G_n–H have sufficient affinity for C₆₀ cages via π – π stacking can be used to explain this result, hence allowing for the formation of multilayer micelles (as shown in Fig. 4e). For the C₆₀–G_n–C₁₀ (*n*=1–2) molecules, the size distributions of the spherical micelles formed on surfaces are rather narrow and monodispersed. Moreover, the average sizes of the nanospheres fit well the estimated diameters of monolayer micelles based upon molecular modeling studies.⁷¹ The comparison

results in Fig. 7a and b clearly indicate that the peripheral *n*-decyl groups can form effective insulating layers to prevent the formation of multilayer nano-aggregates during the process of amphiphilic self-assembly. For $C_{60}-G_3-C_{10}$ (**9e**), the size distribution of nanospheres is much broader than **9a** and **9c**. This is likely due to the increased conformational flexibility of the G_3 dendron moiety. Nevertheless, a trend showing that the average sizes of spherical micelles assembled by $C_{60}-G_n-C_{10}$ molecules progressively increase with growing dendron generation can be clearly seen in Fig. 7d. This result underscores the viability of using the 'bottom-up' approach to gain control over the size and

Figure 6. AMF images of interfacial self-assemblies for 9a-e under acidic conditions. Samples were prepared by spin-coating acidified solutions (ca. 10⁻⁵-10⁻⁶ M with excess TFA) on freshly cleaved mica surfaces.

Figure 7. Statistical analysis of vertical diameter distributions for the spherical nano-assemblies of 9a-e prepared from spin-coating their acidified solutions on mica.

morphology of dendro[60]fullerene based supramolecular self-assembly.

3. Conclusions

In conclusion, synthetic access to a series of 1,2,3-triazole-linked dendro[60]fullerenes **9a–e** using a Cu(1)-catalyzed [3+2] cycloaddition 'click' protocol was successfully developed. Electronic absorption and electrochemical properties of these compounds were characterized by UV–vis and cyclic voltammetric analyses. Most importantly, the amphiphilic self-assembly behavior of these compounds on surfaces was investigated and found to be dependent on three important molecular parameters: acidity, dendron generation, and the nature of peripheral groups. Under controllable conditions, these dendro[60]fullerene molecules can yield four different self-assembly morphologies, multilayer cylinder, lamella, monolayer spherical micelle, and multilayer spherical micelle. Our results suggest a new and useful approach to the controlled synthesis of complex supramolecular systems composed of C₆₀ and dendrimers.

4. Experimental

4.1. General

Chemicals and reagents were purchased from commercial suppliers and used as-received unless noted otherwise. [60]Fullerene (purity 99.5+%) was purchased from MTR Ltd. THF was distilled from sodium/benzophenone. Et₃N, benzene, and toluene were distilled from LiH. All reactions were performed in standard,

dry glassware in an inert atmosphere of N₂. Evaporation and concentration were done at H₂O-aspirator pressure. Flash column chromatography was carried out with silica gel 60 (230-400 mesh) from VWR International. Thin-layer chromatography (TLC) was carried out with silica gel 60 F254 covered on plastic sheets and visualized by UV light or KMnO₄ stain. Melting points (mps) were measured with a Fisher-Jones melting point apparatus and are uncorrected. ¹H and ¹³C NMR spectra were measured on the Bruker Avance 500 MHz spectrometer. Chemical shifts (δ) are reported in parts per million downfield from the signal of the internal reference SiMe₄. Coupling constants (J) are given in hertz. Infrared spectra (IR) were recorded on a Bruker Tensor 27 spectrometer. UV-vis spectra were recorded on an Agilent 8453 spectrophotometer. APCI mass spectra (MS) were measured on an Agilent 1100 series LCMSD spectrometer, and MALDI-TOF mass spectra on an Applied Biosystems Voyager instrument with dithranol as the matrix. Cyclic voltammetric experiments were performed on an Epsilon electrochemical analyzer, and AFM imaging was conducted on a QScope 250 scanning probe microscope in non-contact (tapping) mode.

4.2. Methyl 3,5-bis(decyloxy)benzoate (2a)

To an oven-dried round-bottom flask were added methyl 3,5dihydroxybenzoate (1) (500 mg, 3.0 mmol), 1-bromodecane (2.65 g, 12.0 mmol), K_2CO_3 (3.4 g, 25 mmol), a phase transfer catalyst 18-crown-6 (157 mg, 0.6 mmol), and acetone (15 mL). The mixture was refluxed for 24 h and then cooled to room temperature. The solvent was evaporated in vacuo, and the residue was diluted with CH₂Cl₂. The organic solution was sequentially washed with H₂O, aq NaOH (2 M), and H₂O again. The organic layer was dried over MgSO₄, concentrated in vacuo, and the resulting crude product was purified by silica flash chromatography (hexanes/ CH₂Cl₂ 3:1) to afford compound **2a** (1.27 g, 2.83 mmol, 95%) as white needle-like crystals. Mp 52.5 °C. IR (neat): 2921, 2850, 1722, 1599 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.16 (d, *J*=2.6 Hz, 2H, Ar–H), 6.63 (t, *J*=2.5 Hz, 1H, Ar–H), 3.97 (t, *J*=6.4 Hz, 4H, OCH₂), 3.89 (s, 3H, ester CH₃), 1.77 (m, 4H, decyl CH₂), 1.44 (m, 4H, decyl CH₂), 1.38–1.23 (m, 24H, decyl CH₂), 0.88 (t, *J*=6.7 Hz, 6H, decyl CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 167.3 (C=O), 160.5 (Ar C–O), 132.1, 107.9, 106.9, 68.6 (OCH₂), 52.5 (OCH₃), 32.2, 29.9, 29.8, 29.7, 29.6, 29.5, 26.0, 23.0, 14.4 (decyl CH₃); APCI-MS (positive mode) *m/z* calcd for C₂₈H₄₈O₄ 448.4, found 449.3 [M+H]⁺.

4.3. 3,5-Bis(decyloxy)benzyl alcohol (2b)

A solution 2a (1.0 g, 2.23 mmol) in dry THF (40 mL) was added to an oven-dried round-bottom flask cooled at 0 °C. A pre-cooled slurry of LiAlH₄ (169 mg, 4.45 mmol) in dry THF (10 mL) was then added dropwise. After addition of LiAlH₄, the reaction mixture was stirred at room temperature for 2 h, then quenched with a small amount of H₂O to consume excess LiAlH₄ and neutralized with aq HCl (4 M). The solvent THF was removed in vacuo, and the resulting content was extracted with EtOAc and washed with saturated NH₄Cl. The organic layer was dried over MgSO₄ and filtered. Evaporation of the solvent in vacuo afforded compound 2b (921 mg, 2.19 mmol, 98%) as a white solid. Mp 29 °C. IR (neat): 3364 (br, OH), 2919, 2851, 1590, 1466, 1128 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 6.48 (m, 2H, Ar-H), 6.37 (m, 1H, Ar-H), 4.56 (s, 2H, benzylic CH₂), 3.91 (t, *I*=6.4 Hz, 4H, OCH₂), 2.69 (br s, 1H, OH), 1.77 (m, 4H, decyl CH₂), 1.46 (m, 4H, decyl CH₂), 1.41-1.24 (m, 24H, decyl CH₂), 0.92 (t, *J*=6.7 Hz, 6H, decyl CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 160.6 (Ar C-O), 143.5, 10.5.2, 100.7, 68.2 (OCH₂), 65.3 (benzylic CH₂), 32.1, 29.82, 29.80, 29.64, 29.56, 29.5, 26.3, 22.9, 14.3 (decyl CH₃); APCI-MS (positive mode) m/z calcd for C₂₇H₄₈O₃ 420.4, found 421.3 [M+H]⁺ and 444.3 [M+Na]⁺.

4.4. 3,5-Bis(decyloxy)benzyl bromide (2c)

A solution of 2b (300 mg, 0.714 mmol) and CBr₄ (356 mg, 1.07 mmol) in CH₂Cl₂ (30 mL) was added in an oven-dried roundbottom flask, and to this mixture was dropwise added a solution of PPh₃ (281 mg, 1.07 mmol) in CH₂Cl₂ at 0 °C. The content was then kept under stirring at room temperature for 3 h. The solvent was removed in vacuo and the residue was purified by silica flash chromatography (hexanes/CH₂Cl₂ 5:1) to yield compound 2c (345 mg, 0.715 mmol, 100%) as white shiny crystals. Mp 26.5 °C. IR (neat): 2923, 2853, 1596, 1165, 1057 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 6.53 (m, 2H, Ar-H), 6.40 (m, 1H, Ar-H), 4.42 (s, 2H, benzylic CH₂), 3.94 (t, J=6.4 Hz, 4H, OCH₂), 1.78 (m, 4H, decyl CH₂), 1.46 (m, 4H, decyl CH₂), 1.42–1.23 (m, 24H, decyl CH₂), 0.91 (t, *J*=7.1 Hz, 6H, decyl CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 160.7 (Ar C–O), 139.8, 107.7, 101.6, 68.4 (OCH₂), 34.0 (benzylic CH₂), 32.2, 29.9, 29.8, 29.7, 29.6, 29.5, 26.3, 23.0, 14.4 (CH₃); APCI-LCMS (positive mode) m/z calcd for C₂₇H₄₇O₂⁷⁹Br (⁸¹Br) 482.3 (484.3), found 483.3 (485.3) $[M+H]^{+}$.

4.5. G₁–C₁₀ dendron (3a)

G₁–C₁₀ dendron (**3a**) (1.31 g, 1.35 mmol, 100%) was prepared as white needle-like crystals from methyl 3,5-dihydroxybenzoate (**1**) (231 mg, 1.38 mmol), **2c** (2.00 g, 4.15 mmol), K₂CO₃ (0.762 g, 5.52 mmol), and 18-crown-6 (72 mg, 0.28 mmol) following the same etherification procedure as described in the synthesis of **2a**. Mp 58.5 °C. IR (neat): 2922, 2853, 1726, 1595, 1163, 1051 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.32 (d, *J*=2.6 Hz, 2H, Ar–H), 6.82 (m, 1H, Ar–H), 6.59 (m, 4H, Ar–H), 6.44 (m, 2H, Ar– H), 5.00 (s, 4H, benzylic CH₂), 3.96 (t, *J*=6.4 Hz, 8H, decyl OCH₂), 3.92 (s, 3H, ester CH₃), 1.80 (m, 8H, decyl CH₂), 1.48 (m, 8H, decyl CH₂), 1.43–1.26 (m, 48H, decyl CH₂), 0.93 (t, *J*=7.1 Hz, 12H, decyl CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 166.9 (*C*=0), 160.8, 160.0 (Ar *C*-0), 138.8, 132.2, 108.6, 107.4, 105.9, 101.1, 70.5 68.2 (one benzylic OCH₂ and one decyl OCH₂), 52.3 (ester CH₃), 32.2, 29.84, 29.82, 29.7, 29.6, 29.5, 26.3, 22.9, 14.3 (decyl CH₃); APCI-MS (positive mode) *m*/*z* calcd for C₆₂H₁₀₀O₈ 972.7, found 973.7 [M+H]⁺.

4.6. G₁-C₁₀ dendron (3b)

 G_1-C_{10} dendron **3b** (476 mg, 0.50 mmol, 98%) was prepared as white solids from **3a** (500 mg, 0.514 mmol) and LiAlH₄ (100 mg, 2.63 mmol) following the same reduction procedure as described in the synthesis of **2b**. Mp 47 °C. IR (neat): 3500–3200 (br, OH), 2922, 2853, 1596, 1455, 1161 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 6.62 (m, 2H, Ar–H), 6.55 (m, 5H, Ar–H), 6.41 (m, 2H, Ar–H), 4.96 (s, 4H, benzylic CH₂), 4.64 (s, 2H, benzylic CH₂), 3.95 (t, *J*=6.4 Hz, 8H, decyl OCH₂), 1.78 (m, 8H, decyl CH₂), 1.46 (m, 8H, decyl CH₂), 1.40–1.25 (m, 48H, decyl CH₂), 0.90 (t, *J*=7.1 Hz, 12H, decyl CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 160.8, 160.5 (two Ar *C*–0), 143.7, 139.3, 106.03, 106.01, 101.6, 101.1 (six aromatic carbon signals), 70.4, 68.4, 65.6 (two benzylic OCH₂ and one decyl OCH₂), 32.2, 29.88, 29.86, 29.7, 29.62, 29.56, 26.4, 23.0, 14.4 (decyl CH₃); APCI-MS (positive mode) *m*/*z* calcd for C₆₁H₁₀₀O₇ 944.8, found 945.7 [M+H]⁺.

4.7. G₁-C₁₀ dendron (3c)

G₁–C₁₀ dendron **3c** (314 mg, 0.312 mmol, 98%) was prepared as white shinny crystals from **3b** (300 mg, 0.318 mmol), CBr₄ (264 mg, 0.795 mmol), and PPh₃ (208 mg, 0.795 mmol) following the same bromination procedure as described in the synthesis of **2c**. Mp 42 °C. IR (neat): 2922, 2853, 1594, 1457, 1162, 1052 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 6.70 (m, 2H, Ar–H), 6.64 (m, 4H, Ar–H), 6.62 (m, 1H, Ar–H), 6.51 (m, 2H, Ar–H), 4.99 (s, 4H, benzylic CH₂), 4.45 (s, 2H, benzylic CH₂), 4.01 (t, *J*=6.4 Hz, 8H, decyl OCH₂), 1.86 (m, 8H, decyl CH₂), 1.56 (m, 8H, decyl CH₂), 1.51–1.34 (m, 48H, decyl CH₂), 1.02 (t, *J*=7.1 Hz, 12H, decyl CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 160.7, 160.2 (two Ar C–O), 139.7, 139.0, 108.2, 105.8, 102.3, 100.9, 70.2, 68.1 (one benzylic OCH₂ and one decyl OCH₂), 33.6 (benzylic CH₂); 32.1, 29.82, 29.80, 29.64, 29.55, 29.49, 26.3, 22.9, 14.3 (decyl CH₃); APCI-MS (positive mode) *m*/*z* calcd C₆₁H₉₉O₆⁹Br (⁸¹Br) 1006.7 (1008.7), found 1007.7 (1009.7) [M+H]⁺.

4.8. G₁-C₁₀ dendron (3d)

A solution of 3c (200 mg, 0.199 mmol) and NaN₃ (139 mg, 2.14 mmol) in DMSO (5 mL) was added in an oven-dried roundbottom flask and heated up to 80–85 °C for 30 h. Afterwards, the content was cooled to room temperature and then quenched with slow addition of water (exothermic). The mixture was extracted with CH₂Cl₂ (20 mL) and the organic layer was sequentially washed with H₂O and saturated NH₄Cl and then dried over MgSO₄, and filtered. Removal of the solvent in vacuo afforded 3d (192 mg, 0.198 mmol, 100%) as a pale yellow liquid. IR (neat): 2923, 2853, 2099, 1595, 1457, 1164, 1058 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 6.64–6.54 (m, 7H, Ar–H), 6.45 (m, 2H, Ar–H), 4.98 (s, 4H, benzylic CH₂), 4.28 (s, 2H, benzylic CH₂), 3.97 (t, J=6.4 Hz, 8H, decyl OCH₂), 1.81 (m, 8H, decyl CH₂), 1.49 (m, 8H, decyl CH₂), 1.44-1.26 (m, 48H, decyl CH₂), 0.94 (t, *J*=6.7 Hz, 12H, decyl CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 160.8, 160.5 (2Ar C-O), 139.0, 137.8, 107.4, 105.9, 102.1, 101.1, 70.4, 68.3 (one benzylic OCH₂ and one decyl OCH₂), 55.0 (benzylic CH₂N₃), 32.1, 29.83, 29.81, 29.7, 29.6, 29.5, 26.3, 22.9, 14.3 (CH₃); APCI-MS (positive mode) m/z calcd for C₆₁H₉₉O₆N₃ 969.8, found 970.8 [M+H]⁺.

4.9. G₁-H dendron (3e)

G₁-H (**3e**) (1.98 g, 5.69 mmol, 95%) was prepared as white shinny crystals from methyl 3,5-dihydroxybenzoate (1.0 g, 6.0 mmol), benzyl bromide (4.07 g, 24.0 mmol), K₂CO₃ (3.4 g, 24 mmol), and 18-crown-6 (156 mg, 0.6 mmol) following the same etherification procedure as described in the synthesis of **2a**. Mp 144 °C. IR (neat): 3032, 2950, 1719, 1594, 1153, 1054 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.43–7.20 (m, 10H, Ar–H), 7.30 (d, *J*=2.6 Hz, 2H, Ar–H), 6.80 (t, *J*=2.6 Hz, 1H, Ar–H), 5.07 (s, 4H, benzylic CH₂), 3.90 (s, 3H, ester CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 166.9 (*C*=O), 160.0 (Ar *C*-O), 136.7, 132.3, 128.8, 128.3, 127.8, 108.6, 107.5, 70.5 (benzylic CH₂), 52.5 (ester CH₃); APCI-MS (negative mode) *m/z* calcd for C₂₂H₂₀O₄ 348.1, found 347.1 [M–H]⁻.

4.10. G₁-H dendron (3f)

G₁–H dendron (**3f**) (855 mg, 2.46 mmol, 93%) was prepared as a white solid from **3e** (1.00 g, 2.87 mmol) and LiAlH₄ (218 mg, 11.5 mmol) following the same reduction procedure as described in the synthesis of **2b**. Mp 81 °C. IR (neat): 3321 (OH), 3032, 2904, 2870, 1592 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.46–7.28 (m, 10H, Ar–H), 6.60 (m, 2H, Ar–H), 6.53 (m, 1H, Ar–H), 5.01 (s, 4H, benzylic CH₂), 4.58 (s, 2H, benzylic CH₂), 1.86 (br s, 1H, OH); ¹³C NMR (125 MHz, CDCl₃): δ 160.5 (Ar C–O), 143.7, 137.1, 128.9, 128.3, 127.8, 106.1, 101.6 (seven aromatic carbon signals), 70.4, 65.6 (two benzylic OCH₂); APCI-MS (positive mode) *m*/*z* calcd for C₂₁H₂₀O₃ 320.1, found 343.1 [M+Na]⁺.

4.11. G₁-H dendron (3g)

G₁–H dendron (**3g**) (460 mg, 1.20 mmol, 77%) was prepared as white shinny crystals from **3f** (500 mg, 1.56 mmol), CBr₄ (571 mg, 1.72 mmol), and PPh₃ (451 mg, 1.72 mmol) following the same bromination procedure as described in the synthesis of **2c**. Mp 84 °C. IR (neat): 3032, 2927, 2875, 1594 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.48–7.50 (m, 10H, Ar–H), 6.87 (d, *J*=2.6 Hz, 2H, Ar–H), 6.80 (m, 1H, Ar–H), 5.16 (s, 4H, benzylic CH₂), 4.56 (s, 2H, benzylic CH₂); ¹³C NMR (125 MHz, CDCl₃): δ 160.4, 141.1, 136.9, 128.9, 128.4, 127.8, 108.5, 102.5 (eight aromatic carbon signals), 70.5 (benzylic OCH₂), 33.9 (benzylic CH₂Br); APCI-MS (negative mode) *m/z* calcd for C₂₁H₁₉O₂⁷⁹Br (⁸¹Br) 382.1 (384.1), found 381.2 (383.1) [M–H]⁻.

4.12. G₁-H dendron (3h)

G₁–H dendron (**3h**) (62.7 mg, 0.182 mmol, 100%) was prepared as white solid from **3g** (69.8 mg, 0.182 mmol) and NaN₃ (118.5 mg, 1.82 mmol) following the same procedure as described in the synthesis of **3d**. Mp 69 °C. IR (neat): 3033, 2930, 2097, 1594, 1497, 1150, 1080 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.54–7.40 (m, 10H, Ar–H), 6.70 (m, 1H, Ar–H), 6.66 (m, 2H, Ar–H), 5.12 (s, 4H, benzylic OCH₂), 4.33 (s, 2H, benzylic CH₂N₃); ¹³C NMR (125 MHz, CDCl₃): δ 160.5 (Ar *C*–O), 137.9, 136.9, 128.8, 128.3, 127.9, 107.4, 102.1 (seven aromatic carbons), 70.3 (benzylic CH₂O), 55.0 (benzylic CH₂N₃); APCI-MS (positive mode) *m*/*z* calcd for C₂₁H₁₉O₂N₃ 345.1, found 345.3 [M]⁺.

4.13. G₂–C₁₀ dendron (4a)

 G_2-C_{10} dendron (**4a**) (1.03 g, 0.51 mmol, 98%) was prepared as a white solid from methyl 3,5-dihydroxybenzoate (**1**) (87.0 mg, 0.521 mmol), **3c** (1.58 g, 1.57 mmol), K₂CO₃ (273 mg, 1.98 mmol), and 18-crown-6 (26 mg, 0.10 mmol) following the same etherification procedure as described in the synthesis of **2a**. Mp 68 °C. IR (neat): 2923, 2853, 1725, 1595, 1161, 1052 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.33 (m, 2H, Ar–H), 6.79 (m, 1H, Ar–H), 6.72 (m, 4H, Ar–H),

6.62 (m, 10H, Ar–H), 6.46 (m, 4H, Ar–H), 4.95 (m, 12H, benzylic OCH₂), 3.96 (m, 23H, overlap of benzylic OCH₂, decyl OCH₂ and ester CH₃), 1.82(m, 16H, decyl CH₂), 1.51 (m, 16H, decyl OCH₂), 1.47–1.32 (m, 96H, decyl OCH₂), 0.99 (t, *J*=7.1 Hz, 24H, decyl CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 167.0 (*C*=O), 160.8, 160.5, 160.0 (three Ar *C*–O), 139.2, 139.1, 108.7, 107.8, 107.4, 106.7, 106.1, 102.0, 101.2 (eight aromatic carbon signals), 70.5 (benzylic OCH₂), 66.4 (decyl OCH₂), 52.5 (ester CH₃), 32.2, 29.88, 29.86, 29.7, 29.62, 29.57, 26.4, 23.0, 14.4 (decyl CH₃); MALDI-TOF MS (dithranol as the matrix) *m/z* calcd for C₁₃₀H₂₀₄O₁₆ 2022.5, found 2017.3 [M]⁺.

4.14. G₂–C₁₀ dendron (4b)

G₂-C₁₀ dendron (**4b**) (484 mg, 0.243 mmol, 98%) was prepared as a white solid from **4a** (500 mg, 0.247 mmol) and LiAlH₄ (37 mg, 0.98 mmol) following the same reduction procedure as described in the synthesis of 2b. Mp 124.5 °C. IR (neat): 3600-3200 (br, OH), 2922, 2852, 1595, 1453, 1159, 1054 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 6.70 (m, 4H, Ar–H), 6.61(m, 12H, Ar–H), 6.55 (m, 1H, Ar– H), 6.46 (m, 4H, Ar-H), 4.95 (s, 8H, benzylic OCH₂), 4.94 (s, 4H, benzylic OCH₂), 4.60 (s, 2H, benzylic OCH₂), 3.97 (t, J=6.4 Hz, 16H, decyl OCH2), 1.82 (m, 16H, decyl CH2), 1.51 (m, 16H, decyl CH2), 1.47-1.30 (m, 96H, decyl CH₂), 0.97 (t, J=6.7 Hz, 24H, decyl CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 160.6, 160.3, 160.1 (three Ar C–O), 143.9, 139.5, 139.2, 106.4, 105.83, 105.75, 101.7, 101.3, 101.0 (nine aromatic carbon signals), 70.2, 70.0, 68.2 65.2 (three benzylic OCH₂ and one decyl OCH₂), 32.1, 29.8, 29.7, 29.6, 29.5, 26.3, 22.9, 14.3 (decyl CH₃); MALDI-TOF MS (dithranol as the matrix) m/z calcd for C₁₂₉H₂₀₄O₁₅ 1994.5, found 1992.9 [M]+.

4.15. G₂–C₁₀ dendron (4c)

G₂-C₁₀ dendron (**4c**) (490 mg, 0.238 mmol, 98%) was prepared as white needle-like crystals from 4b (500 mg, 0.251 mmol), CBr₄ (125 mg, 0.376 mmol), and PPh₃ (99 mg, 0.38 mmol) following the same bromination procedure as described in the synthesis of 2c. Mp 118 °C. IR (neat): 2922, 2853, 1595, 1453, 1162, 1053 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 6.70 (m, 4H, Ar–H), 6.65 (m, 2H, Ar–H), 6.60 (m, 1H, Ar-H), 6.58 (m, 8H, Ar-H), 6.43 (m, 6H, Ar-H), 4.99 (s, 4H, benzylic OCH₂), 4.98 (s, 8H, benzylic OCH₂), 4.44 (s, 2H, benzylic CH₂Br), 3.96 (t, *J*=6.4 Hz, 16H, decyl OCH₂), 1.79 (m, 16H, decyl CH₂), 1.47 (m, 16H, decyl CH₂), 1.42–1.26 (m, 96H, decyl CH₂), 0.91 (t, J=7.1 Hz, 24H, decyl CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 160.8, 160.5, 160.3 (three Ar C-O), 140.0, 139.24, 139.18, 108.5, 106.7, 106.0, 102.4, 101.9, 101.1 (nine aromatic carbon signals), 70.5, 70.4, 68.3 (two benzylic OCH₂ and one decyl OCH₂), 33.8 (benzylic CH₂Br), 32.2, 29.9 (2×), 29.7, 29.60, 29.55, 26.3, 23.0, 14.4 (CH₃); MALDI-TOF MS (dithranol as the matrix) m/z calcd for C₁₂₉H₂₀₃O⁷⁹₁₄Br 2058.4, found 2054.9 [M]+.

4.16. G₂-C₁₀ dendron (4d)

G₂-C₁₀ dendron (**4d**) (244 mg, 0.121 mmol, 100%) was prepared as a pale yellow liquid from **4c** (250 mg, 0.121 mmol) and NaN₃ (79 mg, 1.21 mmol) following the same procedure as described in the synthesis of **3d**. IR (neat): 2922, 2853, 2099, 1595, 1455, 1163, 1053 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 6.71 (m, 4H, Ar–H), 6.64– 6.56 (m, 13H, Ar–H), 6.44 (m, 4H, Ar–H), 5.01 (s, 4H, benzylic OCH₂), 4.99 (s, 8H, benzylic OCH₂), 4.29 (s, 2H, benzylic CH₂N₃), 3.97 (t, *J*=6.7 Hz, 16H, decyl OCH₂), 1.80 (m, 16H, decyl CH₂), 1.48 (m, 16H, decyl CH₂), 1.42–1.24 (m, 96H, decyl CH₂), 0.93 (t, *J*=6.7 Hz, 24H, decyl CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 160.8, 160.5, 160.4 (three Ar C–O), 139.3, 139.2, 137.9, 107.5, 106.6, 106.0 (nine aromatic carbon signals), 70.4, 70.3, 68.3 (two benzylic OCH₂ and one decyl OCH₂), 55.1 (benzylic CH₂N₃), 32.2, 29.9, 29.8, 29.7, 29.6, 29.5, 26.3, 22.9, 14.4 (CH₃); MALDI-TOF MS (dithranol as the matrix) m/z calcd $C_{129}H_{203}O_{14}N_3$ 2019.5, found 2017.5 [M]⁺.

4.17. G₂-H dendron (4e)

G₂–H dendron (**4e**) (210 mg, 0.272 mmol, 91%) was prepared as white crystals from methyl 3,5-dihydroxybenzoate (**1**) (50 mg, 0.30 mmol), **3g** (344 mg, 0.9 mmol), K₂CO₃ (165 mg, 1.2 mmol), and 18-crown-6 (7.8 mg, 0.03 mmol) following the same etherification procedure as described in the synthesis of **2a**. Mp 99 °C. IR (neat): 3030, 2874, 1712, 1593 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.51–7.37 (m, 22H, Ar–H), 6.85 (m, 1H, Ar–H), 6.76 (m, 4H, Ar–H), 6.66 (m, 2H, Ar–H), 5.09 (s, 8H, benzyl OCH₂), 5.06 (s, 4H, benzyl OCH₂), 3.97(s, 3H, ester CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 166.9 (*C*=O), 160.4, 159.9 (two Ar *C*–O), 139.1, 137.0, 132.3, 128.8, 128.2, 127.7, 108.7, 107.4, 106.6, 101.9 (10 aromatic signals), 70.3 (benzylic OCH₂), 52.5 (ester CH₃); APCI-MS (positive mode) *m*/*z* calcd for C₅₀H₄₄O₈ 772.3, found 773.4 [M+H]⁺.

4.18. G₂-H dendron (4f)

G₂–H dendron (**4f**) (3.41 mg, 4.58 mmol, 80%) was prepared as a colorless liquid from **4e** (4.42 g, 5.72 mmol) and LiAlH₄ (869 mg, 22.9 mmol) following the same reduction procedure as described in the synthesis of **2b**. IR (neat): 3404 (br, OH), 3032, 2873, 1593, 1497, 1147 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.43–7.27 (m, 20H, Ar–H), 6.66 (d, *J*=2.6 Hz, 4H, Ar–H), 6.61 (m, 2H, Ar–H), 6.57 (m, 2H, Ar–H), 6.51 (m, 1H, Ar–H), 5.03 (s, 8H, benzylic OCH₂), 4.96 (s, 4H, benzylic OCH₂), 4.39 (s, 2H, benzylic OCH₂) (OH signal was not observed due to rapid proton exchange); ¹³C NMR (125 MHz, CDCl₃): δ 160.5, 160.4 (two Ar C–O), 139.6, 137.1, 128.9, 128.3, 127.8, 106.7, 106.1, 101.9, 101.7 (nine aromatic carbon signals, one coincidental peak not observed), 70.4, 70.3, 65.6 (three benzylic OCH₂); APCI-MS (positive mode) *m*/*z* calcd for C₄₉H₄₄O₇ 744.3, found 745.4 as [M+H]⁺.

4.19. G₂-H dendron (4g)

 G_2 –H (**4g**) (380 mg, 0.471 mmol, 67%) was prepared as white needle-like crystals from **4f** (523 mg, 0.703 mmol), CBr₄ (350 mg, 1.05 mmol), and PPh₃ (276 mg, 1.05 mmol) following the same bromination procedure as described in the synthesis of **2c**. Mp 125.5 °C. IR (neat): 3030, 2879, 1559 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.43–7.28 (m, 20H, Ar–H), 6.66 (m, 4H, Ar–H), 6.61 (d, *J*=2.6 Hz, 2H, Ar–H), 6.57 (m, 2H, Ar–H), 6.51 (m, 1H, Ar–H), 5.03 (s, 8H, benzylic OCH₂), 4.96 (s, 4H, benzylic OCH₂), 4.40 (s, 2H, benzylic CH₂Br); ¹³C NMR (125 MHz, CDCl₃): δ 160.5, 160.3 (two Ar *C*–O), 140.1, 137.1, 128.9, 128.3, 127.8, 108.5, 106.7, 102.5, 102.0 (nine aromatic carbon signals, one coincidental signal not observed), 70.5, 70.4 (two benzylic OCH₂), 33.9 (benzylic CH₂Br); APCI-MS (positive mode) *m*/*z* calcd for C₄₉H₄₃O₆⁷⁹Br (⁸¹Br) 806.2 (808.2), found 807.3 (809.3) [M+H]⁺.

4.20. G₂-H dendron (4h)

G₂–H dendron (**4h**) (142 mg, 0.185 mmol, 100%) was prepared as a white solid from **4g** (150 mg, 0.186 mmol) and NaN₃ (121 mg, 1.86 mmol) following the same procedure as described in the synthesis of **3d**. Mp 110 °C. IR (neat): 3032, 2922, 2095, 1593, 1051 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.45–7.28 (m, 20H, Ar–H), 6.67 (m, 4H, Ar–H), 6.57 (m, 2H, Ar–H), 6.55 (m, 1H, Ar–H), 6.54 (m, 2H, Ar–H), 5.03 (s, 8H, benzylic OCH₂), 4.97 (s, 4H, benzylic OCH₂), 4.25 (s, 2H, benzylic CH₂N₃); ¹³C NMR (125 MHz, CDCl₃): δ 160.8, 160.7 (two Ar C–O), 139.7, 138.3, 137.3, 129.1, 128.6, 128.1, 107.8, 107.0, 102.4, 102.2 (10 aromatic carbon signals), 70.7, 70.6 (two benzylic OCH₂), 55.3 (benzylic CH₂N₃); APCI-MS (positive mode) m/z calcd for C₄₉H₄₃O₆N₃ 769.3, found 770.4 [M+H]⁺ and 787.4 [M+H₂O]⁺.

4.21. G₃-C₁₀ dendron (5a)

G₃-C₁₀ dendron (**5a**) (0.91 g, 0.221 mmol, 66%) was prepared as a waxy solid from methyl 3,5-dihydroxybenzoate (1) (55.0 mg, 0.329 mmol), 4c (2.02 g, 0.981 mmol), K₂CO₃ (181 mg, 1.31 mmol), and 18-crown-6 (8.6 mg, 0.033 mmol) following the same etherification procedure as described in 2a. IR (neat): 2924, 2854, 1723, 1595, 1451, 1163, 1053 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.33 (m, 2H, Ar-H), 6.85 (m, 1H, Ar-H), 6.72 (m, 12H, Ar-H), 6.61-6.57 (m, 22H, Ar-H), 6.42 (m, 8H, Ar-H), 5.04 (s, 4H, benzylic OCH₂), 4.99 (s, 8H, benzylic OCH₂), 4.97 (s, 16H, benzylic OCH₂), 3.94 (m, 32H, decyl OCH₂), 1.77 (m, 32H, decyl CH₂), 1.46 (m, 32H, decyl CH₂), 1.29–1.35 (m, 192H, decyl CH₂), 0.90 (t, *J*=6.7 Hz, 48H, decyl CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 166.9 (C=O), 160.9, 160.8, 160.5, 160.3 (four Ar C-O), 139.6, 139.3, 132.5, 109.0, 107.8, 106.5, 106.0, 102.0 101.7 (nine aromatic carbon signals, three coincidental peaks not observed), 70.4, 70.3, 68.3 (two benzylic and one decyl OCH₂, two coincidental peaks not observed), 55.1 (ester CH₃), 32.2, 29.9, 29.8, 29.7, 29.6, 29.5, 26.3, 22.9, 14.4 (CH₃); MALDI-TOF MS (dithranol as the matrix) *m*/*z* calcd for C₂₆₆H₄₁₂O₃₂ 4122.1, found 4121.1 [M]⁺.

4.22. G₃-C₁₀ dendron (5b)

G₃-C₁₀ dendron (**5b**) (505 mg, 0.123 mmol, 99%) was prepared as a waxy solid from 5a (511 mg, 0.124 mmol) and LiAlH₄ (23.5 mg, 0.621 mmol) following the same reduction procedure as described in the synthesis of 2b. IR (neat): 3398 (br, OH), 2922, 2853, 1595, 1452, 1160, 1054 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 6.67 (m, 12H, Ar-H), 6.62 (m, 1H, Ar-H), 6.59-6.55 (m, 20H, Ar-H), 6.50 (m, 2H, Ar-H), 6.39 (m, 10H, Ar-H), 4.96 (s, 4H, benzylic OCH₂), 4.94 (s, 8H, benzylic OCH₂), 4.93 (s, 16H, benzylic OCH₂), 4.63 (s, 2H, benzylic OCH₂), 4.59 (s, 1H, OH), 3.93 (t, J=6.7 Hz, 32H, decyl OCH₂), 1.77 (m, 32H, decyl CH₂), 1.42 (m, 32H, decyl CH₂), 1.40–1.26 (m, 192H, decyl CH₂), 0.87 (t, *J*=6.7 Hz, 48H, decyl CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 161.0, 160.7, 160.6, 160.5 (four Ar C–O), 139.7, 139.5, 139.4 128.9, 128.0, 127.0, 107.0, 106.6, 105.5, 102.0, 101.5, 101.0 (12 aromatic carbon signals), 70.4, 70.3, 70.2, 68.5, 65.8 (four benzylic and one decyl OCH₂), 32.2, 29.9, 29.8, 29.7, 29.6, 29.5, 26.3, 22.9, 14.4 (CH₃); MALDI-TOF MS (dithranol as the matrix) m/z calcd for C₂₆₅H₄₁₂O₃₁ 4093.1, found 4106.7 [M+H₂O]⁺.

4.23. G₃-C₁₀ dendron (5c)

G₃-C₁₀ dendron (**5c**) (434 mg, 0.104 mmol, 95%) was prepared as a waxy solid from 5b (450 mg, 0.11 mmol), CBr₄ (54.6 mg, 0.164 mmol), and PPh₃ (43.3 mg, 0.165 mmol) following the same bromination procedure as described in the synthesis of 2c. IR (neat): 2922, 2853, 1594, 1453, 1161, 1053 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 6.74 (m, 8H, Ar–H), 6.69 (m, 2H, Ar–H), 6.63–6.61 (m, 25H, Ar-H), 6.58 (m, 2H, Ar-H), 6.44 (m, 8H, Ar-H), 5.02 (s, 2H, benzylic CH₂Br), 5.01 (s, 8H, benzylic OCH₂), 4.99 (s, 16H, benzylic OCH₂), 4.46 (s, 4H, benzylic OCH₂), 3.98 (t, *J*=6.7 Hz, 32H, decyl OCH₂), 1.86 (m, 32H, decyl CH₂), 1.50 (m, 32H, decyl CH₂), 1.49-1.35 (m, 192H, decyl CH₂), 0.96 (t, J=6.7 Hz, 48H, decyl CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 161.0, 160.8, 160.7, 160.5 (four Ar C–O), 139.7, 139.4, 139.3, 108.7, 107.9, 106.9, 106.6, 106.2, 102.7, 102.3, 101.9, 100.7 (12 aromatic carbon signals), 70.7, 70.5, 68.3, 68.2 (three benzylic and one decyl OCH₂, one coincidental peak not observed), 34.2 (benzylic CH₂Br), 32.2, 29.9, 29.8, 29.7, 29.6, 29.5, 26.3, 22.9, 14.4 (CH₃); MALDI-TOF MS (dithranol as the matrix) m/z calcd for $C_{265}H_{411}^{79}BrO_{30}$ 4155.0, found 4012.5 $[M-C_{10}H_{21}]^+$.

4.24. G₃-C₁₀ dendron (5d)

G₃–C₁₀ dendron (**5d**) (265 mg, 0.064 mmol, 97%) was prepared as a waxy solid from 5c (275 mg, 0.066 mmol) and NaN₃ (43 mg, 0.66 mmol) following the same procedure as described in the synthesis of 3d. IR (neat): 2923, 2853, 2099, 1595, 1455, 1162, 1055 cm⁻¹; ¹H NMR (500 MHz, CDCl₃); δ 6.72 (m, 12H, Ar–H), 6.61– 6.59 (m. 22H, Ar-H), 6.46 (m. 3H, Ar-H), 6.45 (m. 8H, Ar-H), 5.01 (s. 4H, benzylic OCH₂), 4.99 (s, 8H, benzylic OCH₂), 4.98 (s, 16H, benzylic OCH₂), 4.29 (s, 2H, benzylic CH₂N₃), 3.97 (t, *J*=6.7 Hz, 32H, decyl OCH₂), 1.80 (m, 32H, decyl CH₂), 1.48 (m, 32H, decyl CH₂), 1.47-1.45 (m, 192H, decyl CH₂), 0.93 (t, *J*=6.7 Hz, 48H, decyl CH₃); ^{13}C NMR (125 MHz, CDCl₃): δ 160.9, 160.8, 160.5, 160.4 (four Ar C-O), 139.9, 139.7, 139.4, 139.3, 107.0, 106.9, 106.2, 106.0, 102.4, 102.1, 101.5, 101.3 (12 aromatic carbon signals), 70.4, 70.3, 68.3, 68.2 (three benzylic and one decyl OCH₂), 55.2 (benzylic CH₂N₃), 32.2, 29.9, 29.8, 29.7, 29.6, 29.5, 26.3, 22.9, 14.4 (CH₃); MALDI-TOF MS (dithranol as the matrix) m/z calcd for C₂₆₅H₄₁₁N₃O₃₀ 4118.1, found 4087.3 [M-N₂]⁺.

4.25. 4-(Trimethylsilyl)ethynylbenzaldehyde (7)

An oven-dried round-bottom flask was purged with N2 and to it were added 4-bromobenzaldehyde (6) (530 mg, 2.86 mmol), Pd(PPh₃)₂Cl₂ (100 mg, 14.3 mmol), CuI (54.5 mg, 28.6 mmol), and DBU (521 mg, 3.40 mmol) in dry benzene (10 mL) under the protection of N₂. Trimethylsilylacetylene (TMSA) (563 mg, 5.70 mmol) in benzene (3 mL) was added dropwise in 0.5 h. and the reaction mixture was kept under reflux for another 0.5 h. After cooling down to room temperature, the mixture was filtered through a Celite plug. The resulting organic solution was concentrated in vacuo to give the crude product, which was purified by silica flash chromatography (hexanes/EtOAc 25:1) to yield compound 7 (509 mg, 2.51 mmol, 86%) as a pale yellow solid. IR (neat): 2957, 2737, 2156, 1699, 1600, 1563 cm $^{-1};~^{1}{\rm H}$ NMR (500 MHz, CDCl3): δ 10.01 (s, 1H, CHO), 7.82 (d, J=8.8 Hz, 2H, Ar-H), 7.61(d, J=8.8 Hz, 2H, Ar-H), 0.28 (s, 9H, Si(CH₃)₃); ¹³C NMR (125 MHz, CDCl₃): δ 191.6 (C=O), 135.9, 132.7, 129.6, 104.1, 99.2, 0.1 (Si(CH₃)₃); GC-MS m/z (%) calcd for C₁₂H₁₄OSi 202.1, found 201.8 (16, [M]⁺), 187 (100, [M–CH₃]⁺).

4.26. C₆₀ adduct (8)

To an oven-dried round-bottom flask purged with $N_{\rm 2}$ were charged C₆₀ (712 mg, 0.989 mmol), benzaldehyde **7** (100 mg, 0.50 mol), and sarcosine (446 mg, 5.00 mol) in dry toluene (70 mL). The mixture was refluxed for 24 h. Afterwards, the solvent was evaporated off under reduced pressure, and the residue was purified by silica chromatography (hexanes/toluene 4:1) to afford compound 8 (108 mg, 0.114 mmol, 23%) as a dark brown solid. Mp >300 °C. IR (neat): 2947, 2840, 2782, 2159 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.78 (br s, 2H, Ar-H), 7.52 (d, J=8.3 Hz, 2H, Ar-H), 5.00 (d, J=9.6 Hz, 1H), 4.95 (s, 1H), 4.29 (d, J=9.0 Hz, 1H), 2.82 (s, 3H, NCH₃), 0.25 (s, 9H, Si(CH₃)₃); ¹³C NMR (125 MHz, CDCl₃): δ 156.0, 153.8, 153.1, 152.8, 147.33, 147.31, 146.6, 146.40, 146.36, 146.30, 146.26, 146.22, 146.18, 146.14, 145.99, 145.97, 145.77, 145.64, 145.62, 145.51, 145.43, 145.39, 145.35, 145.31, 145.28, 145.27, 145.21, 144.37, 144.68, 144.43, 144.41, 143.20, 143.06, 142.74, 142.67, 142.63, 142.61, 142.31, 142.27, 142.18, 142.14, 142.08, 142.06, 141.91, 141.7, 141.6, 140.28, 140.25, 140.01, 139.64, 137.4, 136.9, 136.6, 135.9, 135.8 (totally 54 carbon signals observed for the 60 chemically nonequivalent fullerene carbons), 132.4, 132.3, 123.6 (three signals observed for the four aryl carbons), 105.1, 95.3 (two alkynl carbons), 89.3 (CH), 69.0 (CH₂), 40.0 (NCH₃), 0.2 (Si(CH₃)₃); MALDI-TOF MS (dithranol as the matrix) m/z calcd for C₇₄H₁₉NSi 949.1287, found 950.7477 [M+H]+.

4.27. General synthetic procedure for triazole-linked dendro[60]fullerenes (9a–e) via a 'click' reaction

To a solution of compound **8** (1 equiv) in THF was added TBAF (1 equiv, 1 M in THF), and the mixture was stirred at room temperature for 5 min. To this mixture were added Cul (0.3 equiv) and azido-dendron (1 equiv). The reaction mixture was kept under stirring at room temperature overnight. The solvent THF was then removed in vacuo, and the residue was diluted in CHCl₃, washed with saturated NH₄Cl, and dried over anhydrous MgSO₄. Suction filtration followed by flash chromatography (hexanes/CHCl₃ 1:1 and then hexanes/CHCl₃/EtOAc 5:1:0.5) afforded the corresponding dendro[60]fullerene product.

4.28. Dendro[60]fullerene (9a, C₆₀-G₁-C₁₀)

Dendro[60]fullerene **9a** (115 mg, 0.062 mmol, 72%) was prepared according to the general 'click' reaction procedure, using compound **8** (80 mg, 0.084 mmol), TBAF (0.08 mL, 1 M in THF), Cul (1.6 mg, 0.0084 mmol), and azido-dendron **3d** (81.6 mg, 0.084 mmol). The isolated product was a dark brown waxy solid. IR (neat): 3032, 2929, 1594 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.86 (m, 4H), 7.63 (s, 1H, triazole H), 6.57 (m, 1H), 6.50 (m, 6H), 6.36 (m, 2H), 5.45 (s, 2H), 4.99 (d, *J*=6.9 Hz, 1H), 4.95 (s, 1H), 4.89 (s, 4H), 4.27 (d, *J*=6.9 Hz, 1H), 3.95 (t, *J*=6.7 Hz, 8H), 2.82 (s, 3H), 1.74 (m, 8H), 1.42 (m, 8H), 1.37–1.25 (m, 48H), 0.88 (t, *J*=7.1 Hz, 12H). Meaningful ¹³C NMR spectrum could not be acquired due to low concentration. MALDI-TOF MS (dithranol as the matrix) *m/z* calcd for C₁₃₂H₁₁₂N₄O₆ 1849.9, found 1848.8 [M]⁺.

4.29. Dendro[60]fullerene (9b, C₆₀-G₁-H)

Dendro[60]fullerene 9b (34.2 mg, 0.028 mmol, 38%) was prepared according to the general 'click' reaction procedure, using compound 8 (70 mg, 0.074 mmol), TBAF (0.07 mL, 1 M in THF), CuI (1.4 mg, 0.0074 mmol), and azido-dendron **3h** (25.5 mg, 0.074 mmol). The isolated product was a dark brown solid. IR (neat): 2921, 2852, 2782, 1595, 1451 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.90 (m, 4H), 7.64 (s, 1H, triazole H), 7.44–7.27 (m, 10H), 6.61 (m, 1H), 6.53 (m, 2H), 5.49 (s, 2H), 5.03 (d, J=9.6 Hz, 1H), 5.02 (s, 4H), 5.00 (s, 1H), 4.31 (d, *J*=9.6 Hz, 1H), 2.86 (s, 3H, NCH₃); ¹³C NMR (125 MHz, CDCl₃): δ 160.7 (Ar C–O), 156.5, 154.3, 153.6, 153.5, 148.2, 147.6, 147.0, 146.7, 146.6, 146.53, 146.50, 146.43, 146.41, 146.37, 146.20, 145.81, 145.80, 145.7, 145.60, 145.55, 145.49, 145.43, 145.0, 144.9, 144.67, 144.66, 143.4, 143.3, 143.0, 142.84, 142.78, 142.6, 142.5, 142.44, 142.40, 142.39, 142.33, 142.31, 142.27, 142.2, 142.1, 142.0, 141.8, 140.5, 140.4, 140.2, 137.3, 137.1, 136.9, 136.8, 136.6, 136.2, 136.0 (totally 53 signals were observed out of 58 sp² carbons on the C_{60} cage and 2 phenyl carbons in this region), 131.0, 128.9, 128.4, 127.8, 120.0, 114.2, 107.5, 102.5 (9 aromatic carbon signals were observed out of 12 aromatic carbons), 83.6 (NCHPh on the pyrolidine ring), 70.4, 70.3 (two OCH₂), 69.4 (NCH₂ on the pyrolidine ring), 54.6 (CH₂N), 40.3 (NCH₃); MALDI-TOF MS (dithranol as the matrix) m/zC₉₂H₃₀O₂N₄ 1222.2, found 1223.3 [M+H]⁺.

4.30. Dendro[60]fullerene (9c, C₆₀-G₂-C₁₀)

Dendro[60]fullerene **9c** (126 mg, 0.0430 mmol, 69%) was prepared according to the general 'click' reaction procedure, using compound **8** (60 mg, 0.063 mmol), TBAF (0.06 mL, 1 M in THF), Cul (1.2 mg, 0.0063 mmol), and azido-dendron **4d** (127 mg, 0.063 mmol). The isolated product was a dark brown waxy solid. IR (neat): 2924, 2854, 1597, 1464 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.87 (m, 4H), 7.62 (s, 1H, triazole H), 6.64 (m, 4H), 6.55–6.51 (m, 13H), 6.41 (m, 4H), 5.45 (s, 2H), 5.30 (s, 1H), 4.93 (m, 13H), 4.26 (d, *J*=9.6 Hz, 1H), 3.94 (t, *J*=6.4 Hz, 16H), 2.81 (s, 3H), 1.78

(m, 16H), 1.46 (m, 16H), 1.42–1.25 (m, 96H), 0.91 (t, *J*=6.4 Hz, 24H); Meaningful ¹³C NMR spectrum could not be acquired due to low concentration and significant line broadening. MALDI-TOF MS (dithranol as the matrix) *m*/*z* calcd for $C_{200}H_{214}O_{14}N_4$ 2897.6, found 2894.5 [M]⁺.

4.31. Dendro[60]fullerene (9d, C₆₀-G₂-H)

Dendro[60]fullerene **9d** (63 mg, 0.038 mmol, 70%) was prepared according to the general 'click' reaction procedure, using compound **8** (52 mg, 0.055 mmol), TBAF (0.06 mL, 1 M in THF), Cul (1.0 mg, 0.005 mmol), and azido-dendron **4h** (42 mg, 0.055 mmol). The isolated product was a dark brown waxy solid. IR (neat): 3033, 2930, 1594 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.84 (m, 4H), 7.61 (s, 1H, triazole H), 7.44–7.28 (m, 20H), 6.62 (m, 4H), 6.53 (m, 3H), 6.49 (s, 2H), 5.44 (s, 2H), 5.00 (s, 8H), 4.99 (d, *J*=9.6 Hz, 1H), 4.94 (s, 1H), 4.92 (s, 4H), 4.27 (d, *J*=9.6 Hz, 1H), 2.81 (s, 3H). Meaningful ¹³C NMR spectrum could not be acquired due to low concentration. MALDI-TOF MS (dithranol as the matrix) *m/z* calcd for C₁₂₀H₅₄N₄O₆ 1647.4, found 1646.9 [M]⁺.

4.32. Dendro[60]fullerene (9e, C₆₀-G₃-C₁₀)

Dendro[60]fullerene 9e (147 mg, 0.0290 mmol, 80%) was prepared according to the general 'click' reaction procedure, using compound 8 (35 mg, 0.037 mmol), TBAF (0.04 mL, 1 M in THF), CuI (1.0 mg, 0.005 mmol), and azido-dendron **5d** (120 mg, 0.029 mmol). The isolated product was a dark brown waxy solid. IR (neat): 3417, 2925, 2854, 1619, 1550, 1466 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.83 (m, 4H), 7.5 (s, 1H, triazole H), 6.67 (m, 8H), 6.66 (m, 4H), 6.62 (m, 20H), 6.55-6.41 (m, 5H), 6.41 (m, 8H), 5.45 (s, 2H), 5.30 (s, 1H), 4.95 (s, 16H), 4.93 (m, 9H), 4.89 (m, 4H), 4.26 (d, J=9,6 Hz, 1H), 3.94 (t, J=6.4 Hz, 32H), 2.78 (s, 3H), 1.79 (m, 32H), 1.45 (m, 32H), 1.42-1.25 (m, 192H), 0.91 (t, J=6.4 Hz, 48H). Meaningful ¹³C NMR spectrum could not be acquired due to low concentration and significant line broadening. MALDI-TOF MS (dithranol as the matrix) m/z calcd for C₃₃₆H₄₂₂N₄O₃₀ 4996.2, found 4993.3 [M]⁺.

Acknowledgements

This work was supported by NSERC Canada, CFI, IRIF, and Memorial University of Newfoundland. L.W. thanks Dr. Chet Jablonski of Memorial University of Newfoundland for funding.

References and notes

- 1. Fullerenes Principles and Applications; Langa, F., Nierengarten, J.-F., Eds.; Royal Society of Chemistry: Dorchester, Dorset, UK, 2007.
- 2. Chen, Z.; King, R. B. Chem. Rev. 2005, 105, 3613-3642.
- Hirayama, D.; Takimiya, K.; Aso, Y.; Otsubo, T.; Hasobe, T.; Yamada, H.; Imahori, H.; Fukuzumi, S.; Sakata, Y. J. Am. Chem. Soc. 2002, 124, 532–533.
- 4. Negishi, N.; Takimiya, K.; Otsubo, T.; Harima, Y.; Aso, Y. Chem. Lett. **2004**, 33, 654–655.
- Kanato, H.; Takimiya, K.; Otsubo, T.; Aso, Y.; Nakamura, T.; Araki, Y.; Ito, M. J. Org. Chem. 2004, 69, 7183–7189.
- Marcos Ramos, A.; Rispens, M. T.; van Duren, J. K. J.; Hummelen, J. C.; Janssen, R. A. J. J. Am. Chem. Soc. 2001, 123, 6714–6715.
- Atienza, C. M.; Fernández, G.; Sánchez, L.; Martín, N.; Dantas, I. S.; Wienk, M. M.; Janssen, R. A. J.; Rahman, G. M. A.; Guldi, D. M. Chem. Commun. 2006, 514–516.
- Sun, S.-S.; Sariciftci, N. S. Organic Photovoltaics: Mechanism, Materials, and Devices; Taylor & Francis: Boca Raton, FL, 2005.
- (a) Roncali, J. Chem. Soc. Rev. 2005, 34, 483–495; (b) Guldi, D. M. Chem. Soc. Rev. 2002, 31, 22–36; (c) Imahori, H. J. Phys. Chem. B 2004, 108, 6130–6143; (d) Nierengarten, J.-F. Sol. Energy Mater. Sol. Cells 2004, 83, 187–199.
- Tsuboya, N.; Hamasaki, R.; Ito, M.; Mitsuishi, M.; Miyashita, T.; Yamamoto, Y. J. Mater. Chem. 2003, 13, 511–513.
 Kuang J.: Chen O.: Sarcent F. H.: Wang Z. Y. J. Am. Chem. Soc. 2003, 125.
- Kuang, L.; Chen, Q.; Sargent, E. H.; Wang, Z. Y. J. Am. Chem. Soc. 2003, 125, 13648–13649.
- Zhao, Y.; Shirai, Y.; Slepkov, A. D.; Cheng, L.; Alemany, L. B.; Sasaki, T.; Hegmann, F. A.; Tour, J. M. Chem.—Eur. J. 2005, 11, 3643–3658.

- Mateo-Alonso, A.; Lliopoulos, K.; Couris, S.; Prato, M. J. Am. Chem. Soc. 2008, 130, 1534–1535.
- Shirai, Y.; Osgood, A. J.; Zhao, Y.; Yao, Y.; Saudan, L.; Yang, H.; Yu-Hung, C.; Alemany, L. B.; Sasaki, T.; Morin, J. F.; Guerrero, J. M.; Kelly, K. F.; Tour, J. M. J. Am. Chem. Soc. 2006, 128, 4854–4864.
- Shirai, Y.; Osgood, A. J.; Zhao, Y.; Kelly, K. F.; Tour, J. M. Nano Lett. 2005, 5, 2330– 2334.
- (a) Diederich, F.; Gómez-López, M. Chem. Soc. Rev. 1999, 28, 263–277; (b) Nierengarten, J.-F. Chem.—Eur. J. 2006, 6, 3667–3670; (c) Georgakilas, V.; Pellarini, F.; Prato, M.; Guldi, D. M.; Melle-Franco, M. PNAS 2002, 99, 5075–5080.
- Guldi, D. M.; Zerbetto, F.; Georgakilas, V.; Prato, M. Acc. Chem. Res. 2005, 38, 38–43.
- McClenaghan, N. D.; Grote, Z.; Darriet, K.; Zimine, M.; Williams, R. M.; De Cola, L.; Bassani, D. M. Org. Lett. 2005, 7, 807–810.
- Zhou, X.; Kang, S.-W.; Kumar, S.; Kulkarni, R. R.; Cheng, S. Z. D.; Li, Q. Chem. Mater. 2008, 20, 3551–3553.
- 20. Sun, D.; Tham, F. S.; Reed, C. A.; Chaker, L.; Boyd, P. D. W. J. Am. Chem. Soc. 2002, 124, 6604–6612.
- 21. Kimura, M.; Saito, Y.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N. J. Am. Chem. Soc. **2002**, 124, 5274–5275.
- Rancan, F.; Helmreich, M.; Mölich, A.; Ermilov, E. A.; Jux, N.; Röder, B.; Hirsch, A.; Böhm, F. Bioconjugate Chem. 2007, 18, 1078–1086.
- Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E. Adv. Mater. 2007, 19, 1551–1556.
- 24. Lloyd, M. T.; Anthony, J. E.; Malliaras, G. G. Mater. Today 2007, 10, 34-41.
- Campoy-Quiles, M.; Ferenczi, T.; Agostinelli, T.; Etchegoin, P. G.; Kim, Y.; Anthopoulos, T. D.; Stavrinou, P. N.; Bradley, D. D. C.; Nelson, J. Nat. Mater. 2008, 7, 158–164.
- 26. Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 15-26.
- 27. Bokare, A. D.; Patnaik, A. J. Phys. Chem. B 2003, 107, 6079-6086.
- 28. Saha, A.; Mukherjee, A. K. J. Chem. Phys. 2005, 122, 184504-1-184504-6.
- 29. Deak, D. S.; Silly, F.; Porfyrakis, K.; Castell, M. R. J. Am. Chem. Soc. 2006, 128,
- 13976–13977. 30. Pan, G.-B.; Cheng, X.-H.; Höger, S.; Freyland, W. J. Am. Chem. Soc. **2006**, *128*, 4218–4219.
- Staniec, P. A.; Perdigão, L. M. A.; Saywell, A.; Champness, N. R.; Beton, P. H. ChemPhysChem 2007, 8, 2177–2181.
- Shi, Z.; Li, Y.; Gong, H.; Liu, M.; Xiao, S.; Liu, H.; Li, H.; Xiao, S.; Zhu, D. Org. Lett. 2002. 4, 1179–1182.
- Guldi, D. M.; Zilbermann, I.; Anderson, G.; Kotov, N. A.; Tagmatarchis, N.; Prato, M. J. Am. Chem. Soc. 2004, 126, 14340–14341.
- Nakanishi, T.; Miyashita, N.; Michinobu, T.; Wakayama, Y.; Tsuruoka, T.; Ariga, K.; Kurth, D. G. J. Am. Chem. Soc. 2006, 128, 6328–6329.
- Shi, Z.; Jin, J.; Li, Y.; Guo, Z.; Wang, S.; Jiang, L.; Zhu, D. New J. Chem. 2001, 25, 670–672.
- 36. Zhong, Y.-W.; Matsuo, Y.; Nakamura, E. Org. Lett. 2006, 6, 3953-3956.
- 37. Zhong, Y.-W.; Matsuo, Y.; Nakamura, E. J. Am. Chem. Soc. 2007, 129, 3052–3053.
- Cassell, A. M.; Asplund, C. L.; Tour, J. M. Angew. Chem., Int. Ed. 1999, 38, 2403– 2405.
- Nierengarten, J.-F.; Armaroli, N.; Accorsi, G.; Rio, Y.; Eckert, J.-F. Chem.—Eur. J. 2003, 9, 36–41.
- 40. Hahn, U.; Cardinali, F.; Nierengarten, J.-F. New. J. Chem. 2007, 31, 1128–1138.
- Rio, Y.; Accorsi, G.; Nierengarten, H.; Rehspringer, J.-L.; Hönerlage, B.; Kopitkovas, G.; Chugreev, A.; Dorsselaer, A. V.; Armaroli, N.; Nierengarten, J.-F. *New. J. Chem.* **2002**, *26*, 1146–1154.
- Zhang, S.; Rio, Y.; Cardinali, F.; Bourgogne, C.; Gallani, J.-L.; Nierengarten, J.-F. J. Org. Chem. 2003, 68, 9787–9797.
- Texier, I.; Berberan-Santos, M. N.; Fedorov, A.; Brettreich, M.; Schönberger, H.; Hirsch, A.; Leach, S.; Bensasson, R. V. J. Phys. Chem. A 2001, 105, 10278–10285.
- 44. Kovacs, C.; Hirsch, A. Eur. J. Org. Chem. 2006, 3348-3357.
- 45. Hager, K.; Hartnagel, U.; Hirsch, A. Eur. J. Org. Chem. 2007, 1942-1956.
- 46. Wooley, K. L. Chem.—Eur. J. 1997, 3, 1397–1399.
- (a) Smith, D. K.; Hirst, A. R.; Love, C. S.; Hardy, J. G.; Brignell, S. V.; Huang, B. Prog. Polym. Sci. 2005, 30, 220–293; (b) Zeng, F.; Zimmerman, S. C. Chem. Rev. 1997, 97, 1681–1712.
- Hosomizu, K.; Imahori, H.; Hahn, U.; Nierengarten, J.-F.; Listorti, A.; Armaroli, N.; Nemoto, T.; Isoda, S. J. Phys. Chem. C 2007, 111, 2777–2786.
- Fernández, G.; Pérez, E. M.; Sánchez, L.; Martín, N. J. Am. Chem. Soc. 2008, 130, 2410–2411.
- Percec, V.; Ahn, C.-H.; Ungar, G.; Yeardley, D. J. P.; Möller, M.; Sheiko, S. S. Nature 1998, 391, 161–164.
- Percec, V.; Dulcey, A. E.; Balagurusamy, V. S. K.; Miura, Y.; Smidrkal, J.; Peterca, M.; Nummelin, S.; Edlund, U.; Hudson, S. D.; Heiney, P. A.; Duan, H.; Magonov, S. N.; Vinogradov, S. A. *Nature* **2004**, *430*, 764–768.
- Hudson, S. D.; Jung, H.-T.; Percec, V.; Cho, W.-D.; Johansson, G.; Ungar, G.; Balagurusamy, V. S. K. Science **1997**, 278, 449–452.
- Sawamura, M.; Kawai, K.; Matsuo, Y.; Kanie, K.; Kato, T.; Nakamura, E. Nature 2002, 419, 702–705.
- Matsuo, Y.; Muramatsu, A.; Kamikawa, Y.; Kato, T.; Nakamura, E. J. Am. Chem. Soc. 2006, 128, 9586–9587.
- Matsuo, Y.; Muramatsu, A.; Hamasaki, R.; Mizoshita, N.; Kato, T.; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 432–433.
- 56. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004–2021.
- Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Fréchet, J. M. J.; Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2004, 43, 3928–3932.
- 58. Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org. Chem. 2006, 51-68.

- 59. Iehl, J.; de Freitas, R. P.; Delavaux, B.; Nierengarten, J.-F. Chem. Commun. 2008, 2450-2452.
- 60. Helms, B.; Mynar, J. L.; Hawker, C. J.; Fréchet, J. M. J. J. Am. Chem. Soc. 2004, 126, 15020-15021.
- 61. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596-2599.
- 62. Chaignon, F.; Torroba, J.; Blart, E.; Borgström, M.; Hammarström, L.; Odobel, F. New. J. Chem. **2005**, 29, 1272–1284.
- 63. Guldi, D. M.; Prato, M. Acc. Chem. Res. 2000, 33, 695-703.
- Guidi, D. M., Frato, M. Act. Chen. Res. 200, 53, 957-03.
 Echegoyen, L.; Echegoyen, L. E. Acc. Chem. Res. 1998, 31, 593-601.
 Nandi, N.; Vollhardt, D. Acc. Chem. Res. 2007, 40, 351-360.

- 66. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. J. Chem. Soc., Faraday Trans. 2 1976, 72, 1525-1568.
- 67. Tsonchev, S.; Schatz, G. C.; Ratner, M. A. Nano Lett. 2003, 3, 623–626.
- 68. Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Huggins, K. E.; Keser, M.; Amstutz, A. Science **1997**, 276, 384–389.
- Nieregarten, J.-F. C.R. Chime 2003, 6, 725–733.
 Rio, Y.; Accorsi, G.; Armaroli, N.; Felder, D.; Levillain, E.; Nierengarten, J.-F. *Chem. Commun.* **2002**, 2830–2831.
- 71. Geometry optimization of dendro[60]fullerenes was performed using the MM+ force field as implemented in the software package of HyperChem Pro 5, Hypercube Inc.