Synthesis of Purines Bearing Functionalized C-Substituents by the Conjugate Addition of Nucleophiles to 6-Vinylpurines and 6-Ethynylpurines

Martin Kuchař,^[a] Radek Pohl,^[a] Ivan Votruba,^[a] and Michal Hocek*^[a]

Keywords: Purines / Michael addition / Conjugate additions / Cross-coupling

Purines bearing diverse β -substituted ethyl or vinyl groups in position 6 were prepared by the conjugate addition of N-, O- and S-nucleophiles to 6-vinylpurines or 6-ethynylpurines. The scope of this methodology was systematically studied. The addition of amines, alcoholates and thiolates to 6-vinylpurines gave the corresponsing 6-(2-aminoethyl)-, 6-(2-alk-

Introduction

Purine bases and nucleosides bearing C-substituents at position 6 are an important class of compounds possessing a broad spectrum of biological effects including cytostatic,^[1] antiviral^[2] and antimicrobial^[3] activity and receptor modulation.^[4] Purines bearing functionalized C-substituents are still quite rare and are, therefore, a subject of extensive study in our laboratory. Recently, we have reported the synthesis and cytostatic activity of 6-(hydroxymethyl),^[5] 6-(fluoromethyl)^[6] and 6-(difluoromethyl)purine^[7] bases and nucleosides, as well as the synthesis of (purin-6-yl)alanines^[8] and (purin-6-yl)phenylalanines.^[9] All these syntheses relied on cross-coupling reactions^[10] of 6-halopurines with functionalized organometallics and further functional group transformations (e.g. deoxyfluorination). We then became interested in the related 6-(2-substituted ethyl)purines that are not readily accessible via analogous cross-coupling reactions, since the corresponding β-substituted organometallics easily undergo *β*-elimination.^[11] Therefore, our method of choice was the conjugate addition of nucleophiles to 6-vinylpurines and 6-ethynylpurines.

Purine is an electron-withdrawing substituent and, thus, vinylpurines easily undergo conjugate additions. The very first example was described by Sasaki et al.,^[12] who used the addition of thiophenol to a 2-amino-6-vinylpurine nucleoside in the synthesis of a 2-amino-6-[2-(phenylsulfanyl)-ethyl]purine nucleoside, which was incorporated into oligonucleotides and used as a precursor for the corresponding

[a] Centre of New Antivirals and Antineoplastics, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic,Flemingovo nam. 2, 16610 Prague 6, Czech RepublicFax: +420-220183559E-mail: hocek@uochb.cas.cz

oxyethyl)- and 6-[2-(alkylsulfanyl)ethyl]purines. The addition of amines to 6-ethynylpurines gave 6-(2-aminovinyl)purines, while the addition of alcoholates and thiolates gave 6-(2-dialkoxyethyl)- and 6-[2-bis(alkylsulfanyl)ethyl]purines. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)

6-vinylpurine, which formed stable cross-links in DNA duplexes by the conjugate addition of cytosine. Czernecki et al.^[13] reported a radical azidophenylselenylation of vinylpurine in the synthesis of a 6-[2-(acylamino)ethyl]purine nucleoside. Several examples of preparative conjugate additions to 6-vinylpurines were described by Gundersen et al.^[14] including the addition of MeOH and thiophenol under acidic conditions and NaOMe, PhSNa and several examples of Cnucleophiles under basic conditions. Later, analogous additions of the same nucleophiles were also reported^[15] for 2- and 8-vinylpurines. More recently, Zhang et al.^[16] reported the synthesis of 6-(2-aminoethyl)purine and two other related purine ribonucleosides by the conjugate addition of ammonia, aniline and NaOMe to protected 6-vinylpurine ribonucleosides, and the title compound was found to exhibit cytostatic activity and RNA binding. The only examples of additions to ethynylpurines are the conversion of 6-ethynyl-9-phenylpurine to 6-acetylpurine by treating^[17] with aqueous mercury sulfate and sulfuric acid and to 6-(2,2-dimethoxyethyl)purine by the reaction with NaOMe and analogous synthesis of 2-acetyladenosine by the reaction^[18] of 2-ethynyladenosine with Hg(OAc)₂ in aqueous AcOH. Thus, examples of these reactions are isolated and no systematic study has been performed to define the scope and limitation of this methodology. The goal of this work was to perform such a study and to prepare a large series of derivatives for biological activity screening.

Results and Discussion

Conjugate Additions to 6-Vinylpurines

We first studied conjugate additions to 9-benzyl-6-vinylpurine $(1)^{[14]}$ and 6-vinyl-9-(tetrahydropyran-2-yl)purine (2), both of which are easily available^[14] from the corresponding 6-chloropurines by a Stille cross-coupling with vi-

nyl(tributyl)tin. A series of experiments with five secondary amines, three primary amines and ammonia was performed (Scheme 1, Table 1). In all cases, the reactions were performed at ambient temperature in either THF or EtOH, without any catalyst or additive, to give the series of 6-(2substituted aminoethyl)purines 3a-3i and 4a-4i in moderate to good yields. The reactions in THF were slower (taking 1-3 d) but cleaner than the reactions in EtOH, especially in the case of 9-THP-protected purine 2, where partial cleavage of the protecting group was observed in EtOH. An additional treatment of 6-[(methylamino)ethyl]purine **3h** with an excess of vinylpurine 1 gave dimer 3j. The same compound also formed by allowing compound 3h to stand for several days. Apparently, a partial elimination and subsequent addition of the intermediate vinylpurine to another molecule of 3h must have occurred. With other related amines, this side reaction was not observed.

Scheme 1.

We then examined the addition of O- and S-nucleophiles (Scheme 2, Table 2). Reactions of vinylpurines **1** and **2** with pure alcohols were very sluggish. However, the correspond-

Table 1. Additions of amines to 6-vinylpurines.

Entry	Starting compd.	Amine	Solvent	Time	Product	Yield [%]
1	1	piperidine	THF	2 d	3a	63
2	1	morpholine	THF	3 d	3b	64
3	1	dibutylamine	THF	2 d	3c	66
4	1	diethylamine	THF	2 d	3d	45
5	1	dimethylamine	EtOH	1 h	3e	67
6	1	cyclohexylamine	THF	1 d	3f	86
7	1	benzylamine	THF	1 d	3g	72
8	1	methylamine	EtOH	2 h	3h	94
9	1	NH ₃	EtOH	1 d	3i	58
10	2	piperidine	THF	1 d	4 a	60
11	2	morpholine	EtOH	1 d	4b	78
12	2	dibutylamine	THF	2 d	4c	79
13	2	diethylamine	EtOH	1 d	4d	44
14	2	dimethylamine	EtOH	4 h	4e	83
15	2	cyclohexylamine	THF	2 d	4 f	76
16	2	benzylamine	EtOH	1 d	4g	50
17	2	methylamine	EtOH	2 h	4h	40
18	2	NH ₃	EtOH	2 h	4i	60

ing alkoxides (either added or generated in situ from an alcohol and sodium hydride) reacted better to give the 6-[2-(alkyloxy)ethyl]purines 5a-5c and 6a-6c within 1–2 d. On the other hand, the addition of thiolates and sodium hydrogen sulfide proceeded very smoothly to give the 6-{[(alkyl)-sulfanyl]ethyl}purines 5d-5f and 6d-6f in very good yields within 2 h. In the addition of sodium methanethiolate, performed in a mixture of EtOH and H₂O (Entries 5 and 11), the S-nucleophile was much more reactive than the corresponding O-nucleophile, giving the desired S-adducts 5d and 6d in very good yields, accompanied by only trace amounts of 5b and 6b as by-products from the addition of sodium ethoxide.

Conjugate Addition to 6-Ethynylpurines

We have further studied analogous additions to 6-ethynylpurines 7 and 8, which are easily available^[19] by the Sonogashira cross-coupling of the corresponding 6-chloropurines, followed by desilylation by methanolic ammonia. The conjugate addition of a series of secondary and primary amines to 6-ethynylpurines 7 and 8 were performed under analogous conditions as for 6-vinylpurines (Scheme 3, Table 3). Secondary amines reacted slowly but cleanly to give (E)-configured 9-benzylated enamines 9 in high yields (Entries 1-5) and 9-THP-substituted enamines 10 in somewhat lower yields, accompanied by partial cleavage of the THP group (Entries 10-14). On the other hand, the addition of primary amines gave mixtures of (Z)- and (E)configured enamines 11 and 12 with the (Z) isomers usually prevailing. The mixtures were virtually inseparable, and the ratio depended on the solvent, clearly showing an equilibrium between the two isomers. Apparently, the equilibration proceeds by imine-enamine tautomerism. The addition of ammonia or aniline did not proceed within 7 d.

Analogously, we have studied the addition of O- and Snucleophiles to ethynylpurines 7 and 8 (Scheme 4, Table 4).

Scheme 2.

Table 2. Addition of alcohols and thiols to protected 6-vinylpurines.

Entry	Starting compd.	Reagent	Additive	Solvent	Time	Product	Yield [%]
1	1	EtOH	_	EtOH	7 d	5a	trace
2	1	MeONa	-	MeOH	2 d	5a	55
3	1	EtOH	NaH	THF	1 d	5b	50
4	1	BnOH	NaH	THF	2 d	5c	61
5	1	MeSNa	-	EtOH/	1 h	5d ^[a]	81
	1	wicorva		H_2O	1 11		01
6	1	BnSH	NaH	THF	4 h	5e	96
7	1	NaSH	-	EtOH/	1.4	56	05
				H_2O	i u	51	95
8	2	MeONa	_	MeOH	2 d	6a	81
9	2	EtOH	NaH	THF	1 d	6b	67
10	2	BnOH	NaH	THF	2 d	6c	49
11	•	M CNI		EtOH/	4 1-	< Ifa]	00
	2	Mesina	_	H_2O	4 n	od	90
12	2	BnSH	NaH	THF	4 h	6e	98
13	2	NaSH	_	EtOH/	1 h	6f	04
				H_2O	In		94

[a] Accompanied by trace amounts (<5%) of **5b** or **6b**.

The addition of sodium methoxide to 7 and 8 proceeded under the conditions previously described for 6-vinylpurines to give the dimethyl acetals 13a and 14a within 4 h in very good yields. The additions of 1,2-ethanedithiol in the presence of NaH proceeded analogously to give the dithioacetals 13b and 14b in high yields.

Reactivity of Acetals and Enamines

Having a practical methodology for the synthesis of enamines 9–12 and acetals 13 and 14 in hand, we became interested in the reactivity and further synthetic applicability of these species. We first attempted the hydrolysis of acetal 13a to the corresponding aldehyde according to dif-

Scheme 3.

ferent literature procedures (Scheme 5). However, under strongly acidic conditions (i.e. stirring with aqueous hydrochloric acid or with a heterogeneous system of TFA in H₂O/ chloroform^[20]), 9-benzyl-6-methylpurine (15) was unexpectedly isolated in 22% and 20% yield, respectively, as a product of the fragmentation of the acetal. The remainder of the product was a complex mixture of chromatographically immobile by-products. When stirring 13a in a solution of 10% hydrochloric acid in THF,^[21] the 6-methylpurine 15 was obtained almost quantitatively in 92% yield as the only product. This unusual C-C bond cleavage is not precedented in the literature, to the best of our knowledge. Exposure of 13a to the Lewis acid KBF₄,^[22] or heating it to a reflux in dioxane/DMSO^[23] led to complex mixtures of products, indicating degradation. On the other hand, under mild conditions in AcOH buffer, no reaction occurred. Additionally, we have not succeeded in the hydrolysis of dithioacetal 13b. Under mild conditions, with NaHSO₄ on silica gel,^[24] no reaction occurred. Exposure of 13b to the iodine systems CeCl₃/NaI^[25] and AgNO₃/I₂^[26] yielded complex mixtures of products.

The reactivity of the enamines **9a** and **9e** was studied (Scheme 6). Although there are many reports of the hydrolysis of enamines, compounds **9a** and **9e** did not react when exposed to heterogeneous SiO_2/H_2O in THF,^[27] TFA in H₂O/CHCl₃ or strongly basic conditions.^[28] The enamines **9a** and **9e** were also extremely resistant to hydride re-

Entry	Starting compound	Reagent	Solvent	Reaction time	Product	Yield [%]
1	7	piperidine	THF	8 h	9a	87
2	7	morpholine	THF	1 d	9b	95
3	7	dibutylamine	THF	1 d	9c	97
4	7	diethylamine	THF	1 d	9d	84
5	7	dimethylamine	EtOH	4 h	9e	94
6	7	cyclohexylamine	THF	2 d	11f Z/E 10:1	83
7	7	benzylamine	THF	2 d	11g Z/E 3:1	81
8	7	methylamine	EtOH	2 h	11h Z/E 11:5	76
9	7	aniline	THF	7 d	no reaction	_
10	8	piperidine	THF	2 d	10a	59
11	8	morpholine	EtOH	2 d	10b	45
12	8	dibutylamine	THF	2 d	10c	81
13	8	diethylamine	EtOH	1 d	10d	81
14	8	dimethylamine	EtOH/THF	4 d	10e	64
15	8	cyclohexylamine	THF	2 d	12f Z/E 5:1	73
16	8	benzylamine	EtOH	1 d	12g Z/E 5:1	85
17	8	methylamine	EtOH	2 h	12h Z/E 4.7	94

Table 3. Additions of amines to 6-ethynylpurines 7 and 8.

Scheme 4.

Table 4. Additions of alcoholates and thiolates to 6-ethynylpurines.

Entry	Starting compd.	Reagent	Additive	Solvent	Reaction time	Product	Yield [%]
1	7	MeONa	_	MeOH	1 h	13a	86
2	7	1,2-ethanedithiol	NaH	THF	16 h	13b	85
3	7	H_2O	CF ₃ COOH	H_2O	1 d	no reaction	_
4	8	MeONa	_	MeOH	4 h	14a	91
5	8	1,2-ethanedithiol	NaH	THF	8 h	14b	83

Scheme 5.

ductions and catalytic hydrogenations. The attempted reduction with NaBH₄^[29] and hydrogenations over Pd on CaCO₃^[30] or Wilkinson's catalyst^[31] did not proceed. On the other hand, catalytic hydrogenations with Pd/C^[32] or PtO₂^[33] catalysts proceeded very slowly to give the unexpected 9-benzyl-6-ethylpurine (**16**) as the only product in about 25% yield (the rest was unreacted starting compound). The reaction of enamine 9a with sodium methoxide was also unsuccessful, showing that the enamine double bond is not

Scheme 6.

reactive to another conjugate addition. The attempted alkylation^[34] of **9a** with benzyl chloride did not proceed either. Taken together, these experiments showed a very strange chemical behaviour of such "push-pull" enamines compared to classical enamines, which is due to the presence of extremely electron-withdrawing purine.

Deprotection of THP-Protected Purines

The whole series of THP-protected purines 4, 6, 10, 12 and 14 was deprotected to give the corresponding 9*H*-purines. We first tried our standard methodology of acidic cation exchange resin (Dowex, H⁺ form) in EtOH,^[35] but the amines and enamines suffered from strong binding to the resin. Therefore, we hydrolyzed with 1 M hydrochloric acid in MeOH to give the whole series of 25 6-(2-substituted ethyl or vinyl)-9*H*-purines 17a–i, 18a–f, 19a and 19b, 20a–e and 21f–h mostly in very good yields (Scheme 7, Table 5).

Scheme 7. The cleavage of the THP protective group.

Cytostatic Activity of the Title Compounds

All of the title substituted purines **3–6**, **9–14** and **17–21** were subjected to biological activity screening. In vitro cytostatic activity (inhibition of cell growth) was studied on the following cell cultures: mouse leukaemia L1210 cells (ATCC CCL 219), human promyelocytic leukaemia HL60 cells (ATCC CCL 240), human cervix carcinoma HeLaS3 cells (ATCC CCL 2.2) and human T lymphoblastoid CCRF-CEM cells (ATCC CCL 119). The results are summarized in Table 6. Out of the 76 tested compounds, only

Table 5. The cleavage of the THP protective group.

Entry	Starting compd.	Х	Product	Yield [%]
1	4a	piperidin-1-yl	17a	90
2	4b	morpholin-4-yl	17b	84
3	4c	Bu_2N	17c	70
1	4d	Et ₂ N	17d	69
5	4 e	Me ₂ N	17e	77
5	4 f	cyclohexylamino	17f	54
7	4g	BnNH	17g	39
3	4h	MeNH	17h	69
)	4i	NH_2	17i	61
10	6a	MeO	18a	76
11	6b	EtO	18b	94
12	6c	BnO	18c	71
13	6d	MeS	18d	82
14	6e	BnS	18e	86
15	6f	SH	18f	70
16	14a	MeO	19a	89
17	14b	-SCH ₂ CH ₂ S-	19b	81
18	10a	piperidin-1-yl	20a	82
19	10b	morpholin-4-yl	20b	80
20	10c	Bu ₂ N	20c	84
21	10d	Et_2N	20d	79
22	10e	Me ₂ N	20e	88
23	12f	cyclohexylamino	21f	72
24	12g	BnNH	21g	35
25	12h	MeNH	21h	82

11 derivatives exhibited a considerable cytostatic effect against leukaemia cell lines L1210, HL60 and CCRF-CEM, while none of them were active against solid tumour (HeLa) cells. All the active compounds contained hydrophobic substituents in position 6. The most active were purines containing bulky hydrophobic cyclohexylamino (compounds **3f**, **11f** and **12f**) or dibutylamino (compounds **4c** and **10c**) groups connected to position 6. Sulfur derivatives **5f** and **14b** also showed some activity but only against L1210 cells. Although the activity of these compounds is not extremely high and some of them are of limited stability, these data will contribute to the design of other cytostatic purines.

Table 6. Cytostatic activity of the title compounds.

Entry	Compd.	<i>IC</i> ₅₀ , μM			
		L1210	HL60	HeLa S3	CCRF-CEM
1	3f	12.8±0.9	NA	NA	NA
2	4c	10.1 ± 0.5	12.3 ± 0.6	NA	4.7 ± 0.3
3	5f	16.9 ± 0.9	NA	NA	NA
4	10c	2.8 ± 0.2	NA	NA	NA
5	11f	9.2 ± 0.9	8.0 ± 0.7	NA	8.0 ± 0.5
6	12f	14.4 ± 0.9	9.6 ± 0.6	NA	7.0 ± 0.4
7	14b	21.0 ± 1.0	NA	NA	NA
8	20b	6.8 ± 0.6	14 ± 1.0	NA	13.7 ± 0.8
9	20c	8.5 ± 0.5	15 ± 1.1	NA	17 ± 1.3
10	20e	11.9 ± 0.9	NA	NA	13.7 ± 0.9
11	21f	12.0 ± 0.9	25 ± 1.9	NA	24 ± 2.1

Conclusions

The conjugate addition of N-, O- and S-nucleophiles to 6-vinylpurines proceeded under ambient temperature without catalysis and could be applied to the synthesis of a large

series of 6-(2-substituted ethyl)purines. The addition of amines to 6-ethynylpurines gave enamines (one equiv. of the nucleophile was added), while the addition of alcoholates and thiolates gave acetals and dithioacetals (two equiv. of the nucleophile were added). These enamines and acetals did not show characteristic reactivity due to the presence of the strongly electron-withdrawing purine system. Some of the title compounds exerted cytostatic activity.

Experimental Section

Melting points were determined on a Kofler block and are uncorrected. Mass spectra were measured on a ZAB-EQ (VG Analytical) spectrometer. NMR spectra were recorded with Bruker Avance 500 (¹H at 500 MHz, ¹³C at 125.8 MHz) and Bruker Avance 400 (¹H at 400 MHz, ¹³C at 100.6 MHz) spectrometers. ¹H and ¹³C NMR spectra were referenced to the signal of TMS or to the residual solvent signal. ¹H-¹³C HMBC experiments were performed for the complete assignment of all signals. Starting compounds 1,^[14] 2,^[36] 3^[19] and 4^[19] were prepared according to literature procedures. Cytostatic activity tests were performed according to literature procedure.^[1a]

General Method for the Nucleophilic Addition of Primary and Secondary Amines: The amine (25.6 mmol) was added to a solution of 6-ethynylpurine 7 or 8 (1.281 mmol) or 6-vinylpurine 1 or 2 in THF or EtOH (8 mL) at room temperature. The mixture was stirred at room temperature for the reaction time specified below for each compound. The resulting mixture was concentrated under reduced pressure, and the residue was purified by column chromatography (silica gel, ethyl acetate). Crude products were purified by crystallization from ethyl acetate/hexane.

9-Benzyl-6-[2-(piperidinin-1-yl)ethyl]purine (3a): Reaction time 2 d, yield 63%, orange crystals, m.p. 78-80 °C. ¹H NMR (400 MHz, CDCl₃): δ = 1.44 (m, 2 H, CH₂-pip), 1.59 (p, J_{vic} = 5.4 Hz, 4 H, CH₂-pip), 2.55 (br. t, 4 H, J_{vic} = 5.4 Hz, CH₂N-pip), 2.96 (m, 2 H, CH₂-N), 3.43 (m, 2 H, CH₂-pur), 5.43 (s, 2 H, CH₂-Ph), 7.29–7.40 (m, 5 H, Ph), 8.00 (s, 1 H, 8-H), 8.91 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 24.32 (CH₂-pip), 25.98 (CH₂-pip), 30.26 (CH2-pur), 47.25 (CH2-Ph), 54.14 (CH2N-pip), 57.30 (CH2-N), 127.86 (CH-o-Ph), 128.58 (CH-p-Ph), 129.14 (CH-m-Ph), 132.75 (C-5), 135.17 (C-i-Ph), 143.52 (CH-8), 150.76 (C-4), 152.58 (CH-2), 161.48 (C-6) ppm. EI-MS: m/z (rel.%) = 321 (18) [M]⁺, 235 (66), 224 (8), 209 (8), 147 (22), 98 (100), 91 (84). HRMS: calcd. for $C_{19}H_{23}N_5$ 321.1953; found 321.1951. IR (CHCl₃): $\tilde{v} = 2940$, 1595, 1499, 1456, 1407, 1332, 1209, 1197, 723, 698, 649 cm⁻¹. C₁₉H₂₃N₅ (321.38): calcd. C 70.00, H 7.21, N 21.79; found C 69.54, H 7.05, N 21.35.

9-Benzyl-6-[2-(morpholin-4-yl)ethyl]purine (3b): Reaction time 3 d, yield 64%, colourless crystal, m.p. 108–110 °C. ¹H NMR (500 MHz, CDCl₃): δ = 2.58 (m, 4 H, CH₂N-morph), 2.98 (m, 2 H, CH₂-N), 3.41 (m, 2 H, CH₂-pur), 3.69 (m, 4 H, CH₂O-morph), 5.44 (s, 2 H, CH₂-Ph), 7.30–7.40 (m, 5 H, Ph), 8.00 (s, 1 H, 8-H), 8.92 (s, 1 H, 2-H) ppm. ¹³C NMR (125.8 MHz, CDCl₃): δ = 30.30 (CH₂-pur), 47.28 (CH₂-Ph), 53.39 (CH₂N-morph), 56.88 (CH₂-N), 66.98 (CH₂O-morph), 127.87 (CH-*o*-Ph), 128.62 (CH-*p*-Ph), 129.16 (CH-*m*-Ph), 132.81 (C-5), 135.13 (C-*i*-Ph), 143.59 (CH-8), 150.80 (C-4), 152.58 (CH-2), 160.97 (C-6) ppm. FAB-MS: *m/z* (rel.%) = 324 (100) [M+H]⁺ (cation), 237 (10), 185 (30), 91 (95). HRMS: calcd. for C₁₈H₂₂N₅O [M+H]⁺: 324.1824; found 324.1841. IR (CHCl₃): \tilde{v} = 2970, 2816, 1596, 1499, 1332, 1209,1116, 868, 726 cm⁻¹.

9-Benzyl-6-[2-(dibutylamino)ethyl]purine (3c): Reaction time 2 d, yield 66%, brown oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.88$ (t, $J_{\rm vic} = 7.3 \,\text{Hz}, \ 6 \,\text{H}, \ CH_3 CH_2 CH_2 CH_2), \ 1.26 \ (2 \times \text{m}, \ 2 \times 4 \,\text{H},$ $CH_3CH_2CH_2CH_2$), 1.44 (2×m, 2×4 H, $CH_3CH_2CH_2CH_2$), 2.52 (m, 4 H, CH₃CH₂CH₂CH₂), 3.09 (m, 2 H, CH₂-N), 3.55 (m, 2 H, CH2-pur), 5.44 (s, 2 H, CH2-Ph), 7.28-7.40 (m, 5 H, Ph), 8.00 (s, 1 H, 8-H), 8.91 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 14.07 (CH_3CH_2CH_2CH_2), 20.64 (CH_3CH_2CH_2CH_2), 29.48$ (CH₃CH₂CH₂CH₂), 30.02 (CH₂-pur), 47.22 (CH₂-Ph), 52.20 (CH₂-N), 53.60 (CH₃CH₂CH₂CH₂), 127.82 (CH-o-Ph), 128.55 (CH-p-Ph), 129.12 (CH-m-Ph), 132.81 (C-5), 135.22 (C-i-Ph), 143.44 (CH-8), 150.70 (C-4), 152.56 (CH-2), 161.92 (C-6) ppm. EI-MS: m/z (rel. %) = 365 (8) $[M]^+$, 322 (66), 308 (8), 277 (12), 235 (90), 142 (100), 91 (50). HRMS: calcd. for C₂₂H₃₁N₅ 365.2579; found 365.2588. IR (CHCl₃): $\tilde{v} = 2934$, 2864, 1596, 1499, 1457, 1406, 1332, 1234, 1179, 1079, 948, 724, 698, 649 cm⁻¹.

9-Benzyl-6-[2-(diethylamino)ethyl]purine (3d): Reaction time 2 d, yield 45%, brown oil. ¹H NMR (400 MHz, CDCl₃): δ = 1.08 (t, J_{vic} = 7.2 Hz, 6 H, CH_3 CH₂), 2.66 (q, J_{vic} = 7.2 Hz, 4 H, CH_2 CH₃), 3.11 (m, 2 H, CH₂-N), 3.35 (m, 2 H, CH₂-pur), 5.43 (s, 2 H, CH₂-Ph), 7.29–7.40 (m, 5 H, Ph), 8.00 (s, 1 H, 8-H), 8.92 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 12.10 (*C*H₃CH₂), 29.77 (CH₂-pur), 46.90 (*C*H₂CH₃), 47.24 (CH₂-Ph), 50.87 (CH₂-N), 127.86 (CH-*o*-Ph), 128.57 (CH-*p*-Ph), 129.13 (CH-*m*-Ph), 132.80 (C-5), 135.17 (C-*i*-Ph), 143.50 (CH-8), 150.74 (C-4), 152.59 (CH-2), 161.70 (C-6) ppm. EI-MS: *m*/*z* (rel.%) = 309 (34) [M]⁺, 294 (28), 280 (26), 269 (12), 235 (86), 225 (8), 208 (18), 145 (22), 91 (64), 86 (100). HRMS: calcd. for C₁₈H₂₃N₅ 309.1953; found 309.1946. IR (CHCl₃): \tilde{v} = 2980, 1622, 1583, 1498, 1429, 1360, 1326, 1263, 1191, 1116, 996, 814, 726, 667 cm⁻¹.

9-Benzyl-6-[2-(dimethylamino)ethyl]purine (3e): Reaction time 1 h, yield 67%, colourless crystal, m.p. 57–59 °C. ¹H NMR (500 MHz, CDCl₃): δ = 2.34 (s, 6 H, CH₃), 2.95 (m, 2 H, CH₂-N), 3.39 (m, 2 H, CH₂-pur), 5.43 (s, 2 H, CH₂-Ph), 7.30–7.39 (m, 5 H, Ph), 8.00 (s, 1 H, 8-H), 8.93 (s, 1 H, 2-H) ppm. ¹³C NMR (125.8 MHz, CDCl₃): δ = 31.02 (CH₂-pur), 45.29 (CH₃), 47.25 (CH₂-Ph), 57.61 (CH₂-N), 127.90 (CH-*o*-Ph), 128.58 (CH-*p*-Ph), 129.12 (CH-*m*-Ph), 132.82 (C-5), 135.11 (C-*i*-Ph), 143.55 (CH-8), 150.80 (C-4), 152.61 (CH-2), 161.13 (C-6) ppm. EI-MS: *m*/*z* (rel.%) = 281 (44) [M]⁺, 266 (10), 235 (18), 224 (18), 209 (8), 147 (30), 134 (8), 119 (12), 91 (72), 58 (100). HRMS: calcd. for C₁₆H₁₉N₅ 281.1640; found 281.1654. IR (CHCl₃): $\tilde{\nu}$ = 2982, 2782, 1596, 1499, 1457, 1406, 1332, 1209, 1041, 665 cm⁻¹.

9-Benzyl-6-[2-(cyclohexylamino)ethyl]purine (3f): Reaction time 1 d, vield 86%, brown oil. ¹H NMR (400 MHz, CDCl₃): δ = 1.00–1.32 (3×m, 10 H, CH2-cyclohex), 1.67-1.77 (3×m, 10 H, CH2-cyclohex), and 1.85–1.92 (3×m, 10 H, CH₂-cyclohex), 2.53 (tt, J = 10.5, 3.8 Hz, 1 H, CHN-cyclohex), 3.22 (t, J = 6.6 Hz, 2 H, CH₂-NH), 3.41 (t, J = 6.6 Hz, 2 H, CH₂-pur), 5.44 (s, 2 H, CH₂-Ph), 7.29-7.40 (m, 5 H, Ph), 8.01 (s, 1 H, 8-H), 8.91 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 24.97 (CH₂-cyclohex), 26.07 (CH₂-cyclohex), 33.27 (CH₂-cyclohex), 33.46 (CH₂-pur), 44.82 (CH₂-NH), 47.28 (CH₂-Ph), 56.42 (CHN-cyclohex), 127.85 (CH-o-Ph), 128.58 (CH-p-Ph), 129.12 (CH-m-Ph), 132.66 (C-5), 135.07 (C-*i*-Ph), 143.63 (CH-8), 150.76 (C-4), 152.52 (CH-2), 161.09 (C-6) ppm. EI-MS: m/z (rel.%) = 335 (28) [M]⁺, 292 (66), 252 (64), 224 (84), 147 (16), 98 (12), 91 (100). HRMS: calcd. for C₂₀H₂₅N₅ 335.2109; found 335.2120. IR (CHCl₃): $\tilde{v} = 2933$, 2856, 1596, 1499, 1452, 1406, 1332, 1196, 725, 699, 648 cm⁻¹.

9-Benzyl-6-[2-(benzylamino)ethyl]purine (3g): Reaction time 1 d, yield 72%, brown oil. ¹H NMR (400 MHz, CDCl₃): δ = 3.23 (t, J_{vic} = 6.6 Hz, 2 H, CH₂-N), 3.44 (t, J_{vic} = 6.6 Hz, 2 H, CH₂-pur),

3.86 (s, 2 H, CH₂-Ph), 5.43 (s, 2 H, CH₂-Ph-9), 7.19–7.40 (m, 10 H, 2×Ph), 8.00 (s, 1 H, 8-H), 8.92 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 33.23 (CH₂-pur), 47.26 (CH₂-Ph-9 and CH₂-N), 53.56 (CH₂-Ph), 126.81 (CH-Ph), 127.87 (CH-Ph), 128.09 (CH-Ph), 128.30 (CH-Ph), 128.60 (CH-Ph), 129.15 (CH-Ph), 132.80 (C-5), 135.12 (C-*i*-Ph), 140.28 (C-*i*-Ph), 143.61 (CH-8), 150.79 (C-4), 152.56 (CH-2), 161.15 (C-6) ppm. FAB-MS: *m*/*z* (rel.%) = 344 (12) [M + H]⁺ (cation), 225 (44), 134 (8), 91 (100). HRMS: calcd. for C₂₁H₂₂N₅ [M + H]⁺: 344.1875; found 344.1882. IR (CHCl₃): \tilde{v} = 2990, 1672, 1596, 1498, 1456, 1407, 1332, 1196, 1079, 1029, 876, 699, 666, 648 cm⁻¹.

9-Benzyl-6-[2-(methylamino)ethyl]purine (3h): This compound was prepared by a modified procedure. Compound 1 was added dropwise over 2 h into a solution of methylamine to prevent double addition leading to 3j. Yield 94%, colourless oil. ¹H NMR (400 MHz, CDCl₃): δ = 2.51 (s, 3 H, CH₃), 3.21 (t, J = 6.7 Hz, 2 H, CH₂-NH), 3.45 (t, J = 6.6 Hz, 2 H, CH₂-pur), 5.43 (s, 2 H, CH₂-Ph), 7.29–7.39 (m, 5 H, Ph), 8.04 (s, 1 H, 8-H), 8.91 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 32.42 (CH₂-pur), 35.74 (CH₃), 47.12 (CH₂-Ph), 49.51 (CH₂-NH), 127.74 (CH-o-Ph), 128.43 (CH-p-Ph), 128.96 (CH-m-Ph), 132.54 (C-5), 134.94 (C-i-Ph), 143.66 (CH-8), 150.65 (C-4), 152.37 (CH-2), 160.58 (C-6) ppm. FAB-MS: m/z (rel. %) = 268 (20) [M + H]⁺ (cation), 237 (20), 225 (35), 177 (15), 147 (15), 91 (100). HRMS: calcd. for C₁₅H₁₈N₅ $[M + H]^+$ 268.1562; found 268.1545. IR (CHCl₃): $\tilde{v} = 3382$, 3092, 3069, 3035, 2982, 2852, 1596, 1499, 1456, 1406, 1332, 1214, 784, 699, 648 cm⁻¹.

9-Benzyl-6-(2-aminoethyl)purine (3i): Reaction time 1 d, yield 58%, white solid, m.p. 139–142 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.28 (t, *J* = 6.5 Hz, 2 H, CH₂-NH₂), 3.42 (t, *J* = 6.5 Hz, 2 H, CH₂-pur), 5.43 (s, 2 H, CH₂-Ph), 7.28–7.40 (m, 5 H, Ph), 7.96 (s, 1 H, 8-H), 8.86 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 33.15 (CH₂-pur), 47.25 (CH₂-Ph), 47.55 (CH₂-NH₂), 127.87 (CH-*o*-Ph), 128.59 (CH-*p*-Ph), 129.15 (CH-*m*-Ph), 132.75 (C-5), 135.12 (C-*i*-Ph), 143.58 (CH-8), 150.77 (C-4), 152.50 (CH-2), 161.08 (C-6) ppm. EI-MS: *m*/*z* (rel.%) = 253 (17) [M]⁺, 236 (33), 224 (62), 91 (100). HRMS: calcd. for C₁₄H₁₅N₅ 253.1327; found 253.1331. IR (CHCl₃): \tilde{v} = 2988, 1596, 1499, 1456, 1406, 1332, 1232, 1196, 699, 648 cm⁻¹.

Bis[2-(9-benzylpurin-6-yl)ethyl](methyl)amine (3i): This compound was obtained by stirring a mixture of compound **3h** (50 mg, 0.187 mmol) with 9-benzyl-6-vinylpurine (1, 44 mg, 0.187 mmol) in THF (5 mL) at 70 °C for 1 d. The reaction mixture was concentrated under reduced pressure and purified by column chromatography (silica gel, chloroform). Compound 3j was obtained as a yellow oil. Yield 42 mg (45%). ¹H NMR (400 MHz, CDCl₃): δ = 2.50 (s, 6 H, CH₃), 3.16 (t, J_{vic} = 7.5 Hz, 4 H, CH₂-N), 3.41 (m, J_{vic} = 7.5 Hz, 4 H, CH₂-pur), 5.43 (s, 4 H, CH₂-Ph), 7.29–7.39 (m, 10 H, Ph), 7.97 (s, 2 H, 8-H), 8.88 (s, 2 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 30.53 (CH₂-pur), 41.69 (CH₃), 47.24 (CH₂-Ph), 55.31 (CH₂-N), 127.87 (CH-o-Ph), 128.57 (CH-p-Ph), 129.14 (CH-m-Ph), 132.78 (C-5), 135.15 (C-i-Ph), 143.52 (CH-8), 150.75 (C-4), 152.53 (CH-2), 161.34 (C-6) ppm. FAB-MS: m/z $(rel.\%) = 504 (25) [M+H]^+ (cation), 280 (65), 237 (18), 147 (18),$ 91 (100). HRMS: calcd. for C₂₉H₃₀N₉ [M+H]⁺ 504.2624; found 504.2613. IR (CHCl₃): $\tilde{v} = 3092$, 3069, 3035, 2803, 1596, 1581, 1499, 1456, 1438, 1406, 1375, 1355, 1332, 1079, 1030, 699, 648 cm^{-1} .

Compound **3j** was also observed to spontaneously form as an impurity from oily **3h** on standing for several days.

6-[2-(Piperidine-1-yl)ethyl]-9-(tetrahydropyran-2-yl)purine (4a): Reaction time 1 d, yield 60%, brown solid, m.p. 71–89 °C. ¹H NMR

(400 MHz, CDCl₃): δ = 1.44 (m, 2 H, CH₂-pip), 1.59 (p, *J* = 5.4 Hz, 4 H, CH₂-pip), 1.63–1.87 (2 × m, 6 H, CH₂-THP), 2.03–2.19 (2 × m, 6 H, CH₂-THP), 2.55 (br. t, *J* = 5.4 Hz, 4 H, CH₂N-pip), 2.96 (m, 2 H, CH₂-N), 3.42 (m, 2 H, CH₂-pur), 3.80 (td, *J* = 11.6, 2.5 Hz, 1 H, bCH₂O-THP), 4.19 (ddt, *J* = 11.6, 4.3, 2.0 Hz, 1 H, aCH₂O-THP), 5.80 (dd, *J* = 9.9, 3.0 Hz, 1 H, CHO-THP), 8.24 (s, 1 H, 8-H), 8.88 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 22.79 (CH₂-THP), 24.28 (CH₂-pip), 24.85 (CH₂-THP), 25.92 (CH₂-pip), 30.25 (CH₂-pur), 31.74 (CH₂-THP), 54.10 (CH₂N-pip), 57.24 (CH₂-N), 68.84 (CH₂O-THP), 81.90 (CHO-THP), 132.89 (C-5), 141.51 (CH-8), 149.93 (C-4), 152.39 (CH-2), 161.47 (C-6) ppm. EI-MS: *m*/*z* (rel.%) = 315 (18) [M]⁺, 230 (20), 224 (8), 202 (8), 147 (42), 134 (22), 98 (100). HRMS: calcd. for C₁₇H₂₅N₅O 315.2059; found 315.2065. IR (CHCl₃): \tilde{v} = 2941, 1597, 1496, 1455, 1409, 1334, 1208, 1086, 1045, 973, 913, 666 cm⁻¹.

(4b): 6-[2-(Morpholine-4-yl)ethyl]-9-(tetrahydropyran-2-yl)purine Reaction time 1 d, yield 78%, yellow crystal, m.p. 64-70 °C. ¹H NMR (400 MHz, CDCl₃): δ = 1.64–1.85 (2×m, 6 H, CH₂-THP), 2.04-2.20 (2×m, 6 H, CH2-THP), 2.58 (m, 4 H, CH2N-morph), 2.97 (t, J_{vic} = 7.1 Hz, 2 H, CH₂-N), 3.40 (dt, J_{gem} = 13.6 Hz, J_{vic} = 7.1 Hz, 2 H, CH₂-pur), 3.41 (dt, J_{gem} = 13.6 Hz, J_{vic} = 7.1 Hz, 2 H, CH₂-pur), 3.69 (m, 4 H, CH₂O-morph), 3.80 (td, J = 11.6, 2.6 Hz, 1 H, bCH₂O-THP), 4.19 (ddt, J = 11.6, 4.3, 1.6 Hz, 1 H, aCH₂O-THP), 5.80 (dd, J = 10.0, 3.2 Hz, 1 H, CHO-THP), 8.24 (s, 1 H, 8-H), 8.88 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 22.79 (CH₂-THP), 24.84 (CH₂-THP), 30.33 (CH₂pur), 31.74 (CH₂-THP), 53.36 (CH₂N-morph), 56.85 (CH₂-N), 66.94 (CH₂O-morph), 68.86 (CH₂O-THP), 81.92 (CHO-THP), 132.97 (C-5), 141.58 (CH-8), 149.97 (C-4), 152.39 (CH-2), 161.02 (C-6) ppm. FAB-MS: m/z (rel.%) = 318 (100) [M+H]⁺ (cation), 234 (80), 147 (65), 134 (25). HRMS: calcd. for $C_{16}H_{24}N_5O_2$ [M+H] ⁺ 318.1930; found 318.1923. IR (CHCl₃): $\tilde{v} = 2970, 2862, 1598,$ 1334, 1116, 1045, 913, 666 cm⁻¹.

6-[2-(Dibutylamino)ethyl]-9-(tetrahydropyran-2-yl)purine (4c): Reaction time 2 d, yield 79%, brown oil. ¹H NMR (400 MHz, CDCl₃): δ = 1.11 (t, J = 7.1 Hz, 9 H, CH₃CH₂), 1.60–1.88 (2×m, 6 H, CH₂-THP), 2.02–2.19 (2×m, 6 H, CH₂-THP), 2.71 (q, J = 7.1 Hz, 6 H, CH_2CH_3), 3.15 (dd, J = 8.5, 5.6 Hz, 2 H, CH_2 -N), 3.38 (dd, J =8.5, 5.6 Hz, 2 H, CH₂-pur), 3.80 (td, J = 11.6, 2.6 Hz, 1 H, bCH₂O-THP), 4.19 (ddt, J = 11.6, 4.2, 1.6 Hz, 1 H, aCH₂O-THP), 5.80 (dd, J = 9.9, 2.9 Hz, 1 H, CHO-THP), 8.24 (s, 1 H, 8-H), 8.88 (s, 1)1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 11.82$ (CH₃CH₂), 22.78 (CH₂-THP), 24.84 (CH₂-THP), 29.41 (CH₂-pur), 31.75 (CH₂-THP), 46.90 (CH₂CH₃), 50.58 (CH₂-N), 68.83 (CH₂O-THP), 81.91 (CHO-THP), 132.95 (C-5), 141.54 (CH-8), 149.95 (C-4), 152.40 (CH-2), 161.22 (C-6) ppm. HRMS: calcd. for $C_{20}H_{34}N_5O [M+H]^+$ 360.2763; found 360.2752. IR (CHCl₃): $\tilde{v} =$ 3127, 3065, 2872, 1597, 1582, 1496, 1466, 1457, 1442, 1409, 1379, 1334, 1186, 1086, 1059, 1045913, 876, 844, 823, 648 cm⁻¹.

6-[2-(Diethylamino)ethyl]-9-(tetrahydropyran-2-yl)purine (4d): Reaction time 1 d, yield 44%, red oil. ¹H NMR (400 MHz, CDCl₃): δ = 1.08 (t, J_{vic} = 7.2 Hz, 6 H, CH₃CH₂), 1.63–1.87 (2×m, 6 H, CH₂-THP), 1.98–2.22 (2×m, 6 H, CH₂-THP), 2.67 (q, J_{vic} = 7.2 Hz, 6 H, CH₂-THP), 2.67 (q, J_{vic} = 7.2 Hz, 6 H, CH₂-THP), 3.36 (m, 2 H, CH₂-pur), 3.80 (td, J = 11.6, 2.6 Hz, 1 H, bCH₂O-THP), 4.19 (ddt, J = 11.6, 4.3, 1.8 Hz, 1 H, aCH₂O-THP), 5.79 (dd, J = 10.0, 3.2 Hz, 1 H, CHO-THP), 8.24 (s, 1 H, 8-H), 8.88 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 11.98 (CH₃CH₂), 22.80 (CH₂-THP), 24.86 (CH₂-THP), 29.61 (CH₂-pur), 31.77 (CH₂-THP), 46.84 (CH₂CH₃), 50.74 (CH₂-N), 68.84 (CH₂O-THP), 81.91 (CHO-THP), 132.97 (C-5), 141.50 (CH-8), 149.93 (C-4), 152.42 (CH-2), 161.63 (C-6) ppm. EI-MS: m/z (rel.%) = 303 (18) [M]⁺, 230 (56),

218 (16), 202 (56), 190 (20), 147 (42), 119 (14), 86 (100). HRMS: calcd. for $C_{16}H_{25}N_5O$ 303.2059; found 303.2062. IR (CHCl₃): \tilde{v} = 2977, 2863, 1597, 1496, 1455, 1409, 1332, 1205, 1086, 1045, 972, 913, 666, 646 cm⁻¹.

6-[2-(Dimethylamino)ethyl]-9-(tetrahydropyran-2-yl)purine (4e): Reaction time 4 h, yield 83%, white solid, m.p. >300 °C. ¹H NMR (400 MHz, CDCl₃): δ = 1.61–1.87 (2×m, 6 H, CH₂-THP), 2.02– 2.19 (2×m, 6 H, CH₂-THP), 2.33 [s, 6 H, (CH₃)₂N], 2.93 (t, J =7.3 Hz, 2 H, CH₂-N), 3.37 (2×dt, $J_{gem} = 10.1$ Hz, J = 7.3 Hz, 2 H, CH₂-pur), 3.40 (2×dt, $J_{gem} = 10.1$ Hz, J = 7.3 Hz, 2 H, CH₂pur), 3.80 (td, J = 11.6, 2.6 Hz, 1 H, bCH₂O-THP), 4.18 (ddt, J = 11.6, 4.2, 2.1 Hz, 1 H, aCH₂O-THP), 5.80 (dd, J = 10.1, 2.7, 1 H, CHO-THP), 8.25 (s, 1 H, 8-H), 8.89 (s, 1 H, 2-H) ppm. ¹³C NMR $(100.6 \text{ MHz}, \text{ CDCl}_3): \delta = 22.77 \text{ (CH}_2\text{-THP}), 24.84 \text{ (CH}_2\text{-THP}),$ 31.04 (CH₂-pur), 31.79 (CH₂-THP), 45.25 [(CH₃)₂N], 57.62 (CH₂-N), 68.83 (CH₂O-THP), 81.91 (CHO-THP), 132.97 (C-5), 141.57 (CH-8), 149.97 (C-4), 152.41 (CH-2), 161.17 (C-6) ppm. EI-MS: m/z (rel.%) = 275 (56) [M]⁺, 190 (80), 176 (12), 163 (8), 147 (72), 134 (30), 85 (34), 58 (100). HRMS: calcd. for C₁₄H₂₁N₅O 275.1746; found 275.1749. IR (CHCl₃): $\tilde{v} = 3403$, 2982, 2860, 2826, 1598, 1497, 1410, 1334, 1206, 1098, 1086, 1045, 913, 666, 648 cm⁻¹.

6-[2-(Cyclohexylamino)ethyl]-9-(tetrahydropyran-2-yl)purine (4f): Reaction time 2 d, yield 76%, red oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.00-1.32$ (m, 6 H, CH₂-cyclohex), 1.56-1.93 (m, 7 H, CH₂cyclohex + CH₂-THP), 2.03–2.19 (m, 3 H, CH₂-THP), 2.52 (tt, J $= 10.5, 3.8 \text{ Hz}, 1 \text{ H}, \text{CHN-cyclohex}), 3.20 (t, J = 6.8 \text{ Hz}, 2 \text{ H}, \text{CH}_{2}$ NH), 3.40 (t, J = 6.8 Hz, 2 H, CH₂-pur), 3.80 (td, J = 11.6, 2.6 Hz, 1 H, bCH₂O-THP), 4.19 (ddt, J = 11.6, 4.1, 2.0 Hz, 1 H, aCH₂O-THP), 5.80 (dd, J = 10.0, 2.9 Hz, 1 H, CHO-THP), 8.25 (s, 1 H, 8-H), 8.88 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 22.75 (CH2-THP), 24.82 (CH2-THP), 24.99 (CH2-cyclohex), 26.08 (CH₂-cyclohex), 31.74 (CH₂-THP), 33.31 (CH₂-cyclohex), 33.53 (CH2-pur), 44.87 (CH2-NH), 56.41 (CHN-cyclohex), 68.82 (CH2O-THP), 81.90 (CHO-THP), 132.85 (C-5), 141.62 (CH-8), 149.94 (C-4), 152.35 (CH-2), 161.16 (C-6) ppm. EI-MS: m/z (rel.%) = 329 (10) [M]⁺, 244 (52), 218 (20), 202 (22), 162 (25), 147 (30), 134 (100), 112 (24), 85 (22). HRMS: calcd. for C18H27N5O 329.2215; found 329.2209. IR (CHCl₃): $\tilde{v} = 3389$, 2977, 2856, 1598, 1497, 1452, 1409, 1334, 1257, 1086, 1045, 913, 665, 648 cm⁻¹.

6-[2-(Benzylamino)ethyl]-9-(tetrahydropyran-2-yl)purine (4g): Reaction time 1 d, yield 50%, brown oil. ¹H NMR (500 MHz, CDCl₃): δ = 1.63–1.87 (2×m, 6 H, CH₂-THP), 2.01–2.19 (2×m, 6 H, CH₂-THP), 3.32 (t, J = 6.4 Hz, 2 H, CH₂-N), 3.58 (t, J = 6.4 Hz, 2 H, CH₂-pur), 3.79 (td, J = 11.7, 2.6 Hz, 1 H, bCH₂O-THP), 4.03 (s, 2 H, CH₂-Ph), 4.19 (ddt, *J* = 11.7, 4.4, 1.8 Hz, 1 H, aCH₂O-THP), 5.79 (dd, J = 10.4, 2.5 Hz, 1 H, CHO-THP), 7.28 (m, 1 H, H-p-Ph), 7.34 (m, 2 H, H-m-Ph), 7.42 (m, 2 H, H-o-Ph), 8.25 (s, 1 H, 8-H), 8.85 (s, 1 H, 2-H) ppm. ¹³C NMR (125.8 MHz, CDCl₃): δ = 22.70 (CH₂-THP), 24.80 (CH₂-THP), 31.25 (CH₂-pur), 31.78 (CH2-THP), 46.23 (CH2-N), 52.65 (CH2-Ph), 68.85 (CH2O-THP), 82.02 (CHO-THP), 127.85 (CH-p-Ph), 128.68 (CH-o,m-Ph), 128.79 (CH-o,m-Ph), 132.51 (C-5), 136.54 (C-i-Ph), 141.90 (CH-8), 150.00 (C-4), 152.16 (CH-2), 160.04 (C-6) ppm. FAB-MS: m/z (rel.%) = 238 (20) [M+H]⁺ (cation), 266 (20), 147 (27), 135 (40), 91 (100). HRMS: calcd. for C₁₉H₂₄N₅O [M+H]⁺ 338.1980; found 338.1992. IR (CHCl₃): $\tilde{v} = 3382, 3087, 3065, 3030, 1622, 1597, 1583, 1496,$ 1465, 1442, 1410, 1379, 1334, 1187, 1086, 913, 876, 699, 648 cm⁻¹.

6-[2-(Methylamino)ethyl]-9-(tetrahydropyran-2-yl)purine (4h): Reaction time 2 h, yield 40%, colourless oil. ¹H NMR (400 MHz, CDCl₃): δ = 1.63–1.87 (2×m, 6 H, CH₂-THP), 2.02–2.19 (2×m, 6 H, CH₂-THP), 3.12 (t, 2 H, CH₂-N), 3.39 (t, 2 H, CH₂-pur), 3.80 (td, *J* = 11.6, 2.6 Hz, 1 H, bCH₂O-THP), 4.18 (ddt, *J* = 11.6, 4.2,

1.8 Hz, 1 H, aCH₂O-THP), 5.79 (dd, J = 10.1, 2.9 Hz, 1 H, CHO-THP), 8.23 (s, 1 H, 8-H), 8.86 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 22.78$ (CH₂-THP), 24.86 (CH₂-THP), 30.63 (CH₂-pur), 31.76 (CH₂-THP), 41.76 (CH₃), 55.32 (CH₂-N), 68.81 (CH₂O-THP), 81.90 (CHO-THP), 132.94 (C-5), 141.50 (CH-8), 149.91 (C-4), 152.35 (CH-2), 161.38 (C-6) ppm. FAB-MS: *m*/*z* (rel. %) = 262 (28) [M+H]⁺ (cation), 231 (20), 176 (12), 147 (30), 135 (22). HRMS: calcd. for C₁₃H₂₀N₅O [M+H]⁺ 262.1667; found 262.1674. IR (CHCl₃): $\tilde{v} = 3375$, 2980, 2952, 2859, 2476, 1597, 1583, 1496, 1456, 1409, 1334, 1086, 1045, 913, 648 cm⁻¹.

6-(2-Aminoethyl)-9-(tetrahydropyran-2-yl)purine (4i): Reaction time 2 h, yield 60%, brown oil. ¹H NMR (400 MHz, CDCl₃): δ = 1.62–1.88 (2×m, 6 H, CH₂-THP), 2.02–2.19 (2×m, 6 H, CH₂-THP), 3.29 (t, *J* = 7.0 Hz, 2 H, CH₂-N), 3.36 (t, *J* = 7.0 Hz, 2 H, CH₂-pur), 3.80 (td, *J* = 11.6, 2.5 Hz, 1 H, bCH₂O-THP), 4.18 (ddt, *J* = 11.6, 4.1, 1.8 Hz, 1 H, aCH₂O-THP), 5.78 (dd, *J* = 10.2, 2.9 Hz, 1 H, CHO-THP), 8.20 (s, 1 H, 8-H), 8.82 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 22.80 (CH₂-THP), 24.88 (CH₂-THP), 30.94 (CH₂-pur), 31.75 (CH₂-THP), 51.76 (CH₂-N), 68.76 (CH₂O-THP), 81.85 (CHO-THP), 132.96 (C-5), 141.35 (CH-8), 149.84 (C-4), 152.26 (CH-2), 161.55 (C-6) ppm. EI-MS: *m/z* (rel.%) = 247 (42) [M]⁺, 230 (18), 202 (10), 177 (24), 162 (82), 190 (20), 147 (28), 134 (100), 119 (22), 85 (70). HRMS: calcd. for C₁₂H₁₇N₅O 247.1433; found 247.1435. IR (CHCl₃): \tilde{v} = 3403, 2982, 2860, 1598, 1497, 1410, 1334, 1206, 1086, 1045, 913, 666, 648 cm⁻¹.

(E)-9-Benzyl-6-[2-(piperidin-1-yl)vinyl]purine (9a): Reaction time 8 h, yield 87%, red solid, m.p. 121-123 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.55-1.60$ (m, 6 H, H-3', H-4' and H-5'), 3.29-3.34 (m, 4 H, 2-H' and H-6'), 5.30 (s, 2 H, CH₂-Ph), 5.77 (d, J_{trans} = 13.1 Hz, 1 H, =CH-pur), 7.17-7.30 (m, 5 H, Ph), 7.75 (s, 1 H, 8-H), 8.21 (d, *J*_{trans} = 13.1 Hz, 1 H, =CH-N), 8.52 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 24.04 (CH₂-4'), 25.43 (CH₂-3' and CH2-5'), 46.69 (CH2-Ph), 49.74 (CH2-2' and CH2-6'), 89.55 (=CH-pur), 127.27 (C-5), 127.50 (CH-o-Ph), 128.08 (CH-p-Ph), 128.81 (CH-m-Ph), 135.65 (C-i-Ph), 140.69 (CH-8), 148.72 (=CH-N), 149.61 (C-4), 152.40 (CH-2), 157.56 (C-6) ppm. EI-MS: m/z $(rel.\%) = 268 (7) [M]^+, 319 (100), 237 (25), 211 (7), 145 (7), 91$ (38). HRMS: calcd. for C₁₉H₂₁N₅ 319.1797; found 319.1803. IR $(CHCl_3): \tilde{\nu} = 2945, 1623, 1548, 1440, 1402, 1326, 1271, 1247, 1118,$ 987, 815, 668 cm $^{-1}$. $C_{19}H_{21}N_5$ (319.4): calcd. C 71.45, H 6.63, N 21.93; found C 71.10, H 6.55, N 21.51.

(E)-9-Benzyl-6-[2-(morpholin-4-yl)vinyl]purine (9b): Reaction time 1 d, yield 95%, red solid, m.p. 123-133 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.40 (t, J_{vic} = 5.1 Hz, 4 H, CH₂-N), 3.77 (t, J_{vic} = 5.1 Hz, 4 H, CH₂-O), 5.39 (s, 2 H, CH₂-Ph), 5.89 (d, J_{trans} = 13.3 Hz, 1 H, =CH-pur), 7.25-7.39 (m, 5 H, Ph), 7.83 (s, 1 H, 8-H), 8.22 (d, J_{trans} = 13.3 Hz, 1 H, =CH-N), 8.63 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 46.94 (CH₂-Ph), 48.76 (CH₂-N), 66.33 (CH₂-O), 91.88 (=CH-pur), 127.71 (CH-o-Ph), 127.95 (C-5), 128.34 (CH-p-Ph), 129.03 (CH-m-Ph), 135.66 (C-i-Ph), 141.33 (CH-8), 148.31 (=CH-N), 150.18 (C-4), 152.70 (CH-2), 157.15 (C-6) ppm. EI-MS: m/z (rel.%) = 321 (55) [M]⁺, 291 (15), 261 (15), 237 (18), 224 (12), 145 (7), 91 (100). HRMS: calcd. for $C_{18}H_{19}N_5O$ 321.1589; found 321.1581. IR (CHCl₃): $\tilde{v} = 2974$, 1626, 1586, 1437, 1400, 1229, 1115, 989, 727, 667 cm⁻¹. C₁₈H₁₉N₅O (321.38): calcd. C 67.27, H 5.96, N 21.79; found C 66.89, H 6.11, N 21.44.

(*E*)-9-Benzyl-6-[2-(dibutylamino)vinyl]purine (9c): Reaction time 1 d, yield 97%, brown oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.95$ (t, $J_{vic} = 7.3$ Hz, 6 H, $CH_3CH_2CH_2CH_2$), 1.36 (2×m, 2×4 H, $CH_3CH_2CH_2CH_2$), 1.63 (2×m, 2×4 H, $CH_3CH_2CH_2CH_2$), 3.28 (m, 4 H, $CH_3CH_2CH_2CH_2$), 5.37 (s, 2 H, CH_2 -Ph), 5.72 (d, J_{trans} = 13.2 Hz, 1 H, = CH-pur, 7.24-7.37 (m, 5 H, Ph), 7.79 (s, 1 H, Ph)8-H), 8.33 (br. d, J_{trans} = 13.2 Hz, 1 H, =CH-N), 8.57 (s, 1 H, 2-H) ppm. ¹³C NMR (125.8 MHz, CDCl₃): δ = 13.84 $(CH_3CH_2CH_2CH_2),$ 20.14 $(CH_3CH_2CH_2CH_2),$ 28.73 (CH₃CH₂CH₂CH₂), 31.52 (CH₃CH₂CH₂CH₂), 46.80 (CH₂-Ph), 47.89 (CH₃CH₂CH₂CH₂), 56.02 (CH₃CH₂CH₂CH₂), 89.79 (=CHpur), 127.29 (C-5), 127.61 (CH-o-Ph), 128.21 (CH-p-Ph), 128.96 (CH-m-Ph), 135.87 (C-i-Ph), 140.65 (CH-8), 148.88 (=CH-N), 149.79 (C-4), 152.76 (CH-2), 157.85 (C-6) ppm. EI-MS: m/z (rel.%) $= 363 (98) [M]^+, 334 (45), 320 (50), 306 (50), 292 (8), 278 (20), 237$ (22), 224 (54), 204 (48), 190 (32), 162 (65), 148 (84), 91 (100), 65 (12), 45 (14). HRMS: calcd. for C₂₂H₂₉N₅ 363.2423; found 363.2417. IR (CHCl₃): $\tilde{v} = 2963$, 1622, 1582, 1427, 1369, 1275, 1114, 814, 724, 665 cm⁻¹.

(*E*)-9-Benzyl-6-[2-(diethylamino)vinyl]purine (9d): Reaction time 1 d, yield 84%, red oil. ¹H NMR (400 MHz, CDCl₃): δ = 1.25 (t, J_{vic} = 7.2 Hz, 6 H, CH₃), 3.37 (q, J_{vic} = 7.2 Hz, 4 H, CH₂-CH₃), 5.38 (s, 2 H, CH₂-Ph), 5.75 (d, J_{trans} = 13.1 Hz, 1 H, =CH-pur), 7.24–7.37 (m, 5 H, Ph), 7.80 (s, 1 H, 8-H), 8.32 (d, J_{trans} = 13.1 Hz, 1 H, =CH-N), 8.57 (s, 1 H, 2-H) ppm. ¹³C NMR (125.8 MHz, CDCl₃): δ = 12.19 (CH₃), 13.26 (CH₃), 42.15 (CH₂-CH₃), 50.04 (CH₂-CH₃), 46.83 (CH₂-Ph), 89.64 (=CH-pur), 127.31 (C-5), 127.64 (CH-*o*-Ph), 128.24 (CH-*p*-Ph), 128.98 (CH-*m*-Ph), 135.84 (C-*i*-Ph), 140.71 (CH-8), 147.86 (=CH-N), 149.81 (C-4), 152.70 (CH-2), 157.76 (C-6) ppm. EI-MS: *m*/*z* (rel.%) = 307 (70) [M]⁺, 292 (10), 278 (40), 264 (7), 237 (18), 224 (81), 173 (7), 145 (7), 91 (100). HRMS: calcd. for C₁₈H₂₁N₅ 307.1797; found 307.1788. IR (CHCl₃): \tilde{v} = 2980, 1622, 1584, 1568, 1429, 1360, 1326, 1263, 1116, 996, 814, 725, 646 cm⁻¹.

(*E*)-9-Benzyl-6-[2-(dimethylamino)vinyl]purine (9e): Reaction time 4 h, yield 94%, colourless crystal, m.p. 127–129 °C. ¹H NMR (500 MHz, CDCl₃): δ = 3.05 (br. s, 6 H, CH₃), 5.37 (s, 2 H, CH₂-Ph), 5.70 (d, J_{trans} = 13.0 Hz, 1 H, =CH-pur), 7.25–7.36 (m, 5 H, Ph), 7.81 (s, 1 H, 8-H), 8.29 (d, J_{trans} = 13.0 Hz, 1 H, =CH-N), 8.59 (s, 1 H, 2-H) ppm. ¹³C NMR (125.8 MHz, CDCl₃): δ = 41.55 (CH₃), 46.81 (CH₂-Ph), 90.48 (=CH-pur), 127.46 (C-5), 127.63 (CH-*o*-Ph), 128.22 (CH-*p*-Ph), 128.96 (CH-*m*-Ph), 135.76 (C-*i*-Ph), 140.81 (CH-8), 149.62 (=CH-N), 149.90 (C-4), 152.71 (CH-2), 157.49 (C-6) ppm. EI-MS: *m*/*z* (rel.%) = 279 (85) [M]⁺, 264 (15), 237 (10), 205 (20), 147 (20), 91 (100). HRMS: calcd. for C₁₆H₁₇N₅ 279.1483; found 279.1480. IR (CHCl₃): \tilde{v} = 2978, 1632, 1586, 1453, 1412, 1392, 1325, 1275, 1104, 993, 814, 726, 647 cm⁻¹. C₁₈H₁₇N₅ (279.34): calcd. C 68.79, H 6.13, N 25.07; found C 68.43, H 5.88, N 24.70.

(Z)- and (E)-9-Benzyl-6-[2-(cyclohexylamino)vinyl]purine (11f): Reaction time 2 d, yield 83%, red oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.20-1.50 [4 \times m, 10 \text{ H}, \text{CH}_2\text{-chex-}(Z)+(E)], 1.63 [4 \times m, 10 \text{ H},$ CH2-chex-(Z)+(E)], 1.80 [4×m, 10 H, CH2-chex-(Z)+(E)], 2.01 [4×m, 10 H, CH₂-chex-(Z)+(E)], 3.17 [m, 1 H, CH₂NH-(Z)], 3.38 [m, 1 H, CH₂NH-(*E*)], 4.62 [br. m, 1 H, NH-(*E*)], 5.39 [s, 4 H, CH₂-Ph-(Z)+(E)], 5.64 [d, J_{cis} = 8.1 Hz, 1 H, =CH-pur-(Z)], 5.88 [d, $J_{trans} = 13.4 \text{ Hz}, 1 \text{ H}, = \text{CH-pur-}(E)$], 6.93 [dd, $J_{\text{CH,NH}} = 12.9 \text{ Hz},$ $J_{cis} = 8.1 \text{ Hz}, 1 \text{ H}, = \text{CH-N-}(Z)$], 7.22–7.38 [m, 10 H, Ph-(Z)+(E)], 7.81 [s, 1 H, 8-H-(Z)+(E)], 8.38 [dd, $J_{trans} = 13.4$ Hz, $J_{CH,NH} =$ 4.2 Hz, 1 H, =CH-N-(E)], 8.60 [s, 1 H, 2-H-(E)], 8.65 [s, 1 H, 2-H-(Z)], 9.67 [br. m, 1 H, NH-(Z)] ppm. ¹³C NMR [100.6 MHz, CDCl₃, (Z) isomer only]: δ = 24.66 (CH₂-chex), 25.44 (CH₂-chex), 34.40 (CH₂-chex), 46.85 (CH₂-Ph), 57.01 (CH₂NH), 85.51 (=CHpur), 127.38 (C-5), 127.57 (CH-o-Ph), 128.23 (CH-p-Ph), 128.97 (CH-m-Ph), 135.84 (C-i-Ph), 140.61 (CH-8), 146.81 (=CH-N), 148.78 (C-4), 152.03 (CH-2), 158.28 (C-6) ppm. EI-MS: m/z (rel. %) $= 333 (92) [M]^+, 301 (22), 290 (30), 251 (15), 242 (35), 237 (32),$ 217 (35), 174 (20), 160 (38), 135 (100), 91 (75). HRMS: calcd. for $C_{20}H_{23}N_5$ 333.1953; found 333.1950. IR (CHCl₃): $\tilde{\nu}$ = 2936, 2858, 1630, 1584, 1498, 1452, 1325, 1296, 1241, 1199, 1150, 989, 811, 726, 699, 649 cm⁻¹.

(Z)- and (E)-9-Benzyl-6-[2-(benzylamino)vinyl]purine (11g): Reaction time 2 d, yield 81%, yellow solid, m.p. 130-134 °C. ¹H NMR (500 MHz, CDCl₃): δ = 4.43 [d, $J_{CH2,NH}$ = 5.5 Hz, 2 H, CH₂NH-(E)], 4.52 [d, $J_{CH2,NH} = 6.1$ Hz, 2 H, CH_2NH -(Z)], 4.93 [br. m, 1 H, NH-(E)], 5.39 [s, 4 H, CH₂-Ph-(Z)+(E)], 5.75 [d, J_{cis} = 8.2 Hz, 1 H, =CH-pur-(Z)], 5.98 [d, J_{trans} = 13.4 Hz, 1 H, =CH-pur-(E)], 6.91 [dd, $J_{CH,NH}$ = 12.5 Hz, J_{cis} = 8.2 Hz, 1 H, =CH-N-(Z)], 7.24– 7.39 [m, 20 H, 2×Ph-(Z)+(E)], 7.83 [s, 1 H, 8-H-(E)], 7.84 [s, 1 H, 8-H-(Z)], 8.52 [dd, $J_{trans} = 13.4$ Hz, $J_{CH,NH} = 8.0$ Hz, 1 H, =CH-N-(E)], 8.63 [s, 1 H, 2-H-(E)], 8.65 [s, 1 H, 2-H-(Z)], 9.93 [br. m, 1 H, NH-(Z)] ppm. ¹³C NMR [125.8 MHz, CDCl₃, (Z) isomer only]: δ = 46.89 (CH₂-Ph), 52.53 (CH₂NH), 86.81 (=CH-pur), 126.96 (CH-Ph), 127.40 (CH-Ph), 127.61 (CH-Ph), 128.27 (CH-Ph), 128.46 (C-5), 128.70 (CH-Ph), 128.98 (CH-Ph), 135.70 (C-i-Ph), 139.23 (C-i-Ph), 140.96 (CH-8), 148.62 (=CH-N), 149.03 (C-4), 151.94 (CH-2), 158.15 (C-6) ppm. EI-MS: m/z (rel.%) = 341 (100) [M]⁺, 313 (7), 250 (70), 237 (15), 147 (14), 91 (96), 65 (12). HRMS: calcd. for $C_{21}H_{19}N_5$ 341.1640; found 341.1648. IR (CHCl₃): $\tilde{v} =$ $3020, 1632, 1585, 1453, 1325, 1237, 1171, 988, 699 \text{ cm}^{-1}$. C₂₁H₁₉N₅ (341.41): calcd. C 73.88, H 5.61, N 20.51; found C 73.66, H 5.58, N 20.28.

(Z)- and (E)-9-Benzyl-6-[2-(methylamino)vinyl]purine (11h): Reaction time 2 h, yield 76%, red oil. ¹H NMR (500 MHz, CDCl₃): δ = 2.95 [d, $J_{CH3,NH}$ = 5.1 Hz, 3 H, CH_3 -(*E*)], 3.11 [d, $J_{CH3,NH}$ = 4.7 Hz, 3 H, CH₃-(Z)], 4.74 [br. m, 1 H, NH-(E)], 5.39 [s, 4 H, $CH_2Ph-(Z)+(E)$], 5.66 [d, $J_{cis} = 8.1$ Hz, 1 H, =CH-pur-(Z)], 5.86 [d, *J*_{trans} = 13.3 Hz, 1 H, =CH-pur-(*E*)], 6.82 [dd, *J*_{CH,NH} = 12.6 Hz, $J_{cis} = 8.1 \text{ Hz}, 1 \text{ H}, = \text{CH-N-}(Z)$], 7.24–7.37 (m, 10 H, H-Ph), 7.82 [s, 1 H, 8-H-(Z)], 7.83 [s, 1 H, 8-H-(E)], 8.46 [dd, $J_{trans} = 13.3$ Hz, $J_{\text{CH,NH}} = 7.4 \text{ Hz}, 1 \text{ H}, = \text{CH-N-}(E)$], 8.62 [s, 1 H, 2-H-(E)], 8.64 [s, 1 H, 2-H-(Z)], 9.40 [br. m, 1 H, NH-(Z)]. ¹³C NMR (125.8 MHz, $CDCl_3$): $\delta = 30.50 [CH_3-(E)], 35.26 [CH_3-(Z)], 46.88 [CH_2Ph-(Z)]$ +(*E*)], 85.85 [=CH-pur-(*Z*)], 91.86 [=CH-pur-(*E*)], 127.34 [C-5-(*Z*)], 127.63 [CH-o-Ph-(Z)], 127.68 [CH-o-Ph-(E)], 127.76 [C-5-(E)], 128.27 [CH-p-Ph-(Z)], 128.30 [CH-p-Ph-(E)], 128.99 [CH-m-Ph-(Z)], 129.01 [CH-m-Ph-(Z)], 135.74 [C-i-Ph-(Z)+(E)], 140.76 [CH-8-(Z)], 141.20 [CH-8-(E)], 147.23 [=CH-N-(E)], 148.84 [C-4-(Z)], 149.91 [=CH-N-(Z)], 150.03 [C-4-(E)], 151.91 [CH-2-(Z)], 152.65 [CH-2-(E)], 157.54 [C-6-(E)], 158.28 [C-6-(Z)] ppm. EI-MS: m/z (rel. %) 265 (14) [M]⁺, 252 (24), 235 (8), 224 (32), 161 (10), 147 (7), 91 (100), 65 (15). HRMS: calcd. for C₁₅H₁₅N₅ 265.1327; found 265.1339. IR (CHCl₃): $\tilde{v} = 3469$, 3431, 3299, 3092, 3068, 3036, 2986, 2823, 1585, 1573, 1562, 1510, 1498, 1454, 1429, 1407, 1325, 1151, 811, 648 cm⁻¹.

(*E*)-6-[2-(Piperidine-1-yl)vinyl]-9-(tetrahydropyran-2-yl)purine (10a): Reaction time 2 d, yield 59%, brown solid, m.p. 135–147 °C. ¹H NMR (400 MHz, CDCl₃): δ = 1.61–1.86 (m, 9 H, CH₂-pip and CH₂-THP), 2.00–2.14 (m, 3 H, CH₂-THP), 3.38 (m, 4 H, CH₂Npip), 3.79 (td, *J* = 11.6, 2.5 Hz, 1 H, bCH₂O-THP), 4.17 (ddt, *J* = 11.6, 4.1, 2.2 Hz, 1 H, aCH₂O-THP), 5.73 (dd, *J* = 9.9, 2.9 Hz, 1 H, CHO-THP), 5.82 (d, *J*_{trans} = 13.1 Hz, 1 H, =CH-pur), 8.04 (s, 1 H, 8-H), 8.20 (br. d, *J*_{trans} = 13.1 Hz, 1 H, =CH-N), 8.54 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 22.96 (CH₂-THP), 24.27 (CH₂-pip), 24.98 (CH₂-THP), 25.64 (CH₂-pip), 31.87 (CH₂-THP), 49.75 (CH₂N-pip), 68.82 (CH₂O-THP), 81.57 (CHO-THP), 89.64 (=CH-pur), 127.61 (C-5), 138.59 (CH-8), 148.59 (=CH-N), 149.00 (C-4), 152.58 (CH-2), 157.90 (C-6) ppm. EI-MS: *m/z* (rel.%) = 313 (67) [M]⁺, 228 (100), 213 (17), 173 (12), 160 (20), 147 (52),

134 (35), 119 (18), 96 (25), 83 (25). HRMS: calcd. for $C_{17}H_{23}N_5O$ 313.1902; found 313.1891. IR (CHCl₃): $\tilde{v} = 2947$, 1623, 1586, 1497, 1441, 1399, 1362, 1246, 1058, 1045, 979, 915, 816, 648 cm⁻¹.

(E)-6-[2-(Morpholine-4-yl)vinyl]-9-(tetrahydropyran-2-yl)purine (10b): Reaction time 2 d, yield 45%, yellow crystal, m.p. 171-173 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.61–1.84 (2×m, 6 H, CH₂-THP), 2.01-2.15 (2×m, 6 H, CH2-THP), 3.40 (m, 4 H, CH2-N), 3.77 (m, 4 H, CH₂-O), 3.79 (td, J = 11.7, 2.5 Hz, 1 H, bCH₂O-THP), 4.18 (ddt, J = 11.7, 4.4, 1.9 Hz, 1 H, aCH₂O-THP), 5.74 (dd, J = 10.2, 2.6 Hz, 1 H, CHO-THP), 5.88 (d, J_{trans} = 13.3 Hz, 1 H, =CH-pur), 8.08 (s, 1 H, 8-H), 8.17 (d, J_{trans} = 13.3 Hz, 1 H, =CH-N), 8.59 (s, 1 H, 2-H) ppm. ¹³C NMR (125.8 MHz, CDCl₃): $\delta = 22.87$ (CH₂-THP), 24.90 (CH2-THP), 31.80 (CH2-THP), 48.74 (CH2-N), 66.31 (CH2-O), 68.79 (CH₂O-THP), 81.59 (CHO-THP), 91.68 (=CH-pur), 128.00 (C-5), 139.13 (CH-8), 148.21 (=CH-N), 149.28 (C-4), 152.48 (CH-2), 157.13 (C-6) ppm. EI-MS: m/z (rel.%) = 315 (60) [M]⁺, 230 (100), 201 (45), 186 (17), 174 (28), 147 (45), 134 (25), 119 (13), 85 (20). HRMS: calcd. for C₁₆H₂₁N₅O₂ 315.1695; found 315.1689. IR $(CHCl_3)$: $\tilde{v} = 2974, 2862, 1626, 1588, 1572, 1429, 1170, 1116, 1085,$ 1045, 980, 914, 867, 821, 648 cm⁻¹.

(E)-6-[2-(Dibutylamino)vinyl]-9-(tetrahydropyran-2-yl)purine (10c): Reaction time 2 d, yield 81%, brown oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.95$ (t, $J_{\text{vic}} = 7.3$ Hz, 6 H, $CH_3CH_2CH_2CH_2$), 1.36 (m, 4 H, CH₃CH₂CH₂CH₂), 1.58–1.87 (m, 7 H, CH₃CH₂CH₂CH₂ and CH₂-THP), 1.99–2.14 (m, 3 H, CH₂-THP), 3.28 (m, 4 H, $CH_3CH_2CH_2CH_2$), 3.79 (td, J = 11.7, 2.5 Hz, 1 H, bCH₂O-THP), 4.17 (ddt, J = 11.7, 4.3, 1.4 Hz, 1 H, aCH₂O-THP), 5.71 (d, $J_{trans} =$ 13.1 Hz, 1 H, =CH-pur), 5.73 (dd, J = 9.8, 2.8 Hz, 1 H, CHO-THP), 8.04 (s, 1 H, 8-H), 8.30 (br. d, J_{trans} = 13.1 Hz, 1 H, =CH-N), 8.53 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 13.84 (CH₃CH₂CH₂CH₂), 20.13 (CH₃CH₂CH₂CH₂), 22.90 (CH₂-THP), 24.93 (CH₂-THP), 28.80 $(CH_3CH_2CH_2CH_2),$ 31.59 (CH₃CH₂CH₂CH₂), 31.86 (CH₂-THP), 47.94 (CH₃CH₂CH₂CH₂), 56.03 (CH₃CH₂CH₂CH₂), 68.76 (CH₂O-THP), 81.49 (CHO-THP), 89.64 (=CH-pur), 127.34 (C-5), 138.41 (CH-8), 148.73 (=CH-N), 148.91 (C-4), 152.57 (CH-2), 157.87 (C-6) ppm. EI-MS: m/z (rel.%) $= 357 (96) [M]^+, 314 (10), 273 (100), 256 (18), 244 (65), 244 (65), 230$ (70), 216 (65), 174 (26), 160 (22), 149 (47), 134 (45), 85 (20). HRMS: calcd. for $C_{20}H_{31}N_5O$ 357.2529; found 357.2524. IR (CHCl₃): \tilde{v} = 2961, 2934, 1622, 1584, 1429, 1369, 1085, 1045, 980, 914, 814, 648 $\mathrm{cm}^{-1}.$

(E)-6-[2-(Diethylamino)vinyl]-9-(tetrahydropyran-2-yl)purine (10d): Reaction time 1 d, yield 81%, red oil. ¹H NMR (500 MHz, CDCl₃): δ = 1.25 (t, $J_{\rm vic}$ = 7.2 Hz, 6 H, CH₃), 1.61–1.84 (2×m, 6 H, CH₂-THP), 2.00–2.14 (2×m, 6 H, CH₂-THP), 3.37 (q, J_{vic} = 7.2 Hz, 4 H, CH₂-N), 3.79 (td, J = 11.7, 2.4 Hz, 1 H, bCH₂O-THP), 4.17 (ddt, J = 11.7, 4.2, 1.9 Hz, 1 H, aCH₂O-THP), 5.73 (dd, J = 10.5, 2.6 Hz, 1 H, CHO-THP), 5.75 (d, J_{trans} = 13.1 Hz, 1 H, =CH-pur), 8.05 (s, 1 H, 8-H), 8.28 (d, J_{trans} = 13.1 Hz, 1 H, =CH-N), 8.54 (s, 1 H, 2-H) ppm. ¹³C NMR (125.8 MHz, CDCl₃): *δ* = 12.09 (CH₃), 14.33 (CH₃), 22.90 (CH2-THP), 24.93 (CH2-THP), 31.85 (CH2-THP), 42.27 (CH2-N), 50.00 (CH₂-N), 68.77 (CH₂O-THP), 81.51 (CHO-THP), 89.38 (=CH-pur), 127.35 (C-5), 138.48 (CH-8), 147.75 (=CH-N), 148.90 (C-4), 152.50 (CH-2), 157.76 (C-6) ppm. EI-MS: m/z (rel.%) = 301 (42) $[M]^+$, 217 (70), 202 (12), 188 (100), 174 (18), 160 (24), 147 (40), 134 (38), 119 (12), 84 (12). HRMS: calcd. for C₁₆H₂₃N₅O 301.1902; found 301.1889. IR (CHCl₃): \tilde{v} = 2978, 2868, 1623, 1569, 1430, 1360, 1259, 1084, 1054, 981, 814, 648 cm⁻¹.

(*E*)-6-[2-(Dimethylamino)vinyl]-9-(tetrahydropyran-2-yl)purine (10e): Reaction time 4 d, yield 64%, white solid, m.p. 167–168 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.60-1.85$ (2×m, 6 H, CH₂-THP), 2.00–2.15 (2×m, 6 H, CH₂-THP), 3.05 (br. s, 6 H, CH₃), 3.79 (2×m, 2 H, CH₂O-THP), 4.17 (2×m, 2 H, CH₂O-THP), 5.69 (d, J_{trans} = 13.0 Hz, 1 H, =CH-pur), 5.73 (dd, J = 9.8, 3.0 Hz, 1 H, CHO-THP), 8.06 (s, 1 H, 8-H), 8.26 (d, J_{trans} = 13.0 Hz, 1 H, =CH-N), 8.55 (s, 1 H, 2-H) ppm. ¹³C NMR (100.4 MHz, CDCl₃): δ = 22.88 (CH₂-THP), 24.90 (CH₂-THP), 31.79 (CH₂-THP), 42.44 (CH₃), 68.75 (CH₂O-THP), 81.51 (CHO-THP), 90.38 (=CH-pur), 127.54 (C-5), 138.61 (CH-8), 149.03 (C-4), 149.56 (=CH-N), 152.53 (CH-2), 157.50 (C-6) ppm. EI-MS: m/z (rel.%) = 273 (48) [M]⁺, 189 (100), 174 (50), 162 (32), 147 (40), 134 (30), 119 (18), 96 (25). HRMS: calcd. for C₁₄H₁₉N₅O 273.1589; found 273.1583. IR (CHCl₃): \tilde{v} = 2952, 1633, 1587, 1413, 1389, 1230, 1085, 1045, 980, 915, 665, 648 cm⁻¹.

(Z)- and (E)-6-[2-(Cyclohexylamino)vinyl]-9-(tetrahydropyran-2-yl)purine (12f): Reaction time 2 d, yield 73%, red oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.20-1.49$ [3×m, 32 H, CH₂-chex-(Z)+(E) and CH₂-THP-(Z)+(E)], 1.58-1.86 [3×m, 32 H, CH₂-chex-(Z)+(E) and CH₂-THP-(Z)+(E)], 1.97-2.16 [3×m, 32 H, CH₂-chex-(Z)+(E) and CH₂-THP-(Z)+(E)], 3.15 [m, 1 H, CHNH-(Z)], 3.38 [m, 1 H, CHNH-(E)], 3.79 [td, J = 11.7, 2.5 Hz, 2 H, bCH₂O-THP-(Z)+(E)], 4.17 [ddt, J = 11.7, 4.5, 1.8 Hz, 2 H, aCH₂O-THP-(Z)+(E)], 4.65 [br. m, 1 H, NH-(*E*)], 5.63 [d, *J*_{cis} = 8.1 Hz, 1 H, =CH-pur-(*Z*)], 5.73 [dd, *J* = 9.8, 2.9 Hz, 2 H, CHO-THP-(Z)+(E)], 5.88 [d, $J_{trans} = 13.4$ Hz, 1 H, =CH-pur-(E)], 6.92 [dd, $J_{CH,NH}$ = 12.9 Hz, J_{cis} = 8.1 Hz, 1 H, =CH-N-(Z)], 8.06 [s, 1 H, 8-H-(Z)+(E)], 8.35 [dd, $J_{trans} = 13.4$ Hz, $J_{CH,NH}$ = 8.8 Hz, 1 H, =CH-N-(E)], 8.57 [s, 1 H, 2-H-(E)], 8.62 [s, 1 H, 2-H-(Z)], 9.62 [br. m, 1 H, NH-(Z)] ppm. ¹³C NMR [100.6 MHz, CDCl₃, (Z) isomer only]: δ = 22.88 (CH2-THP), 24.65 (CH₂-chex), 24.91 (CH2-THP), 235.50 (CH2-chex), 31.88 (CH2-THP), 34.37 (CH2-chex), 56.97 (CHNH), 68.74 (CH2O-THP), 81.50 (CHO-THP), 85.54 (=CH-pur), 127.39 (C-5), 138.38 (CH-8), 146.78 (=CH-N), 147.85 (C-4), 151.83 (CH-2), 158.27 (C-6) ppm. EI-MS: m/z $(rel. \%) = 327 (30) [M]^+, 243 (100), 214 (8), 200 (30), 186 (18), 173$ (12), 160 (34), 147 (30), 134 (28), 119 (18), 97 (20), 83 (16). HRMS: calcd. for $C_{18}H_{25}N_5O$ 327.2059; found 327.2047. IR (CHCl₃): $\tilde{v} =$ 2936, 2858, 1632, 1585, 1450, 1327, 1085, 1045, 975, 913, 876, 811, 667 cm^{-1} .

(Z)- and (E)-6-[2-(Benzylamino)vinyl]-9-(tetrahydropyran-2-yl)purine (12g): Reaction time 1 d, yield 85%, brown oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.57-1.86$ [2 ×m, 12 H, CH2-THP-(Z)+(E)], 1.99-2.14 [2 ×m, 12 H, CH2-THP-(Z)+(E)], 3.78 [2×m, 2×2 H, CH₂O-THP-(Z)+(E)], 4.43 [d, $J_{CH2,NH} = 5.4$ Hz, 2 H, $CH_2NH-(E)$], 4.51 [d, J_{CH2,NH} = 6.0 Hz, 2 H, CH₂NH-(Z)],4.96 [br. m, 1 H, NH-(E)], 5.72-5.76 [m, 3 H, =CH-pur-(Z) and CHO-THP-(Z)+(E)], 5.97 [d, J_{trans} = 13.4 Hz, 1 H, =CH-pur-(*E*)], 6.91 [dd, $J_{CH,NH}$ = 12.5 Hz, J_{cis} = 8.2 Hz, 1 H, =CH-N-(Z)], 7.26–7.39 [m, 10 H, Ph-(Z)+(E)], 8.09 [s, 1 H, 8-H-(Z)+(E)], 8.49 [dd, J_{trans} = 13.3 Hz, $J_{CH,NH}$ = 8.0 Hz, 1 H, =CH-N-(E)], 8.60 [s, 1 H, 2-H-(E)], 8.62 [s, 1 H, 2-H-(Z)], 9.88 [br. m, 1 H, NH-(Z)] ppm. ¹³C NMR [100.6 MHz, CDCl₃, (Z) isomer only]: $\delta = 22.87$ (CH₂-THP), 24.90 (CH₂-THP), 31.84 (CH₂-THP), 52.53 (CH₂NH), 68.75 (CH₂O-THP), 81.57 (CHO-THP), 86.88 (=CH-pur), 126.99 (CH-o-Ph), 127.41 (CH-p-Ph), 127.65 (C-5), 128.71 (CH-m-Ph), 138.79 (CH-8), 139.22 (C-i-Ph), 148.17 (C-4), 148.60 (=CH-N), 151.78 (CH-2), 158.17 (C-6) ppm. EI-MS: m/z $(rel. \%) = 335 (28) [M]^+, 251 (100), 234 (7), 195 (35), 160 (27), 147$ (20), 135 (17), 117 (7), 106 (35), 91 (65), 85 (8). HRMS: calcd. for $C_{19}H_{21}N_5O$ 335.1746; found 335.1739. IR (CHCl₃): $\tilde{v} = 2952$, 1635, 1587, 1447, 1327, 1261, 1171, 1085, 1045, 977, 913, 876, 812, 699, 648 cm^{-1} .

(*Z*)- and (*E*)-6-[2-(Methylamino)vinyl]-9-(tetrahydropyran-2-yl)purine (12h): Reaction time 2 h, yield 94%, brown oil. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.58-1.84$ [2×m, 12 H, CH₂-THP-(*Z*)+(*E*)], 2.00–2.15 [2×m, 12 H, CH₂-THP-(*Z*)+(*E*)], 2.96 [d, $J_{CH3,NH} = 5.2$ Hz, 3 H, CH₃-(*E*)], 3.11 [d, $J_{CH3,NH} = 4.8$ Hz, 3 H, CH₃-(*Z*)], 3.79 [m, 2 H, bCH₂O-THP-(Z)+(E)], 4.17 [m, 2 H, aCH₂O-THP-(Z)+(E)], 4.74 [br. m, 1 H, NH-(E)], 5.65 [d, J_{cis} = 8.1 Hz, 1 H, =CH-pur-(Z)], 5.74 [dd, J = 9.9, 3.0 Hz, 1 H, CHO-THP-(Z)], 5.75 [dd, J = 10.3, 2.6 Hz]1 H, CHO-THP-(*E*)], 5.85 [d, J_{trans} = 13.3 Hz, 1 H, =CH-pur-(*E*)], 6.81 [dd, $J_{\text{CH,NH}}$ = 12.6 Hz, J_{cis} = 8.1 Hz, 1 H, =CH-N-(Z)], 8.07 [s, 1 H, 8-H-(Z)], 8.08 [s, 1 H, 8-H-(E)], 8.43 [dd, $J_{trans} = 13.3$ Hz, $J_{\text{CH,NH}} = 7.4 \text{ Hz}, 1 \text{ H}, = \text{CH-N-}(E)$], 8.59 [s, 1 H, 2-H-(E)], 8.62 [s, 1 H, 2-H-(Z)], 9.35 [br. m, 1 H, NH-(Z)] ppm. ¹³C NMR (125.8 MHz, $CDCl_3$): $\delta = 22.89 [CH_2-THP-(Z)+(E)], 24.92 [CH_2-THP-(Z)+(E)],$ 30.50 [CH₃-(*E*)], 31.82 (CH₂-THP- (*E*)), 31.84 (CH₂-THP-(*Z*)), 35.22 (CH₃-(Z)), 68.74 (CH₂O-THP-(E)), 68.77 [CH₂-THP-(Z)], 81.57 [CHO-THP-(Z)+(E)], 85.93 [=CH-pur-(Z)], 91.90 [=CH-pur-(E)],127.47 [C-5-(Z)], 127.85 [C-5-(E)], 138.58 [CH-8-(Z)], 138.98 [CH-8-(E)], 147.02 [=CH-N-(E)], 148.03 [C-4-(Z)], 149.36 [C-4-(E)], 149.88 [=CH-N-(Z)], 151.74 [CH-2-(Z)], 152.56 [CH-2-(E)], 157.61 [C-6-(E)], 158.31 [C-6-(*E*)] ppm. EI-MS: *m*/*z* (rel.%) = 259 (50) [M]⁺, 235 (12), 175 (100), 160 (26), 148 (30), 134 (10), 119 (12), 85 (22). HRMS: calcd. for $C_{13}H_{17}N_5O$ 259.1433; found 259.1428. IR (CHCl₃): $\tilde{v} =$ 3469, 2952, 1634, 1587, 1509, 1450, 1409, 1327, 1281, 1232, 1085, 1045, 972, 914, 876, 812, 666, 648 cm⁻¹.

General Method for the Nucleophilic Additions of Alcoholates and Thiolates

6-Ethynylpurine 7 or 8 (2.13 mmol) or 6-vinylpurine 1 or 2 (2.13 mmol) was stirred with the particular alcoholate or thiolate in a solvent at room temperature. After completion, the reaction mixture was diluted with H₂O (50 mL), washed with ethyl acetate (3×50 mL) and brine. The organic layer was dried with anhydrous MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, ethyl acetate).

9-Benzyl-6-[2-(methoxy)ethyl]purine (5a):^[14] The reaction was performed in MeOH (5 mL) with the addition of 1 M methanolic Na-OMe (0.5 mL, 0.5 mmol), reaction time 2 d, yield 55%, colourless oil. ¹H NMR (400 MHz, CDCl₃): δ = 3.37 (s, 3 H, OCH₃), 3.49 (t, $J_{\rm vic}$ = 6.6 Hz, 2 H, CH₂-pur), 4.00 (t, $J_{\rm vic}$ = 6.6 Hz, 2 H, CH₂-O), 5.44 (s, 2 H, CH2-Ph), 7.29-7.40 (m, 5 H, Ph), 8.01 (s, 1 H, 8-H), 8.94 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 33.47 (CH₂-pur), 47.26 (CH₂-Ph), 58.68 (OCH₃), 70.47 (CH₂-O), 127.90 (CH-o-Ph), 128.60 (CH-p-Ph), 129.13 (CH-m-Ph), 133.03 (C-5), 135.11 (C-i-Ph), 143.71 (CH-8), 150.86 (C-4), 152.60 (CH-2), 159.88 (C-6) ppm. EI-MS: m/z (rel. %) = 268 (7) [M]⁺, 253 (60), 238 (8), 225 (5), 147 (10), 91 (100), 65 (12), 45 (14). HRMS: calcd. for C₁₅H₁₆N₄O 268.1324; found 268.1331. IR (CHCl₃): \tilde{v} = 2992, 1597, 1500, 1456, 1407, 1382, 1332, 1231, 1194, 1160, 1112, 950, 879, 822, 752, 699, 648 cm⁻¹. C₁₅H₁₆N₄O (368.31): calcd. C 67.15, H 6.01, N 20.88; found C 66.51, H 5.91, N 21.54.

9-Benzyl-6-[2-(ethoxy)ethyl]purine (5b): The reaction was performed in THF (5 mL) and EtOH (2 mL) with the addition of NaH (30 mg), reaction time 1 d, yield 50%, white crystals, m.p. 57-59.5 °C. 1H NMR (400 MHz, CDCl₃): δ = 1.15 (t, J_{vic} = 7.0 Hz, 3 H, CH₃), 3.52 (t, J_{vic} = 6.9 Hz, 2 H, CH₂-pur), 3.55 (q, J_{vic} = 7.0 Hz, 2 H, CH₂-O), 4.02 (t, J_{vic} = 6.9 Hz, 2 H, CH₂-O), 5.44 (s, 2 H, CH₂-Ph), 7.29-7.40 (m, 5 H, Ph), 8.01 (s, 1 H, 8-H), 8.93 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 15.10 (CH₃), 33.67 (CH₂-pur), 47.30 (CH2-Ph), 66.13 (CH2-O), d 68.30 (CH2-O), 127.91 (CH-o-Ph), 128.63 (CH-p-Ph), 129.17 (CH-m-Ph), 132.51 (C-5), 135.14 (C-i-Ph), 143.72 (CH-8), 152.56 (CH-2), 152.94 (C-4), 159.95 (C-6) ppm. FAB-MS: m/z (rel.%) = 283 (100) [M+H]⁺ (cation), 237 (8), 193 (8), 147 (10), 91 (82). HRMS: calcd. for C₁₆H₁₉N₄O [M+H]⁺ 283.1558; found 283.1559. IR (CHCl₃): \tilde{v} = 3036, 2980, 2872, 1596, 1500, 1456, 1407, 1332, 1232, 1195, 1107, 726, 699, 666, 648 cm⁻¹. C₁₆H₁₈N₄O (284.38): calcd. C 68.06, H 6.43, N 19.84; found C 68.03, H 6.28, N 19.56.

9-Benzyl-6-[2-(benzyloxy)ethyl]purine (5c): The reaction was performed in THF (5 mL) and benzyl alcohol (1 mL) with the addition of NaH (30 mg), reaction time 2 d, yield 61%, yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 3.54 (t, J_{vic} = 6.7 Hz, 2 H, CH₂-pur), 4.08 (t, J_{vic} = 6.7 Hz, 2 H, CH₂-Q), 4.56 (s, 2 H, O-CH₂-Ph), 5.44 (s, 2 H, N-CH₂-Ph), 7.19–7.40 (m, 10 H, 2 × Ph), 8.00 (s, 1 H, 8-H), 8.93 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 33.63 (CH₂-pur), 47.25 (N-CH₂-Ph), 68.01 (CH₂-Q), 72.73 (O-CH₂-Ph), 127.43 (CH-Ph), 127.59 (CH-Ph), 133.03 (C-5), 135.14 (C-*i*-Ph), 138.27 (C-*i*-Ph), 143.68 (CH-8), 150.85 (C-4), 152.56 (CH-2), 159.87 (C-6) ppm. FAB-MS: *m*/*z* (rel.%) = 345 (30) [M+H]⁺ (cation), 237 (8), 147 (8), 91 (100). HRMS: calcd. for C₂₁H₂₁N₄O [M+H]⁺ 345.1715; found 345.1730. IR (CHCl₃): \tilde{v} = 3010, 1597, 1499, 1456, 1407, 1332, 1233, 1195, 1097, 1029, 970, 879, 699, 649 cm⁻¹.

9-Benzyl-6-[2-(methylsulfanyl)ethyl]purine (5d): The reaction was performed in a mixture of H₂O/EtOH (1:1, 10 mL) with the addition of NaSMe (304 mg, 4.3 mmol), reaction time 1 h, yield 81%, yellow crystals. M.p. 85–88.5 °C. ¹H NMR (500 MHz, CDCl₃): δ = 3.19 (s, 3 H, CH₃), 3.11 (m, 2 H, CH₂-S), 3.52 (m, 2 H, CH₂-pur), 5.44 (s, 2 H, CH₂-Ph), 7.30–7.40 (m, 5 H, Ph), 8.01 (s, 1 H, 8-H), 8.94 (s, 1 H, 2-H) ppm. ¹³C NMR (125.8 MHz, CDCl₃): δ = 15.50 (CH₃), 32.11 (CH₂-S), 32.79 (CH₂-pur), 47.31 (CH₂-Ph), 127.91 (CH-*o*-Ph), 128.62 (CH-*p*-Ph), 129.16 (CH-*m*-Ph), 132.74 (C-5), 135.08 (C-*i*-Ph), 143.75 (CH-8), 150.97 (C-4), 152.62 (CH-2), 160.49 (C-6). FAB-MS: *m/z* (rel.%) = 285 (95) [M+H]⁺ (cation), 237 (17), 147 (10), 91 (100). HRMS: calcd. for C₁₅H₁₇N₄S [M+H]⁺ 285.1173; found 285.1181. IR (CHCl₃): $\tilde{\nu}$ = 3092, 3036, 2991, 2921, 1596, 1499, 1456, 1438, 1406, 1332, 1234, 1196, 725, 700, 648 cm⁻¹. C₁₅H₁₆N₄S (284.38): calcd. C 63.35, H 5.67, N 19.7, found C 63.56, H 5.62, N 19.52.

9-Benzyl-6-[2-(benzylsulfanyl)ethyl]purine (5e): The reaction was performed in THF (10 mL) and benzylthiol (0.3 mL, 2.6 mmol) with the addition of NaH (30 mg), reaction time 4 h, yield 96%, yellow crystals, m.p. 69–70.5 °C. ¹H NMR (500 MHz, CDCl₃): δ = 3.04 (t, J_{vic} = 7.3 Hz, 2 H, CH₂-S), 3.50 (t, J_{vic} = 7.3 Hz, 2 H, CH₂-pur), 3.79 (s, 2 H, SCH₂-Ph), 5.43 (s, 2 H, NCH₂-Ph), 7.21 (2×m, 10 H, 2×Ph), 7.25-7.40 (2×m, 10 H, 2×Ph), 8.00 (s, 1 H, 8-H), 8.92 (s, 1 H, 2-H) ppm. ¹³C NMR (125.8 MHz, CDCl₃): δ = 29.27 (CH₂-S), 32.78 (CH₂-pur), 36.14 (SCH₂-Ph), 47.32 (NCH₂-Ph), 126.90 (CH-Ph), 127.92 (CH-Ph), 128.45 (CH-Ph), 128.64 (CH-Ph), 128.91 (CH-Ph), 129.17 (CH-Ph), 132.77 (C-5), 135.11 (C-i-Ph), 138.24 (C-i-Ph), 141.73 (CH-8), 150.96 (C-4), 152.59 (CH-2), 160.42 (C-6) ppm. FAB-MS: m/z (rel. %) = 361 (45) [M + H]⁺ (cation), 269 (15), 137 (15), 147 (12), 91 (100). HRMS: calcd. for $C_{21}H_{21}N_4S$ [M+H]⁺ 361.1486; found 361.1500. IR (CHCl₃): \tilde{v} = 3034, 2993, 1596, 1498, 1455, 1406, 1332, 1235, 1196, 701, 667, 648 cm⁻¹. C₁₈H₂₀N₄S (360.48): calcd. C 67.97, H 5.59, N 15.54; found C 69.78, H 5.39, N 15.26.

9-Benzyl-6-(2-sulfanylethyl)purine (5f): The reaction was performed in a mixture of H₂O/EtOH (1:1, 8 mL) with the addition of NaSH (168 mg, 3 mmol), reaction time 1 d, yield 95%, yellow solid, m.p. 114–117 °C. ¹H NMR (500 MHz, CDCl₃): δ = 3.22 (t, *J* = 7.9 Hz, 2 H, CH₂-SH), 3.54 (t, *J* = 7.9 Hz, 2 H, CH₂-pur), 5.44 (s, 2 H, CH₂-Ph), 7.29–7.39 (m, 5 H, Ph), 7.99 (s, 1 H, 8-H), 8.92 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 29.82 (CH₂-NH), 33.08 (CH₂-pur), 47.28 (CH₂-Ph), 127.88 (CH-*o*-Ph), 128.60 (CH-*p*-Ph), 129.15 (CH-*m*-Ph), 132.66 (C-5), 135.05 (C-*i*-Ph), 143.77 (CH-8), 150.91 (C-4), 152.59 (CH-2), 160.40 (C-6) ppm. FAB-MS: *mlz* (rel.%) = 271 (15) [M+H]⁺ (cation), 237 (30), 147 (10), 91 (100). HRMS: calcd. for C₁₄H₁₅N₄S [M+H]⁺ 271.1017; found 271.1008. IR (CHCl₃): \tilde{v} = 3069, 2992, 1596, 1499, 1456, 1406, 1332, 1234, 1196, 700, 666, 648 cm⁻¹.

6-[2-(Methoxy)ethyl]-9-(tetrahydropyran-2-yl)purine (6a): The reaction was performed in MeOH (5 mL) with the addition of 1 M methanolic

NaOMe (0.5 mL, 0.5 mmol), reaction time 2 d, yield 81%, yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 1.63–1.88 (2×m, 6 H, CH₂-THP), 2.02–2.19 (2×m, 6 H, CH₂-THP), 3.36 (s, 3 H, CH₃O), 3.48 and 3.49 (dt, J_{gem} = 14.1 Hz, J_{vic} = 6.6 Hz, 2 H, CH₂-pur), 3.80 (td, J = 11.6, 2.6 Hz, 1 H, bCH₂O-THP), 3.98 (t, J_{vic} = 6.6 Hz, 2 H, CH₂-O), 4.19 (ddt, J = 11.6, 4.2, 1.9 Hz, 1 H, aCH₂O-THP), 5.80 (dd, J = 10.0, 2.8 Hz, 1 H, CHO-THP), 8.25 (s, 1 H, 8-H), 8.91 (s, 1 H, 2-H) ppm.¹³C NMR (100.6 MHz, CDCl₃): δ = 22.82 (CH₂-THP), 24.89 (CH₂-THP), 31.84 (CH₂-THP), 33.57 (CH₂-pur), 58.71 (CH₃O), 68.88 (CH₂O-THP), 70.53 (CH₂-O), 81.96 (CHO-THP), 133.24 (C-5), 141.76 (CH-8), 150.08 (C-4), 152.44 (CH-2), 159.98 (C-6). EI-MS: *m*/*z* (rel.%) = 262 (28) [M]⁺, 247 (70), 232 (10), 178 (68), 163 (100), 147 (50), 135 (42), 85 (60), 45 (24). HRMS: calcd. for C₁₃H₁₈N₄O₂ 262.1430; found 262.1439. IR (CHCl₃): \tilde{v} = 2989, 2866, 1599, 1497, 1442, 1410, 1334, 1250, 1112, 1086, 1045, 992, 912, 648 cm⁻¹.

6-[2-(Ethoxy)ethyl]-9-(tetrahydropyran-2-yl)purine (6b): The reaction was performed in THF (5 mL) and EtOH (2 mL) with the addition of NaH (30 mg), reaction time 1 d, yield 67%, yellow oil. ¹H NMR (500 MHz, CDCl₃): δ = 1.15 (t, J_{vic} = 7.0 Hz, 3 H, CH₃CH₂O), 1.63– 1.87 (2×m, 6 H, CH₂-THP), 2.03–2.18 (2×m, 6 H, CH₂-THP), 3.55 (t, $J_{\rm vic}$ = 6.9 Hz, 2 H, CH₂-pur), 3.54 (q, $J_{\rm vic}$ = 7.0 Hz, 2 H, CH_3CH_2O), 3.80 (td, J = 11.7, 2.6 Hz, 1 H, b CH_2O -THP), 4.01 (t, $J_{\text{vic}} = 6.9 \text{ Hz}, 2 \text{ H}, \text{ CH}_2\text{-O}, 4.18 \text{ (ddt, } J = 11.7, 4.3, 2.0 \text{ Hz}, 1 \text{ H},$ aCH₂O-THP), 5.80 (dd, J = 10.2, 2.8 Hz, 1 H, CHO-THP), 8.24 (s, 1 H, 8-H), 8.89 (s, 1 H, 2-H) ppm. ¹³C NMR (125.8 MHz, CDCl₃): δ = 15.08 (CH₃CH₂O), 22.80 (CH₂-THP), 24.88 (CH₂-THP), 31.81 (CH₂-THP), 33.76 (CH₂-pur), 66.09 (CH₃CH₂O), 68.29 (CH₂-O), 68.84 (CH2O-THP), 81.95 (CHO-THP), 133.21 (C-5), 141.62 (CH-8), 150.00 (C-4), 152.39 (CH-2), 160.03 (C-6) ppm. FAB-MS: m/z $(rel.\%) = 277 (50) [M+H]^+ (cation), 193 (100), 147 (25). HRMS:$ calcd. for C₁₄H₂₁N₄O₂ [M+H]⁺ 277.1664; found 277.1659. IR $(CHCl_3)$: $\tilde{v} = 2980, 2868, 1598, 1496, 1409, 1334, 1106, 1045, 913,$ 648 cm⁻¹.

6-[2-(Benzyloxy)ethyl]-9-(tetrahydropyran-2-yl)purine (6c): The reaction was performed in THF (5 mL) and benzyl alcohol (1 mL) with the addition of NaH (30 mg), reaction time 2 d, yield 49%, yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 1.63–1.88 (2×m, 6 H, CH₂-THP), 2.02–2.19 (2×m, 6 H, CH₂-THP), 3.53 (dt, $J_{gem} = 14.1$ Hz, $J_{\rm vic}$ = 6.8 Hz, 2 H, CH₂-pur), 3.54 (dt, $J_{\rm gem}$ = 14.1 Hz, $J_{\rm vic}$ = 6.8 Hz, 2 H, CH₂-pur), 3.80 (td, J = 11.8, 2.6 Hz, 1 H, bCH₂O-THP), 4.07 (t, J_{vic} = 6.8 Hz, 2 H, CH₂-O), 4.19 (ddt, J = 11.8, 4.2, 1.9 Hz, 1 H, aCH₂O-THP), 4.55 (s, 2 H, CH₂-Ph), 5.80 (dd, J = 10.0, 2.9 Hz, 1 H, CHO-THP), 7.21-7.32 (m, 5 H, Ph), 8.25 (s, 1 H, 8-H), 8.90 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 22.78 (CH₂-THP), 24.85 (CH2-THP), 31.80 (CH2-THP), 33.67 (CH2-pur), 68.00 (CH2-O), 68.84 (CH₂O-THP), 72.75 (CH₂-Ph), 81.92 (CHO-THP), 127.44 (CH-p-Ph), 127.61 (CH-o-Ph), 128.25 (CH-m-Ph), 133.19 (C-5), 138.25 (C-i-Ph), 141.68 (CH-8), 150.02 (C-4), 152.35 (CH-2), 159.90 (C-6) ppm. FAB-MS: m/z (rel. %) = 339 (40) [M+H]⁺ (cation), 255 (95), 147 (40), 91 (100). HRMS: calcd. for $C_{19}H_{23}N_4O_2$ [M+H]⁺ 339.1821; found 339.1830. IR (CHCl₃): $\tilde{v} = 2984$, 2953, 2865, 1599, 1497, 1455, 1410, 1363, 1334, 1254, 1207, 1087, 1045, 992, 912, 875, 698, 648, 542 cm⁻¹.

6-[2-(Methylsulfanyl)ethyl]-9-(tetrahydropyran-2-yl)purine (6d): The reaction was performed in a mixture of H₂O/EtOH (1:1, 10 mL) with the addition of NaSMe (304 mg, 4.3 mmol), reaction time 2 d, yield 90%, yellow oil. ¹H NMR (500 MHz, CDCl₃): δ = 1.64–1.87 (2×m, 6 H, CH₂-THP), 2.03–2.20 (2×m, 6 H, CH₂-THP), 2.18 (s, 3 H, CH₃), 3.10 (m, 2 H, CH₂-S), 3.52 (m, 2 H, CH₂-pur), 3.80 (td, *J* = 11.7, 2.6 Hz, 1 H, bCH₂O-THP), 4.19 (ddt, *J* = 11.7, 4.3, 1.9 Hz, 1 H, aCH₂O-THP), 5.80 (dd, *J* = 10.1, 2.6 Hz, 1 H, CHO-THP), 8.25 (s, 1 H, 8-H), 8.90 (s, 1 H, 2-H) ppm. ¹³C NMR (125.8 MHz,

CDCl₃): δ = 15.48 (CH₃), 22.77 (CH₂-THP), 24.86 (CH₂-THP), 31.78 (CH₂-THP), 32.09 (CH₂-S), 32.82 (CH₂-pur), 68.83 (CH₂O-THP), 81.98 (CHO-THP), 132.91 (C-5), 141.74 (CH-8), 150.13 (C-4), 152.43 (CH-2), 160.52 (C-6) ppm. FAB-MS: *m/z* (rel.%) = 279 (60) [M + H] ⁺ (cation), 231 (10), 147 (100), 134 (10), 85 (60). HRMS: calcd. for C₁₃H₁₉N₄OS [M+H]⁺ 279.1279; found 279.1273. IR (CHCl₃): \tilde{v} = 2986, 2860, 1597, 1497, 1442, 1409, 1333, 1255, 1086, 1045, 977, 913, 876, 647 cm⁻¹.

6-[2-(Benzylsulfanyl)ethyl]-9-(tetrahydropyran-2-yl)purine (6e): The reaction was performed in THF (10 mL) and benzylthiol (0.3 mL, 2.6 mmol) with the addition of NaH (30 mg), reaction time 4 h, yield 98%, colourless oil. ¹H NMR (400 MHz, CDCl₃): δ = 1.63–1.88 (2×m, 6 H, CH₂-THP), 2.02–2.20 (2×m, 6 H, CH₂-THP), 3.03 (t, $J_{\rm vic}$ = 7.7 Hz, 2 H, CH₂-S), 3.49 (t, $J_{\rm vic}$ = 7.7 Hz, 2 H, CH₂-pur), 3.79 (s, 2 H, CH₂-Ph), 3.80 (td, J = 11.6, 2.6 Hz, 1 H, bCH₂O-THP), 4.19 (ddt, J = 11.6, 4.2, 1.6 Hz, 1 H, aCH₂O-THP), 5.80 (dd, J =10.1, 2.9 Hz, 1 H, CHO-THP), 7.21 (m, 1 H, H-p-Ph), 7.29 (m, 2 H, H-m-Ph), 7.33 (m, 2 H, H-o-Ph), 8.25 (s, 1 H, 8-H), 8.89 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 22.77$ (CH₂-THP), 24.85 (CH2-THP), 29.21 (CH2-S), 31.78 (CH2-THP), 32.76 (CH2pur), 36.07 (CH₂-Ph), 68.84 (CH₂O-THP), 81.95 (CHO-THP), 126.89 (CH-p-Ph), 128.44 (CH-m-Ph), 128.90 (CH-o-Ph), 132.92 (C-5), 138.20 (C-i-Ph), 141.71 (CH-8), 150.10 (C-4), 152.40 (CH-2), 160.43 (C-6) ppm. FAB-MS: m/z (rel. %) = 355 (25) $[M + H]^+$ (cation), 178 (50), 147 (65), 134 (10), 91 (100). HRMS: calcd. for C₁₉H₂₃N₄OS $[M+H]^+$ 355.1592; found 355.1586. IR (CHCl₃): $\tilde{v} = 2988, 2861,$ 1598, 1495, 1454, 1409, 1333, 1240, 1086, 1045, 913, 714, 647 cm⁻¹.

6-(2-Sulfanylethyl)-9-(tetrahydropyran-2-yl)purine (6f): The reaction was performed in a mixture of H₂O/EtOH (1:1, 8 mL) with the addition of NaSH (168 mg, 3 mmol), reaction time 1 h, yield 94%, yellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.60$ (t, J = 8.2 Hz, 1 H, SH), 1.63–1.89 (2×m, 6 H, CH₂-THP), 2.03–2.22 (2×m, 6 H, CH₂-THP), 3.14 (dt, J = 8.2, 7.2 Hz, 2 H, CH₂-S), 3.54 (t, J = 7.2 Hz, 2 H, CH₂-pur), 3.80 (td, J = 11.6, 2.6 Hz, 1 H, bCH₂O-THP), 4.19 $(ddt, J = 11.6, 4.2, 1.7 Hz, 1 H, aCH_2O-THP), 5.81 (dd, J = 10.1, 1.2 Hz)$ 2.9 Hz, 1 H, CHO-THP), 8.27 (s, 1 H, 8-H), 8.91 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 22.57 (CH₂SH), 22.77 (CH₂-THP), 24.84 (CH₂-THP), 31.78 (CH₂-THP), 37.15 (CH₂-pur), 68.86 (CH₂O-THP), 81.97 (CHO-THP), 132.96 (C-5), 141.87 (CH-8), 150.18 (C-4), 152.44 (CH-2), 159.88 (C-6) ppm. FAB-MS: m/z (rel.%) = 265 (20) [M+H]⁺ (cation), 147 (100), 134 (25). HRMS: calcd. for $C_{12}H_{17}N_4OS \ [M+H]^+ \ 265.1123$; found 265.1115. IR (CHCl₃): $\tilde{v} =$ 2985, 2862, 1598, 1497, 1442, 1409, 1333, 1253, 1086, 1045, 913, 876, 647 cm⁻¹.

9-Benzyl-6-[2,2-(dimethoxy)ethyl]purine (13a): The reaction was performed in MeOH (5 mL) with the addition of 1 M methanolic Na-OMe (0.5 mL, 0.5 mmol), reaction time 1 h, yield 86%, yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 3.38 (s, 6 H, CH₃O), 3.55 (d, J_{vic} = 6.0 Hz, 2 H, CH₂-pur), 5.25 (t, J_{vic} = 6.0 Hz, 1 H, O-CH-O), 5.44 (s, 2 H, CH₂-Ph), 7.30–7.40 (m, 5 H, Ph), 8.02 (s, 1 H, 8-H), 8.94 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 36.83 (CH₂-pur), 47.28 (CH₂-Ph), 52.76 (CH₃O), 102.48 (O-CH-O), 127.93 (CH-*o*-Ph), 128.61 (CH-*p*-Ph), 129.14 (CH-*m*-Ph), 133.12 (C-5), 135.06 (C-*i*-Ph), 143.84 (CH-8), 151.01 (C-4), 152.53 (CH-2), 157.83 (C-6) ppm. EI-MS: *m/z* (rel.%) = 298 (10) [M]⁺, 283 (30), 267 (80), 238 (30), 223 (14), 149 (18), 91 (40), 75 (100). HRMS: calcd. for C₁₆H₁₈N₄O₂ [M]⁺ 298.1429; found 298.1419. IR (CHCl₃): \tilde{v} = 2992, 2837, 1599, 1497, 1455, 1409, 1335, 1118, 1086, 1046, 988, 914, 876, 647 cm⁻¹.

6-[2,2-(Dimethoxy)ethyl]-9-(tetrahydropyran-2-yl)purine (14a): The reaction was performed in MeOH (5 mL) with the addition of 1 m methanolic NaOMe (0.5 mL, 0.5 mmol), reaction time 4 h, yield 91%, yellow oil. ¹H NMR (500 MHz, CDCl₃): δ = 1.62–1.86 (2×m,

6 H, CH₂-THP), 2.02–2.15 (2×m, 6 H, CH₂-THP), 3.37 (2×s, 2×3 H, 2×CH₃O), 3.38 (2×s, 2×3 H, 2×CH₃O), 3.54 (d, J_{vic} = 6.0 Hz, 2 H, CH₂-pur), 3.80 (td, J = 11.7, 2.6 Hz, 1 H, bCH₂O-THP), 4.18 (ddt, J = 11.7, 4.3, 1.8 Hz, 1 H, aCH₂O-THP), 5.23 (t, J_{vic} = 6.0 Hz, 1 H, O-CH-O), 5.80 (dd, J = 10.2, 2.8 Hz, 1 H, CHO-THP), 8.25 (s, 1 H, 8-H), 8.90 (s, 1 H, 2-H) ppm. ¹³C NMR (125.8 MHz, CDCl₃): δ = 22.79 (CH₂-THP), 24.87 (CH₂-THP), 31.80 (CH₂-THP), 36.92 (CH₂-pur), 52.70 (CH₃O), 52.88 (CH₃O), 68.85 (CH₂O-THP), 81.97 (CHO-THP), 102.55 (O-CH-O), 133.32 (C-5), 141.83 (CH-8), 150.22 (C-4), 152.37 (CH-2), 157.91 (C-6) ppm. FAB-MS: *m/z* (rel.%) = 293 (95) [M+H]⁺ (cation), 261 (40), 209 (80), 162 (20), 134 (20), 85 (60), 75 (100). HRMS: calcd. for C₁₄H₂₁N₄O₃ [M+H]⁺ 293.1613; found 293.1603. IR (CHCl₃): \tilde{v} = 2992, 2837, 1599, 1497, 1455, 1409, 1335, 1118, 1086, 1046, 988, 914, 876, 647 cm⁻¹.

9-Benzyl-6-[(1,3-dithiolan-2-yl)methyl]purine (13b): The reaction was performed in THF (15 mL) and 1,2-ethanedithiol (1 mL, 11.9 mmol) with the addition of NaH (30 mg), reaction time 16 h, yield 85%, yellow solid, m.p. 77–79 °C. ¹H NMR (500 MHz, CDCl₃): δ = 3.26 (2×m, 2×2 H, CH₂-S), 3.36 (2×m, 2×2 H, CH₂-S), 3.75 (d, J_{vic} = 7.5 Hz, 2 H, CH₂-pur), 5.36 (t, J_{vic} = 7.5 Hz, 1 H, S-CH-S), 5.44 (s, 2 H, CH₂-Ph), 7.30–7.40 (m, 5 H, Ph), 8.02 (s, 1 H, 8-H), 8.96 (s, 1 H, 2-H) ppm. ¹³C NMR (125.8 MHz, CDCl₃): δ = 38.65 (CH₂-S), 43.22 (CH₂-pur), 47.32 (CH₂-Ph), 50.86 (S-CH-S), 127.93 (CH-Ph), 128.64 (CH-Ph), 129.16 (CH-Ph), 132.60 (C-5), 135.00 (C-*i*-Ph), 143.99 (CH-8), 151.14 (C-4), 152.58 (CH-2), 158.83 (C-6) ppm. EI-MS: *m*/*z* (rel.%) = 328 (27) [M]⁺, 300 (14), 224 (100), 105 (45), 91 (88), 65 (17). HRMS: calcd. for C₁₆H₁₆N₄S₂ [M]⁺ 328.0816; found 328.0810. IR (CHCl₃): \tilde{v} = 2995, 1595, 1499, 1456, 1406, 1333, 1209, 708, 666, 649 cm⁻¹.

6-[(1,3-Dithiolan-2-yl)methyl]-9-(tetrahydropyran-2-yl)purine (14b): The reaction was performed in THF (15 mL) and 1,2-ethanedithiol (1 mL, 11.9 mmol) with the addition of NaH (30 mg), reaction time 8 h, yield 83%, light yellow oil. ¹H NMR (500 MHz, CDCl₃): δ = 1.64–1.87 (2×m, 6 H, CH₂-THP), 2.03–2.20 (2×m, 6 H, CH₂-THP), $3.26 (2 \times m, 2 \times 2 H, CH_2-S), 3.36 (2 \times m, 2 \times 2 H, CH_2-S), 3.74 (d,$ J_{vic} = 7.4 Hz, 2 H, CH₂-pur), 3.80 (td, J = 11.7, 2.6 Hz, 1 H, bCH₂O-THP), 4.19 (ddt, J = 11.7, 4.3, 2.0 Hz, 1 H, aCH₂O-THP), 5.35 (t, $J_{\text{vic}} = 7.4 \text{ Hz}, 1 \text{ H}, \text{ S-CH-S}$, 5.80 (dd, J = 10.3, 2.7 Hz, 1 H, CHO-THP), 8.26 (s, 1 H, 8-H), 8.92 (s, 1 H, 2-H) ppm. ¹³C NMR $(125.8 \text{ MHz}, \text{CDCl}_3): \delta = 22.76 (\text{CH}_2\text{-THP}), 24.86 (\text{CH}_2\text{-THP}), 31.80$ (CH₂-THP), 38.65 (CH₂-S), 43.25 (CH₂-pur), 50.90 (S-CH-S), 68.84 (CH₂O-THP), 82.01 (CHO-THP), 132.80 (C-5), 142.00 (CH-8), 150.34 (C-4), 152.38 (CH-2), 158.86 (C-6) ppm. FAB-MS: m/z (rel. %) $= 323 (40) [M + H]^+$ (cation), 179 (30), 147 (20), 134 (30), 105 (100), 85 (60). HRMS: calcd. for C₁₄H₁₉N₄OS₂ [M+H]⁺ 323.1000; found 323.0999. IR (CHCl₃): \tilde{v} = 2991, 2862, 1597, 1583, 1495, 1409, 1334, 1251, 1154, 1086, 1045, 984, 876, 713, 646, 538 cm⁻¹.

General Method for the Cleavage of the THP Protective Group

The THP-protected compound (0.793 mmol) was dissolved in a solution of HCl in MeOH (1 M, 12 mL). After being stirred at ambient temperature for 6 h, H₂O (2 mL) was added. The solution was neutralized with K_2CO_3 and, after being stirred for another 30 min, the mixture was filtered, and the solvents were evaporated. The residue was purified by silica gel column chromatography (chloroform/MeOH).

6-[2-(Piperidin-1-yl)ethyl]-9*H***-purine (17a):** Yield 90%, white crystals, m.p. 109–115 °C. ¹H NMR (400 MHz, [D₆]DMSO): δ = 1.35 (m, 2 H, CH₂-pip), 1.45 (p, *J* = 4.9 Hz, 4 H, CH₂-pip), 2.55 (br. t, *J* = 4.9 Hz, 4 H, CH₂N-pip), 2.78 (m, 2 H, CH₂-N), 3.21 (m, 2 H, CH₂pur), 8.51 (s, 1 H, 8-H), 8.76 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, [D₆]DMSO): δ = 24.19 (CH₂-pip), 25.70 (CH₂-pip), 30.67 (CH₂-pur), 53.88 (CH₂N-pip), 57.04 (CH₂-N), 129.34 (C-5), 144.98 (CH-8), 151.81 (CH-2), 154.32 (C-4), 157.59 (C-6) ppm. FAB-MS: m/z (rel. %) = 232 (30) [M+H]⁺ (cation), 147 (10), 98 (100). HRMS: calcd. for C₁₂H₁₈N₅ [M+H]⁺ 232.1562; found 232.1554. IR (KBr): $\bar{\nu}$ = 3278, 3100, 3069, 2936, 2852, 2802, 2765, 2737, 1610, 1597, 1567, 1409, 1377, 1352, 1326, 1308, 1233, 1221, 1111, 1041, 995, 791, 644 cm⁻¹.

6-[2-(Morpholine-4-yl)ethyl]-9*H***-purine (17b):** Yield 84%, white solid, decomposed at 160 °C. ¹H NMR (500 MHz, [D₆]DMSO): δ = 2.44 (br. t, *J* = 4.6 Hz, 4 H, CH₂N-morph), 2.82 (m, 2 H, CH₂-N), 3.24 (m, 2 H, CH₂-pur), 3.52 (br. t, *J* = 4.6 Hz, 4 H, CH₂O-morph), 8.50 (s, 1 H, 8-H), 8.77 (s, 1 H, 2-H) ppm. ¹³C NMR (125.8 MHz, [D₆] DMSO): δ = 30.39 (CH₂-pur), 53.24 (CH₂N-morph), 56.65 (CH₂-N), 66.32 (CH₂O-morph), 129.41 (C-5), 144.93 (CH-8), 151.81 (CH-2), 154.14 (C-4), 157.75 (C-6). FAB-MS: *mlz* (rel.%) = 234 (50) [M + H]⁺ (cation), 147 (20), 134 (25), 100 (100). HRMS: calcd. for C₁₁H₁₆N₅O [M + H]⁺ 234.1354; found 234.1347. IR (KBr): \tilde{v} = 3437, 1598, 1423, 1327, 1119, 923, 873, 644, 617 cm⁻¹.

6-[2-(Dibutylamino)ethyl]-9*H***-purine (17c):** Yield 70%, colourless oil. ¹H NMR (400 MHz, [D₆]DMSO): $\delta = 0.80$ (t, $J_{vic} = 7.3$ Hz, 6 H, $CH_3CH_2CH_2CH_2)$, 1.16 (2×m, 2×4 H, CH₃ $CH_2CH_2CH_2)$, 1.32 (2×m, 2×4 H, CH₃ $CH_2CH_2CH_2$), 2.44 (t, $J_{vic} = 7.2$ Hz, 4 H, CH₃ $CH_2CH_2CH_2$), 2.97 (t, $J_{vic} = 7.3$ Hz, 2 H, CH₂-N), 3.18 (m, $J_{vic} = 7.3$ Hz, 2 H, CH₂-pur), 8.51 (s, 1 H, 8-H), 8.76 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, [D₆]DMSO): $\delta = 14.05$ (CH₃CH₂CH₂CH₂), 20.07 (CH₃CH₂CH₂CH₂), 28.87 (CH₃CH₂CH₂CH₂), 30.18 (CH₂pur), 51.74 (CH₂-N), 52.95 (CH₃CH₂CH₂CH₂), 129.55 (C-5), 144.70 (CH-8), 151.80 (CH-2), 153.88 (C-4), 158.20 (C-6) ppm. FAB-MS: m/z (rel.%) = 276 (35) [M+H]⁺ (cation), 232 (10), 183 (10), 147 (35), 142 (70), 130 (100). HRMS: calcd. for C₁₅H₂₆N₅ [M+H]⁺ 276.2188; found 276.2195. IR (KBr): $\tilde{v} = 3436$, 1596, 1560, 1491, 1405, 1389, 1330, 1225, 809, 645 cm⁻¹.

6-[2-(Diethylamino)ethyl]-9*H***-purine (17d):** Yield 69%, white solid, m.p. 212 °C (decomposed). ¹H NMR (400 MHz, [D₆]DMSO, hydrochloride salt): δ = 1.26 (t, J_{vic} = 7.3 Hz, 6 H, CH_3CH_2), 3.23 (q, J_{vic} = 7.3 Hz, 4 H, CH_2CH_3), 3.62–3.68 (br. m, 4 H, purCH₂CH₂N), 8.82 (s, 1 H, 8-H), 8.95 (s, 1 H, 2-H), 10.55 (br. s, 1 H, NH) ppm. ¹³C NMR (100.6 MHz, [D₆]DMSO, hydrochloride salt): δ = 8.71 (CH_3CH_2), 26.61 (CH_2 -pur), 46.62 (CH_2CH_3), 48.07 (CH_2 -N), 129.18 (C-5), 146.10 (CH-8), 151.23 (CH-2), 153.96 (C-4 and C-6) ppm. FAB-MS: m/z (rel.%) = 220 (25) [M + H]⁺ (cation), 232 (10), 201 (10), 149 (32), 86 (100). HRMS: calcd. for C₁₁H₁₈N₅ [M + H]⁺ 220.1562; found 220.1553. IR (KBr): \tilde{v} = 3258, 2968 2813, 2705, 2540, 1618, 1595, 1329, 1226, 1202, 1028, 1000, 920, 644 cm⁻¹.

6-[2-(Dimethylamino)ethyl]-9*H***-purine (17e):** Yield 77%, light yellow oil. ¹H NMR (400 MHz, [D₆]DMSO, hydrochloride salt): $\delta = 2.85$ (br. s, 6 H, CH₃), 3.66 (br. s, 4 H, purCH₂CH₂N), 8.82 (s, 1 H, 8-H), 8.94 (s, 1 H, 2-H), 10.66 (br. s, 1 H, NH) ppm. ¹³C NMR (100.6 MHz, [D₆]DMSO, hydrochloride salt): $\delta = 27.24$ (CH₂-pur), 42.41 (CH₃), 54.05 (CH₂-N), 128.94 (C-5), 145.94 (CH-8), 151.31 (CH-2), 153.92 (C-4 and C-6) ppm. FAB-MS: m/z (rel.%) = 192 (100) [M+H]⁺ (cation), 147 (35), 85 (30). HRMS: calcd. for C₉H₁₄N₅ [M + H]⁺ 192.1249; found 192.1246. IR (KBr): $\tilde{v} = 3255$, 3100, 3067, 2941, 2820, 2778, 2540, 1890, 1619, 1595, 1561, 1544, 1500, 1442, 1389, 1372, 1329, 1297, 1226, 809, 645 cm⁻¹.

6-[2-(Cyclohexylamino)ethyl]-9*H***-purine (17f):** Yield 54%, light yellow solid, m.p. 51–55 °C. ¹H NMR (400 MHz, [D₆]DMSO): δ = 0.95–1.26 (4×m, 10 H, CH₂-cyclohex), 1.53 (4×m, 10 H, CH₂-cyclohex), 1.64 (4×m, 10 H, CH₂-cyclohex), 1.81 (4×m, 10 H, CH₂-cyclohex), 2.49 (m, 1 H, CHN-cyclohex, overlapped with DMSO signal), 3.07 (t, *J* = 6.6 Hz, 2 H, CH₂-NH), 3.19 (t, *J* = 6.6 Hz, 2 H, CH₂-pur), 8.44 (s, 1 H, 8-H), 8.72 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, [D₆]DMSO): δ = 24.49 (CH₂-cyclohex), 25.92 (CH₂-cyclohex), 32.61

(CH₂-cyclohex), 33.78 (CH₂-pur), 44.59 (CH₂-NH), 55.86 (CHN-cyclohex), 129.96 (C-5), 146.33 (CH-8), 151.30 (CH-2), 155.42 (C-4), 157.06 (C-6) ppm. FAB-MS: m/z (rel. %) = 246 (90) [M + H]⁺ (cation), 147 (45), 135 (100), 113 (90). HRMS: calcd. for C₁₃H₂₀N₅ [M + H]⁺ 246.1718; found 264.1714. IR (KBr): \tilde{v} = 3436, 2930, 2854, 2663, 2536, 2406, 1594, 1445, 1372, 1324, 1229, 814, 646 cm⁻¹.

6-[2-(Benzylamino)ethyl]-9*H***-purine (17g):** Yield 39%, light brown oil. ¹H NMR (400 MHz, [D₆]DMSO): δ = 3.25 (t, J_{vic} = 7.4 Hz, 2 H, CH₂-N), 3.44 (t, J_{vic} = 7.4 Hz, 2 H, CH₂-pur), 4.01 (s, 2 H, CH₂-Ph), 7.32 (m, 1 H, H-*p*-Ph), 7.36 (m, 2 H, H-*m*-Ph), 7.46 (m, 2 H, H-*o*-Ph), 8.55 (s, 1 H, 8-H), 8.79 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, [D₆]DMSO): δ = 31.01 (CH₂-pur), 45.46 (CH₂-N), 51.34 (CH₂-Ph), 127.98 (CH-*p*-Ph), 128.57 (CH-*m*-Ph), 129.27 (CH *o*-Ph), 129.51 (C-5), 136.17 (C-*i*-Ph), 145.11 (CH-8), 151.83 (CH-2), 154.06 (C-4), 156.13 (C-6) ppm. FAB-MS: *m*/*z* (rel.%) = 254 (50) [M+H]⁺ (cation), 147 (20), 135 (100), 12 (15), 91 (80). HRMS: calcd. for C₁₄H₁₆N₅ [M+H]⁺ 254.1405; found 254.1396. IR (KBr): \tilde{v} = 3060, 3030, 2955, 2797, 2615, 2402, 1660, 1597, 1567, 1480, 1424, 1394, 1376, 1325, 1299, 1227, 811, 642 cm⁻¹.

6-[2-(Methylamino)ethyl]-9*H***-purine (17h):** Yield 69%, white solid, m.p. 173–175 °C. ¹H NMR (400 MHz, [D₆]DMSO): δ = 2.61 (s, 3 H, CH₃), 3.45 (t, J_{vic} = 6.7 Hz, 2 H, CH₂-N), 3.53 (t, J_{vic} = 6.7 Hz, 2 H, CH₂-pur), 8.59 (s, 1 H, 8-H), 8.82 (s, 1 H, 2-H), 10.65 (br. s, 1 H, NH) ppm. ¹³C NMR (100.6 MHz, [D₆]DMSO): δ = 28.89 (CH₂pur), 32.66 (CH₃), 45.85 (CH₂-N), 129.51 (C-5), 145.22 (CH-8), 151.83 (CH-2), 153.82 (C-4), 154.73 (C-6) ppm. FAB-MS: *m/z* (rel.%) = 178 (100) [M+H]⁺ (cation), 147 (25), 135 (80). HRMS: calcd. for C₈H₁₂N₅ [M+H]⁺ 178.1093; found 178.1100. IR (KBr): \tilde{v} = 3435, 3260, 2797, 2413, 1595, 1564, 1546, 1442, 1372, 1324, 1296, 1192, 813, 645 cm⁻¹.

6-(2-Aminoethyl)-9H-purine (17i): ^[37] Yield 61%, light yellow crystals. ¹H NMR (400 MHz, [D₆]DMSO): δ = 3.07 (t, J = 6.5 Hz, 2 H, CH₂-N), 3.17 (t, J = 6.5 Hz, 2 H, CH₂-pur), 8.30 (s, 1 H, 8-H), 8.62 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, [D₆]DMSO): δ = 33.81 (CH₂pur), 47.76 (CH₂-NH), 130.86 (C-5), 148.67 (CH-8), 150.88 (CH-2), 156.37 (C-6), 157.55 (C-4) ppm. FAB-MS: m/z (rel.%) = 164 (40) [M+H]⁺ (cation), 147 (100), 135 (80). HRMS: calcd. for C₇H₁₀N₅ [M+H]⁺ 164.0936; found 164.0933. IR (KBr): \tilde{v} = 3435, 1625, 1596, 1561, 1543, 1490, 1397, 1324, 1229, 812, 645 cm⁻¹.

6-[2-(Methoxy)ethyl]-9*H***-purine (18a):** Yield 76%, white solid, m.p. 83–86 °C. ¹H NMR (400 MHz, [D₆]DMSO): δ = 3.22 (s, 3 H, CH₃), 3.30 (t, J_{vic} = 6.7 Hz, 2 H, CH₂-pur), 3.86 (t, J_{vic} = 6.7 Hz, 2 H, CH₂-O), 8.53 (s, 1 H, 8-H), 8.79 (s, 1 H, 2-H), 13.40 (br. s, 1 H, NH) ppm. ¹³C NMR (100.6 MHz, [D₆]DMSO): δ = 33.30 (CH₂-pur), 57.99 (CH₃), 69.99 (CH₂-O), 129.54 (C-5), 145.03 (CH-8), 151.87 (CH-2), 154.29 (C-4), 156.34 (C-6) ppm. FAB-MS: *m/z* (rel.%) = 179 (100) [M+H]⁺ (cation), 147 (20). HRMS: calcd. for C₈H₁₁N₄O [M + H]⁺ 179.0933; found 179.0927. IR (KBr): \tilde{v} = 3105, 3074, 2986, 2899, 2962, 2198, 2811, 2701, 2612, 2554, 1597, 1489, 1471, 1460, 1445, 1426, 1392, 1382, 1327, 1227, 811, 644 cm⁻¹.

6-[2-(Ethoxy)ethyl]-9*H***-purine (18b):** Yield 94%, colourless oil. ¹H NMR (400 MHz, [D₆]DMSO): $\delta = 1.03$ (t, $J_{vic} = 7.0$ Hz, 3 H, CH_3CH_2), 3.30 (t, $J_{vic} = 6.8$ Hz, 2 H, CH_2 -pur), 3.43 (q, $J_{vic} = 7.0$ Hz, 2 H, CH_2CH_3), 3.89 (t, $J_{vic} = 6.8$ Hz, 2 H, CH_2 -O), 8.51 (s, 1 H, 8-H), 8.77 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, [D₆]DMSO): $\delta = 15.21$ (CH₃CH₂), 33.62 (CH₂-pur), 65.38 (CH₂CH₃), 67.86 (CH₂-O), 129.76 (C-5), 145.44 (CH-8), 151.72 (CH-2), 154.97 (C-4), 156.18 (C-6) ppm. FAB-MS: m/z (rel.%) = 193 (100) [M+H]⁺ (cation), 147 (25), 131 (50). HRMS: calcd. for C₉H₁₃N₄O [M+H]⁺ 193.1089; found 193.1093. IR (KBr): $\tilde{v} = 3260$, 3112, 3080, 2976, 2948, 2875, 2829, 2720, 2572, 1621, 1602, 1567, 1527, 1477, 1426, 1397, 1327, 1231, 813, 642 cm⁻¹.

6-[2-(Benzyloxy)ethyl]-*9H***-purine (18c):** Yield 71%, yellow oil. ¹H NMR (400 MHz, [D₆]DMSO): $\delta = 3.36$ (t, $J_{vic} = 6.7$ Hz, 2 H, CH₂-pur), 3.97 (t, $J_{vic} = 6.7$ Hz, 2 H, CH₂-O), 4.48 (s, 2 H, CH₂-Ph), 7.17–7.32 (m, 5 H, Ph), 8.54 (s, 1 H, 8-H), 8.79 (s, 1 H, 2-H), 13.41 (br. s, 1 H, NH) ppm. ¹³C NMR (100.6 MHz, [D₆]DMSO): $\delta = 33.49$ (CH₂-pur), 67.76 (CH₂-O), 71.87 (CH₂-Ph), 127.51 (CH*-p*-Ph), 127.54 (CH*-o*-Ph), 128.33 (CH*-m*-Ph), 138.53 (C*-i*-Ph), 145.02 (CH-8), 151.86 (CH-2), 156.34 (C-6) ppm. C-5 and C-4 were not observed. FAB-MS: m/z (rel.%) = 255 (100) [M+H]⁺ (cation), 147 (20), 91 (50). HRMS: calcd. for C₁₄H₁₅N₄O [M+H]⁺ 255.1245; found 255.1242. IR (KBr): $\tilde{v} = 3438$, 3206, 2994, 2866, 2711, 2549, 1599, 1568, 1483, 1427, 1396, 1328, 644 cm⁻¹.

6-[2-(Methylsulfanyl)ethyl]-9H-purine (18d): Yield 82%, white crystals, m.p. >300 °C. ¹H NMR (400 MHz, [D₆]DMSO): δ = 2.08 (s, 3 H, CH₃), 3.00 (t, J_{vic} = 7.2 Hz, 2 H, CH₂-S), 3.52 (t, J_{vic} = 7.2 Hz, 2 H, CH₂-pur), 8.52 (s, 1 H, 8-H), 8.78 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, [D₆]DMSO): δ = 14.77 (CH₃), 31.35 (CH₂-S), 32.67 (CH₂-pur), 129.52 (C-5), 145.48 (CH-8), 151.76 (CH-2), 154.63 (C-4), 156.97 (C-6) ppm. FAB-MS: m/z (rel.%) = 195 (90) [M + H]⁺ (cation), 147 (100), 131 (25). HRMS: calcd. for C₈H₁₁N₄S [M + H]⁺ 195.0704; found 195.0697. IR (KBr): \tilde{v} = 3435, 3107, 2970, 2915, 2811, 1598, 1422, 1403, 1328, 1234, 793, 722, 642 cm⁻¹.

6-[2-(Benzylsulfanyl)ethyl]-9H-purine (18e): Yield 86%, white crystals, m.p. 140–142 °C. ¹H NMR (500 MHz, [D₆]DMSO): δ = 2.94 (t, J_{vic} = 7.6 Hz, 2 H, CH₂-S), 3.35 (t, J_{vic} = 7.6 Hz, 2 H, CH₂-pur), 3.78 (s, 2 H, SCH₂-Ph), 7.23 (m, 1 H, H-*p*-Ph), 7.27–7.32 (m, 4 H, H-*o*,*m*-Ph), 8.54 (s, 1 H, 8-H), 8.79 (s, 1 H, 2-H) ppm. ¹³C NMR (125.8 MHz, [D₆]DMSO): δ = 28.77 (CH₂-S), 32.65 (CH₂-pur), 35.05 (SCH₂-Ph), 126.94 (CH-*p*-Ph), 128.52 (CH-*m*-Ph), 128.97 (CH-*o*-Ph), 129.74 (C-5), 138.63 (C-*i*-Ph), 145.00 (CH-8), 151.90 (CH-2), 153.95 (C-4), 157.11 (C-6) ppm. FAB-MS: *mlz* (rel.%) = 271 (75) [M + H]⁺ (cation), 179 (20), 91 (100). HRMS: calcd. for C₁₄H₁₄N₄S [M + H]⁺ 271.1017; found 271.1023. IR (KBr): \tilde{v} = 3443, 3083, 3063, 2761, 2578, 1616, 1576, 1505, 1324, 1228, 1028, 805, 775, 698, 639, 623 cm⁻¹. C₁₄H₁₅N₄S (270.35): calcd. C 62.20, H 5.22, N 20.72 S 11.86; found C 61.85, H 5.08, N 20.46 S 11.69.

6-(2-Sulfanylethyl)-*9H***-purine (18f):** Yield 82%, white solid, m.p. >300 °C ¹H NMR (400 MHz, [D₆]DMSO): δ = 3.30 (t, J_{vic} = 6.9 Hz, 2 H, CH₂-S), 3.44 (t, J_{vic} = 6.9 Hz, 2 H, CH₂-pur), 8.48 (s, 1 H, 8-H), 8.76 (s, 1 H, 2-H) ppm. ¹³C NMR (100.6 MHz, [D₆]DMSO): δ = 32.59 (CH₂-pur), 35.66 (CH₂-S), 129.66 (C-5), 145.79 (CH-8), 151.61 (CH-2), 154.80 (C-4), 156.14 (C-6) ppm. FAB-MS: m/z (rel.%) = 181 (15) [M+H]⁺ (cation), 147 (15), 131 (25), 115 (100). HRMS: calcd. for C₇H₉N₄S [M+H]⁺ 181.0547; found 181.0539. IR (KBr): \tilde{v} = 3250, 3107, 3070, 2824, 2705, 2570, 1620, 1600, 1561, 1527, 1474, 1421, 1396, 1379, 1229, 803, 643 cm⁻¹.

6-[2,2-(Dimethoxy)ethyl]-*9H***-purine (19a):** Yield 89%, light brown crystals, m.p. 121–129 °C. ¹H NMR (500 MHz, [D₆]DMSO): δ = 3.25 (s, 6 H, 2×CH₃O), 3.36 (d, J_{vic} = 6.0 Hz, 2 H, CH₂), 5.12 (t, J_{vic} = 6.0 Hz, 1 H, O-CH-O), 8.53 (s, 1 H, 8-H), 8.80 (s, 1 H, 2-H) ppm. ¹³C NMR (125.8 MHz, [D₆]DMSO): δ = 37.01 (CH₂-pur), 52.80 (CH₃O), 102.71 (O-CH-O), 129.95 (C-5), 145.21 (CH-8), 151.77 (CH-2), 154.23 (C-4), 154.58 (C-6) ppm. FAB-MS: *mlz* (rel.%) = 209 (35) [M+H]⁺ (cation), 191 (15), 177 (100), 163 (12), 147 (10), 134 (15). HRMS: calcd. for C₉H₁₃N₄O₂ [M+H]⁺ 209.1038; found 209.1043. IR (KBr): \tilde{v} = 3432, 2830, 2599, 1615, 1565, 1475, 1448, 1374, 1321, 1222, 1164, 1117, 1075, 1050, 947, 925, 885, 840, 742 cm⁻¹.

6-[(1,3-Dithiolan-2-yl)methyl]-9H-purine (19b): Yield 81%, white crystals, m.p. 241–243 °C. ¹H NMR (500 MHz, [D₆]DMSO): δ = 3.23 (2×m, 2×2 H, CH₂-S), 3.32 (2×m, 2×2 H, CH₂-S), 3.60 (d, J_{vic} = 7.6 Hz, 2 H, CH₂-pur), 5.27 (t, J_{vic} = 7.6 Hz, 1 H, S-CH-S), 8.55 (s, 1 H, 8-H), 8.82 (s, 1 H, 2-H) ppm. ¹³C NMR (125.8 MHz, [D₆]-

DMSO): δ = 38.14 (CH₂-S), 42.91 (CH₂-pur), 50.53 (S-CH-S), 128.95 (C-5), 145.37 (CH-8), 151.81 (CH-2), 154.55 (C-4), 155.67 (C-6). FAB-MS: *m*/*z* (rel.%) = 239 (25) [M + H]⁺ (cation), 181 (10), 110 (20), 93 (100). HRMS: calcd. for C₉H₁₁N₄S₂ [M + H]⁺ 239.0425; found 239.0436. IR (KBr): \tilde{v} = 3435, 3009, 2808, 2588, 1620, 1566, 1494, 1418, 1410, 1379, 1319, 1302, 1222, 1163, 952, 878, 607 cm⁻¹.

(*E*)-6-[2-(Piperidine-1-yl)vinyl]-9*H*-purine (20a): Yield 82%, yellow solid, m.p. >300 °C. ¹H NMR (400 MHz, [D₆]DMSO): δ = 1.50–1.70 (m, 6 H, CH₂-piperidine), 3.33 (m, 4 H, CH₂N-piperidine), 5.65 (d, J_{trans} = 13.1 Hz, 1 H, =CH-pur), 8.12–8.32 (br. m, 2 H, 8-H and = CH-N), 8.37 (s, 1 H, 2-H), 12.94 (br. s, 1 H, NH) ppm. FAB-MS: *m*/*z* (rel.%) = 230 (100) [M+H]⁺ (cation), 147 (15), 135 (8), 120 (8). HRMS: calcd. for C₁₂H₁₆N₅ [M+H]⁺ 230.1405; found 230.1402. IR (KBr): \tilde{v} = 3103, 2953, 2856, 2560, 1655, 1621, 1579, 1518, 1453, 1444, 1437, 1382, 1353, 1287, 1024, 851, 650 cm⁻¹.

(*E*)-6-[2-(Morpholine-4-yl)vinyl]-9*H*-purine (20b): Yield 80%, white solid, m.p. 160 °C (decomposed). ¹H NMR (500 MHz, [D₆]DMSO): δ = 3.35 (br. t, J_{vic} = 5.0 Hz, 4 H, CH₂-N), 3.67 (br. t, J_{vic} = 5.0 Hz, 4 H, CH₂-O), 5.73 (br. d, J_{trans} = 13.4 Hz, 1 H, =CH-pur), 8.16–8.30 (br. m, 2 H, 8-H and = CH-N), 8.41 (br. s, 1 H, 2-H) ppm. FAB-MS: *m*/*z* (rel.%) = 232 (100) [M+H]⁺ (cation), 147 (10), 131 (10). HRMS: calcd. for C₁₁H₁₄N₅O [M+H]⁺ 232.1198; found 232.1202. IR (KBr): \tilde{v} = 3178, 3097, 2958, 2918, 2856, 2828, 2711, 2690, 2575, 1599, 1567, 1443, 1431, 1395, 1225, 811, 643 cm⁻¹.

(*E*)-6-[2-(Dibutylamino)vinyl]-9*H*-purine (20c): Yield 84%, orange solid, m.p. 110–114 °C. ¹H NMR (400 MHz, [D₆]DMSO): $\delta = 0.92$ (t, $J_{vic} = 7.3$ Hz, 6 H, CH₃-Bu), 1.32 (2×m, 2×4 H, CH₂-Bu), 1.56 (2×m, 2×4 H, CH₂-Bu), 3.26 (t, $J_{vic} = 7.3$ Hz, 4 H, CH₂N-Bu), 5.51 (d, $J_{trans} = 13.1$ Hz, 1 H, =CH-pur), 8.17 (br. s, 1 H, 8-H), 8.20 (b, 1 H, =CH-N), 8.34 (br. s, 1 H, 2-H), 12.92 (br. s, 1 H, NH) ppm. FAB-MS: m/z (rel.%) = 274 (100) [M+H]⁺ (cation), 261 (15), 244 (15), 130 (15), 218 (15), 147 (55), 135 (55). 120 (30). HRMS: calcd. for C₁₅H₂₄N₅ [M+H]⁺ 274,2031; found 274.2035. IR (KBr): $\tilde{v} = 3265$, 3059, 2959, 2933, 2872, 2810, 2555, 1626, 1590, 1578, 1560, 1467, 1444, 1424, 1397, 1373, 1323, 1217, 813, 645 cm⁻¹.

(*E*)-6-[2-(Diethylamino)vinyl]-9*H*-purine (20d): Yield 79%, orange solid, m.p. 141–162 °C. ¹H NMR (400 MHz, [D₆]DMSO): δ = 1.16 (t, J_{vic} = 7.1 Hz, 6 H, *CH*₃CH₂), 3.33 (q, J_{vic} = 7.1 Hz, 4 H, *CH*₂CH₃), 5.55 (d, J_{trans} = 15.0 Hz, 1 H, =CH-pur), 8.19 (br. s, 1 H, 8-H), 8.29 (br. d, J_{trans} = 15.0 Hz, 1 H, =CH-N), 8.36 (br. s, 1 H, 2-H), 13.00 (br. s, 1 H, NH) ppm. FAB-MS: *m*/*z* (rel.%) = 218 (100) [M+H]⁺ (cation), 185 (10). HRMS: calcd. for C₁₁H₁₆N₅ [M+H]⁺ 218.1405; found 218.1401. IR (KBr): \tilde{v} = 3437, 3056, 2966, 2866, 1626, 1580, 1542, 1491, 1394, 1326, 1210, 813, 646 cm⁻¹.

(*E*)-6-[2-(Dimethylamino)vinyl]-9*H*-purine (20e): Yield 88%, light yellow solid, m.p. 218–221 °C. ¹H NMR (400 MHz, [D₆]DMSO): δ = 2.99 (br. s, 6 H, CH₃), 5.49 (d, *J*_{trans} = 13.0 Hz, 1 H, =CH-pur), 8.14–8.33 (br. m, 2 H, 8-H and =CH-N), 8.37 (s, 1 H, 2-H), 12.98 (br. s, 1 H, NH) ppm. FAB-MS: *mlz* (rel.%) = 190 (100) [M+H]⁺ (cation), 147 (15). HRMS: calcd. for C₉H₁₂N₅ [M+H]⁺ 190.1092; found 190.1083. IR (KBr): \tilde{v} = 3437, 2806, 1635, 1578, 1434, 1416, 1405, 1323, 1219, 812, 645 cm⁻¹.

(Z)- and (E)-6-[2-(Cyclohexylamino)vinyl]-9H-purine (21f): Yield 72%, yellow solid. ¹H NMR (400 MHz, [D₆]DMSO): $\delta = 1.12-1.41$ [4×m, 20 H, CH₂-cyclohex-(Z)+(E)], 1.50–1.62 [4×m, 20 H, CH₂-cyclohex-(Z)+(E)], 1.66–1.78 [4×m, 20 H, CH₂-cyclohex-(Z)+(E)], 1.86–1.97 [4×m, 20 H, CH₂-cyclohex-(Z)+(E)], 3.17–3.32 [m, 2 H, CHNH-(Z) +(E)], 5.43 [br., 1 H, =CH-pur-(Z)], 5.61 [br. d, $J_{trans} = 13.0$ Hz, 1 H, =CH-pur-(E)], 7.05 [br. m, 1 H, =CH-N-(Z)], 7.15 [br. m, 1 H, NH-(E)], 8.12–8.37 [br. m, 5 H, 8-H-(Z)+(E), 2-H-(E) and =CH-N-(E)], 8.53 [br. s, 1 H, 2-H-(Z)], 9.52 [br. m, 1 H, NH-(Z)], 13.00 [br.

s, 2 H, NH-9-(*Z*)+(*E*)] ppm. FAB-MS: m/z (rel.%) = 244 (100) $[M + H]^+$ (cation), 147 (25), 135 (40), 120 (15). HRMS: calcd. for $C_{13}H_{18}N_5$ $[M + H]^+$ 244.1562; found 244.1562. IR (KBr): \tilde{v} = 3435, 3039, 2930, 2853, 1605, 1583, 1543, 1318, 810, 645 cm⁻¹.

(*Z*)- and (*E*)-6-[2-(Benzylamino)vinyl]-9*H*-purine (21g): Yield 35%, orange solid. ¹H NMR (500 MHz, [D₆]DMSO): δ = 4.36 [d, $J_{CH2,NH}$ = 5.8 Hz, 2 H, CH₂NH-(*Z*)], 4.51 [d, $J_{CH2,NH}$ = 6.3 Hz, 2 H, CH₂NH-(*E*)], 5.53 [br. d, J_{cis} = 7.8 Hz, 1 H, =CH-pur-(*Z*)], 5.62 [br., 1 H, =CH-pur-(*E*)], 7.08 [br. m, 1 H, =CH-N-(*Z*)], 7.24–7.30 [2×m, 10 H, Ph-(*Z*)+(*E*)], 7.32–7.40 [2×m, 10 H, Ph-(*Z*)+(*E*)], 7.58 [br. m, 1 H, NH-(*E*)], 8.18 [br. s, 1 H, 8-H-(*E*)], 8.22 [br. s, 1 H, 8-H-(*Z*)], 8.36 [br. s, 2 H, 2-H-(*Z*)+(*E*)], 8.44 [br. m, 1 H, =CH-N-(*E*)], 9.69 [br. m, 1 H, NH-(*Z*)], 12.95 [br. s, 1 H, NH-9-(*E*)], 13.00 [br. s, 1 H, NH-9-(*Z*)] ppm. FAB-MS: *m*/*z* (rel.%) = 252 (80) [M+H]⁺ (cation), 149 (10), 91 (100). HRMS: calcd. for C₁₄H₁₄N₅ [M+H]⁺ 252.1249; found 252.1252. IR (KBr): \tilde{v} = 3429, 3060, 3028, 2805, 1633, 1604, 1581, 1565, 1542, 1390, 1318, 985, 810, 643 cm⁻¹.

(*Z*)- and (*E*)-6-[2-(Methylamino)vinyl]-9*H*-purine (21h): Yield 82%, red solid. ¹H NMR (400 MHz, [D₆]DMSO): $\delta = 2.78$ [d, $J_{CH3,NH} =$ 4.9 Hz, 3 H, CH₃-(*E*)], 3.03 [d, $J_{CH3,NH} = 5.0$ Hz, 3 H, CH₃-(*Z*)], 5.38 [b, 1 H, =CH-pur-(*Z*)], 5.53 [br. d, $J_{trans} = 13.2$ Hz, 1 H, =CHpur-(*E*)], 6.92 [dd, $J_{CH,NH} = 12.9$ Hz, $J_{cis} = 8.1$ Hz, 1 H, =CH-N-(*Z*)], 7.06 [br. p, $J_{NH,CH3} \approx J_{NH,CH} = 4.9$ Hz, 1 H, NH-(*E*)], 8.21 [br. s, 2 H, 8-H-(*Z*)+(*E*)], 8.38 [br. m, 3 H, 2-H-(*Z*)+(*E*) and =CH-N-(*E*)], 9.19 [br. m, 1 H, NH-(*Z*)], 13.00 [br. s, 2 H, NH-9-(*Z*)+(*E*)] ppm. FAB-MS: m/z (rel.%) = 175 (100) [M+H]⁺ (cation), 147 (50). HRMS: calcd. for C₈H₁₀N₅ [M+H]⁺ 175.0857; found 175.0849. IR (KBr): $\tilde{v} = 3428, 3265, 2817, 1626, 1581, 1560, 1418, 1319, 1241, 1210, 808, 643 cm⁻¹.$

Acknowledgments

This work is a part of the research project Z4 055 0506. It was supported by the "Centre for New Antivirals and Antineoplastics" (1M0508), by the Programme of Targeted Projects of Academy of Sciences of the Czech Republic (1QS400550501) and by Gilead Sciences, Inc. (Foster City, CA, U. S. A.).

- a) M. Hocek, A. Holý, I. Votruba, H. Dvořáková, J. Med. Chem.
 2000, 43, 1817–1825; b) M. Hocek, A. Holý, I. Votruba, H. Dvořáková, Collect. Czech. Chem. Commun. 2001, 66, 483–499.
- [2] M. Hocek, P. Nauš, R. Pohl, I. Votruba, P. A. Furman, P. M. Tharnish, M. J. Otto, J. Med. Chem. 2005, 48, 5869–5873.
- [3] a) L.-L. Gundersen, J. Nissen-Meyer, B. Spilsberg, J. Med. Chem.
 2002, 45, 1383–1386; b) A. K. Bakkestuen, L.-L. Gundersen,
 B. T. Utenova, J. Med. Chem. 2005, 48, 2710–2723.
- [4] a) A. J. Cocuzza, D. R. Chidester, S. Culp, L. Fitzgerald, P. Gilligan, *Bioorg. Med. Chem. Lett.* **1999**, *9*, 1063–1066; b) L. C. W. Chang, R. F. Spanjersberg, J. K. von Frijtag Drabbe Künzel, T. Mulder-Krieger, J. Brussee, A. P. IJzerman, *J. Med. Chem.* **2006**, *49*, 2861–2867.
- [5] a) P. Šilhár, R. Pohl, I. Votruba, M. Hocek, Org. Lett. 2004, 6, 3225–3228; b) P. Šilhár, R. Pohl, I. Votruba, M. Hocek, Collect. Czech. Chem. Commun. 2005, 70, 3225–3228.
- [6] P. Šilhár, R. Pohl, I. Votruba, M. Hocek, Org. Biomol. Chem. 2005, 3, 3001–3007.
- [7] P. Šilhár, R. Pohl, I. Votruba, M. Hocek, Synthesis 2006, 1848– 1852.
- [8] P. Čapek, R. Pohl, M. Hocek, J. Org. Chem. 2004, 69, 7985– 7988.
- [9] P. Čapek, R. Pohl, M. Hocek, J. Org. Chem. 2005, 70, 8001– 8008.
- [10] a) M. Hocek, *Eur. J. Org. Chem.* 2003, 245–254; b) L. A. Agrofoglio, I. Gillaizeau, Y. Saito, *Chem. Rev.* 2003, 103, 1875–1916;
 c) M. K. Lakshman, *J. Organomet. Chem.* 2002, 653, 234–251.

M. Kuchař, R. Pohl, I. Votruba, M. Hocek

- [11] M. Yus, F. Foueblo, in: *Handbook of Functionalized, Organome-tallics Applications in Synthesis* (Ed.: P. Knochel), Wiley-VCH, Weinheim, Germany, 2005, pp. 18–22.
- [12] a) F. Nagatsugi, K. Uemura, S. Nakashima, M. Maeda, S. Sasaki, *Tetrahedron Lett.* **1995**, *36*, 421–424; b) F. Nagatsugi, K. Uemura, S. Nakashima, M. Maeda, S. Sasaki, *Tetrahedron* **1997**, *53*, 3035–3044; c) F. Nagatsugi, T. Kawasaki, D. Usui, M. Maeda, S. Sasaki, *J. Am. Chem. Soc.* **1999**, *121*, 6753–6754; d) T. Kawasaki, F. Nagatsugi, M. M. Ali, M. Maeda, K. Sugiyama, K. Hori, S. Sasaki, *J. Org. Chem.* **2005**, *70*, 14–23; e) M. M. Ali, M. Oishi, F. Nagatsugi, K. Mori, Y. Nagasaki, K. Kataoka, S. Sasaki, *Angew. Chem. Int. Ed.* **2006**, *45*, 3136–3140.
- [13] S. Czernecki, A. Hoang, J.-M. Valery, *Tetrahedron Lett.* 1996, 37, 8857–8860.
- [14] A. T. Øveras, A. K. Bakkestuen, L.-L. Gundersen, F. Rise, Acta Chem. Scand. 1997, 51, 1116–1124.
- [15] a) F. Liu, B. Dalhus, L.-L. Gundersen, F. Rise, Acta Chem. Scand. 1999, 53, 269–279, b) F.-S. Liu, J.-Z. Yang, Chin. J. Org. Chem. 2000, 20, 189–194.
- [16] J.-F. Wang, L.-R. Zhang, Z.-J. Yang, L.-H. Zhang, *Bioorg. Med. Chem.* 2004, 12, 1425–1429.
- [17] K. Tanji, T. Higashino, Chem. Pharm. Bull. 1988, 36, 1935–1941.
- [18] A. Matsuda, M. Shinozaki, T. Yamaguchi, H. Homma, R. Nomoto, T. Miyasaka, Y. Watanabe, T. Abiru, J. Med. Chem. 1992, 35, 241–252.
- [19] M. Hocek, I. Starý, I. G. Stará, H. Dvořáková, Collect. Czech. Chem. Commun. 2002, 67, 1223–1235.
- [20] R. A. Ellison, E. R. Lukenbach, C.-W. Chiu, *Tetrahedron Lett.* 1975, 16, 499.
- [21] P. A. Grieco, M. Nishizawa, T. Oguri, S. D. Burke, N. Marinovic, J. Am. Chem. Soc. 1977, 99, 5773.

- [22] B. H. Lipshutz, D. F. Harvey, Synth. Commun. 1982, 12, 267– 277.
- [23] T. Kametani, H. Kondoh, T. Honda, H. Ishizone, Y. Suzuki, W. Mori, *Chem. Lett.* 1989, 901–904.
- [24] B. Das, R. Ramu, M. R. Reddy, G. Mahander, Synthesis 2005, 02, 250–254.
- [25] J. S. Yadav, B. V. S. Reddy, S. Raghavendra, M. Satyanarayana, *Tetrahedron Lett.* 2002, 43, 26, 4679–4682.
- [26] K. Nishide, K. Yokota, D. Nakamura, T. Sumiya, M. Node, *Tetrahedron Lett.* **1993**, *34*, *21*, 3425–3428.
- [27] S. Bower, K. A. Kreutzer, S. L. Buchwald, Angew. Chem. 1996, 108, 1662–1664.
- [28] K. K. Babievski, V. M. Belikov, N. A. Tikhonova, Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) 1970, 19, 1096–1098.
- [29] R. Schmid, H.-J. Hansen, Helv. Chim. Acta 1990, 73, 1258-1275.
- [30] B. P. Gusev, E. A. Elperina, V. A. Kucherov, Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) 1967, 16, 2245–2249.
- [31] R. J. Sundberg, R. J. Cherney, J. Org. Chem. 1990, 55, 6028-6037.
- [32] L. A. Paquette, M. Rosen, J. Am. Chem. Soc. 1967, 89, 4102– 4112.
- [33] C. Kaiser, J. Org. Chem. 1962, 27, 768-777.
- [34] G. Stork, A. Brizzolaro, H. Landesman, J. Szmuszkovicz, R. Terrel, J. Am. Chem. Soc. 1963, 85, 207–222.
- [35] M. Hocek, A. Holý, Collect. Czech. Chem. Commun. 1995, 60, 1386–1389.
- [36] A. Brathe, L.-L. Gundersen, F. Rise, A. B. Eriksen, A. V. Vollsnes, L. Wang, *Tetrahedron* 1999, 55, 211–228.
- [37] H. Lettre, C. Woenckhaus, Justus Liebigs Ann. Chem. 1961, 649, 131–137.

Received: June 23, 2006

Published Online: September 18, 2006