Selective Reduction of Nitrogen Monoxide with Hydrogen on Pt/Al₂O₃ Containing a Metal Oxide

Yukio Kosaki,* Akira Miyamoto, and Yuichi Murakami
Department of Synthetic Chemistry, Faculty of Engineering, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya 464
(Received September 18, 1981)

By using a three-way catalyst containing a metal oxide, NO can be selectively converted to N2 and N2O without the formation of NH₃ even at the "rich" side of the air/fuel ratio. In order to elucidate the mechanism of this action of the added metal oxide, the NO-H2 reaction on Pt-V2O5/Al2O3 catalyst was investigated using the pulse reaction technique. In the NO-H₂ reaction on Pt/Al₂O₃ catalyst, a significant amount of NH₃ was formed in the "rich" region of the reactants (H₂/NO>1), although NO was completely removed. In the NO-H₂ reaction on the Pt-V2O5/Al2O3 catalyst, on the other hand, no NH3 was formed even in the "rich" region of the reactants; in addition, NO was completely removed. During the NO-H2 reaction on the Pt-V2O5/Al2O3 catalyst, the V2O5 in the catalyst was found to be reduced from V5+ to V4+. The reaction of NO with NH3 and the reaction of NH3 or H₂ with Pt-V₂O₅ mixed catalysts for various states of mixing were also investigated. From these results, the NO-H₂ reaction on the Pt-V₂O₅/Al₂O₃ catalyst has been shown to be composed of the following three main steps: Step I, the formation of NH₃ by the reduction of NO with H₂ on Pt; Step II, the NO-NH₃ reaction on Pt to form N2 or N2O; and Step III, the reduction of V2O5 in the catalyst by H2 which is accelerated by the "hydrogen spillover." In the NO-H₂ reaction on Pt/Al₂O₃ catalyst, NO is first reduced to NH₃ in Step I and the NO-NH₃ reaction in Step II follows. In the "rich" region, the formation of NH3 takes place more readily than the subsequent NO-NH₃ reaction. In the NO-H₂ reaction on the Pt-V₂O₅/Al₂O₃ catalyst, the formation of excess NH₃ is suppressed by the removal of hydrogen from Pt in Step III, and the NH₃ thus produced reacts with NO to form N2 or N2O selectively in Step II. The rates of Steps I, II, and III were also discussed in terms of the structure of the catalysts and composition of the reactants.

The three-way catalyst system is used for the simultaneous removal of nitrogen monoxide, carbon monoxide, and hydrocarbons in the automotive exhaust emissions.¹⁻⁵⁾ This is done in a single bed of catalyst by controlling the air/fuel ratio within a region near the stoichiometric point, which is called the "window." The width of the "window" is usually very narrow; therefore, in order to control the air/fuel ratio within the "window," a feedback control system of the air/fuel ratio has been developed using an oxygen sensor. 3,6-14) The three-way catalyst coupled with this feedback control system, however, cannot fully control the fluctuation of the air/fuel ratio within the "window," and this brings about the incomplete removal of NO, CO, and hydrocarbons, and also the formation of NH₃. The development of a three-way catalyst with a broad "window" is therefore highly desirable. Although the supported Rh or Rh-Pt catalyst has a "window" with a broader width than the supported Pt or Pd catalyst, 15-19) a large demand for Rh cannot be met by supply because of the limited reserve of the resources. 4,20)

The three-way catalyst containing a metal oxide such as V₂O₅,²¹) Re₂O₇,^{22,23}) MoO₃,²⁴) or CeO₂^{25,26}) has been shown to deal effectively with the fluctuation of the air/fuel ratio; thereby, the width of the "window" has been markedly broadened. The role of the added metal oxide has been considered as "oxygen storage."^{27–29}) However, further details of the mechanism of the action of the metal oxide added to the three-way catalyst have not been clarified. This may be due to the complexity of the system: (i) The automative exhaust gas contains many components, including NO, CO, H₂, hydrocarbons, SO₂, and water, which lead to very complex networks of elementary reactions on the catalyst, and (ii) the three-way catalyst containing the metal oxide has not been well characterized.

As a first step to the investigation of the mechanisms of the reactions involved in the automotive exhaust emissions control using a three-way catalyst containing a metal oxide, the purposes of this study were (i) to investigate whether the action of the added metal oxide for the selective reduction of NO can also be observed in the NO-H₂ reaction on Pt-V₂O₅/Al₂O₃ catalyst—a system which is much simpler than the real three-way catalyst system, and (ii) to reveal the action of the metal oxide in the NO-H₂ reaction on the Pt-V₂O₅/Al₂O₃ catalyst. The NO-H₂ reaction was investigated, since this reaction is one of the most important reactions in the "rich" region for the removal of NO,30,31) and is mainly responsible for the formation of NH₃.32) It should be noted that the rate of the reaction in the "rich" region is considered to be much slower than that in the "lean" region.28) V2O5 was chosen as the metal oxide because (i) the structure of V₂O₅ on Al₂O₃ support has been well characterized³³⁾ and (ii) it is one of the metal oxides which have been known to be excellent additives to the three-way catalyst.²¹⁾ A pulse reaction technique was employed in this study because this technique is useful for investigating the kinetic behavior of the reduction or oxidation process involved in the redox cycles of a catalyst.34-36)

Experimental

Catalysts. Pt/Al₂O₃ catalyst (Pt loading was 0.5 wt%) was purchased from Nippon Engelhard Ltd. Pt-V₂O₅/Al₂O₃ catalyst was prepared by impregnating the Pt/Al₂O₃ particles (0.3—0.6 mm) with an oxalic acid solution of ammonium metavanadate, followed by drying and subsequent heating in a stream of O₂ at 773 K for 3 h. Unless otherwise specified, the content of V₂O₅ in the Pt-V₂O₅/Al₂O₃ catalyst was 9 wt%, although Pt-V₂O₅/Al₂O₃ with 36 wt% V₂O₅ loading was also

used. A V₂O₅ was prepared by the thermal decomposition of ammonium metavanadate in an O2 stream at 773 K for 3 h. A Pt/Al₂O₃-metal oxide(M) catalyst (the ratio of Pt/ Al₂O₃ to the metal oxide was 1/1 in weight)was prepared by mixing powders of Pt/Al₂O₃ and the metal oxide in a mortar for 20 min without water. A Pt/Al₂O₃-V₂O₅(P) catalyst was obtained by mixing Pt/Al₂O₃ particles (0.3—0.6 mm) with an equal weight of V₂O₅ particles (0.3—0.6 mm) with a spatula, followed by shaking in a pulse reactor.

Commercial NO (more than 99.5% purity), H_2 (99.99% purity), and NH_3 (99.9% purity) were used without further purification. He or Ar as a carrier gas was purified with a titanium metal sponge heated at 1023 K and a Molecular Sieve at room temperature.

Apparatus and Procedures. Experiments were conducted using a pulse reaction apparatus, the reactor consisting of a Pyrex glass tube (4 mm i.d.). Unless otherwise specified, experiments were carried out under the following conditions: The carrier gas flow rate was 87 cm³-STP/min; the reaction temperature was 573 K; the total amount of a single pulse was 5 cm³-STP; the concentration of NO in pulse was 2.3% which corresponded to the amount of NO 5.1 µmol; the concentration of H₂ was varied over the range 1.15—4.6%, which corresponded to the amounts of H₂ 2.25—10.2 µmol; catalyst weights were 5-218 mg. Before introducing the reactant pulse, all catalysts containing a metal oxide were treated with an O₂ stream at 773 K for 30 min. Columns used for gaschromatographic analysis were tetraethylenepentamine on Difron for NH₃, silica gel for N₂O, and Molecular Sieve type 13X for H₂, N₂, and NO; they were connected in an intermediate cell system. $^{37)}$ Ar (in the case of He carrier) or N_2 (in the case of Ar carrier) was used as an internal standard.

Converions of NO (X_{NO}) and H_2 (X_{H_2}) , yields of NH_3 $(Y_{\rm NH_3}),~{
m N_2}~(Y_{
m N_2}),~{
m and}~{
m N_2O}~(Y_{
m N_2O}),~{
m and}~{
m selectivities}~{
m to}~{
m NH_3}$ (S_{NH_3}) , N_2 (S_{N_2}) , and N_2O (S_{N_2O}) were calculated from outlet amounts of NO (Q_{NO}) , $H_2(Q_{H_2})$, $NH_3(Q_{NH_3})$, $N_2(Q_{N_2})$, and N_2O (Q_{N_2O}) as follows:

$$X_{\text{NO}} = 1 - Q_{\text{NO}}/Q_{\text{NO}}^{\circ}, \tag{1}$$

$$X_{\rm H_2} = 1 - Q_{\rm H_2}/Q_{\rm H_2}^{\circ}, \tag{2}$$

$$Y_{\rm NH_3} = Q_{\rm NH_3}/Q_{\rm NO'}^{\circ},\tag{3}$$

$$Y_{N_2} = 2Q_{N_2}/Q_{NO'}^{\circ},$$
 (4)

$$Y_{\text{N2O}} = 2Q_{\text{N2O}}/Q_{\text{NO}}^{\circ}, \tag{5}$$

$$S_{NH_3} = Y_{NH_3}/(Y_{NH_3} + Y_{N_2} + Y_{N_2O}), \tag{6}$$

$$S_{N_2} = Y_N / (Y_{NH_1} + Y_{N_2} + Y_{N_2O}), \tag{7}$$

$$S_{N_2} = Y_N/(Y_{NH_1} + Y_{N_2} + Y_{N_2O}),$$
(7)

$$S_{N_2O} = Y_{N_2O}/(Y_{NH_3} + Y_{N_2} + Y_{N_2O}),$$
(8)

where Q_{NO}° and $Q_{N_2}^{\circ}$ are the amounts of NO and H₂ injected into the reactor.

The oxidation state of V₂O₅ in the catalysts before and after the pulse reaction was studied by ESR spectroscopy, using a JEOL ME 1X spectrometer.

Results

Effect of the H2/NO Ratio on the NO-H2 Reaction on Pt/Al_2O_3 and $Pt-V_2O_5$ Mixed Catalysts. Figures 1 and 2 show results of the NO-H2 reaction on the Pt/Al_2O_3 , $Pt-V_2O_5/Al_2O_3$, $Pt-Al_2O_3/V_2O_5(M)$, and Pt/Al₂O₃-V₂O₅(P) catalysts at various inlet H₂/NO ratios. As is evident from Figs. 1 and 2, the catalytic properties of these catalysts changed significantly depending on the kind of catalysts and composition of the reactants. As shown in Fig. 1, X_{NO} varied with the

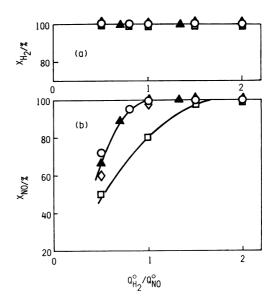


Fig. 1. Effect of the H₂/NO ratio on the conversions of NO (X_{NO}) and H_2 (X_{H_2}) in the NO- H_2 reaction on the Pt/Al₂O₃ and Pt-V₂O₅ mixed catalysts. Catalyst weight: $Pt/Al_2O_3 = 100 \text{ mg}$, $Pt-V_2O_5/Al_2O_3$ = 109 mg, $Pt/Al_2O_3-V_2O_5$ (M) = 200 mg, $Pt/Al_2O_3-V_2O_5$ V_2O_5 (P)=200 mg (Pt weight in catalysts=500 µg). \triangle : Pt/Al_2O_3 , \bigcirc : $Pt-V_2O_5/Al_2O_3$, \square : $Pt/Al_2O_3-V_2O_5$ (M), \diamondsuit : $Pt/Al_2O_3-V_2O_5$ (P).

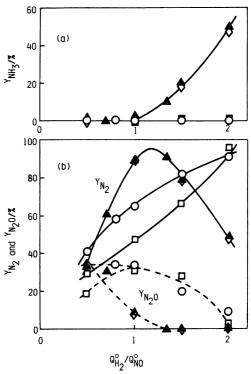


Fig. 2. Effect of the H₂/NO ratio on the yields of NH₃ $(Y_{\rm NH_3})$, N₂ $(Y_{\rm N_2})$, and N₂O $(Y_{\rm N_2O})$ in the NO-H₂ reaction on the Pt/Al₂O₃ and Pt-V₂O₅ mixed catalysts. Catalyst weight: $Pt/Al_2O_3 = 100 \text{ mg}$, $Pt-V_2O_5/Al_2O_3 =$ 109 mg, $Pt/Al_2O_3-V_2O_5(M) = 200$ mg, $Pt/Al_2O_3-V_2O_5-V_3O$ (P)=200 mg (Pt weight in catalysts=500 μ g). \triangle : Pt/ Al_2O_3 , \bigcirc , $Pt-V_2O_5/Al_2O_3$, \square : $Pt/Al_2O_3-V_2O_5(M)$, $\diamondsuit: Pt/Al_2O_3-V_2O_5(P), \longrightarrow: Y_{N_2}, \cdots: Y_{N_2O}.$

 $Q_{\rm H_2}^{\circ}/Q_{\rm NO}^{\circ}$ and the kind of catalysts, while the $X_{\rm H_2}$ was 100% for all of the catalysts indicated. X_{NO} for the Pt/Al_2O_3 catalyst was 100% when $Q_{H_2}^{\circ}/Q_{NO}^{\circ}$ was more than unity; that is, when $Q_{H_2}^{\circ}$ was greater than the stoichiometry $(Q_{H_2}^{\circ}/Q_{NO}^{\circ}=1$, that is, $H_2+NO=H_2O+$ $1/2N_2$). As $Q_{H_2}^{\circ}$ decreased from the stoichiometry, X_{NO} for the Pt/Al₂O₃ catalyst decreased. X_{NO} for the Pt- V_2O_5/Al_2O_3 or $Pt/Al_2O_3-V_2O_5(P)$ catalyst was almost equal to X_{NO} for the Pt/Al₂O₃ catalyst at any $Q_{H_2}^{\circ}/Q_{NO}^{\circ}$, while X_{NO} for the Pt/Al₂O₃-V₂O₅(M) catalyst was slightly lower than that for the Pt/Al₂O₃, Pt/Al₂O₃-V₂O₅(P), or Pt-V₂O₅/Al₂O₃ catalyst especially in the "lean" region, i.e. $Q_{H_2}^{\circ}/Q_{NO}^{\circ} < 1$. As shown in Fig. 2, in the "rich" region, i.e. $Q_{H_2}^{\circ}/Q_{NO}^{\circ} > 1$, a considerable amount of NH₃ was produced in the NO-H₂ reaction on the Pt/Al₂O₃ catalyst, and Y_{NH3} increased markedly with increasing $Q_{\text{No}}^{\circ}/Q_{\text{No}}^{\circ}$. In the NO-H₂ reaction on the Pt-V₂O₅/Al₂O₃ and Pt/Al₂O₃-V₂O₅(M) catalysts, no NH₃ was produced independent of the value of $Q_{\rm H_2}^{\circ}/Q_{\rm NO}^{\circ}$, while NO was almost selectively reduced to N₂ or N₂O as shown in Fig. 2(b). It should be emphasized that no NH3 was produced even in the "rich" region, i.e. $Q_{H_2}^{\circ}/Q_{NO}^{\circ} > 1$. Y_{NH_3} , Y_{N_2} , and Y_{N_2O} for the Pt/Al₂O₃-V₂O₅(P) catalyst were almost the same as those for the Pt/Al₂O₃ catalyst. The V₂O₅ alone was not active for the NO-H₂ reaction under the experimental conditions of the present study.

ESR spectra of all the Pt-V₂O₅ mixed catalysts were measured before and after the reaction at $Q_{\rm H_2}^{\circ}/Q_{\rm NO}^{\circ}=1.5$

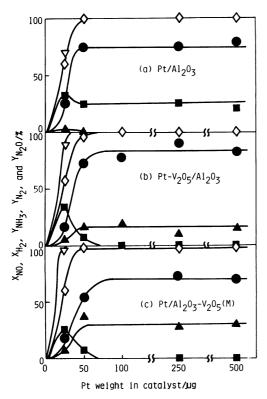


Fig. 3. Relationship between the Pt weight in the Pt/Al₂O₃ and Pt-V₂O₅ mixed catalysts and the activities and yields in the NO-H₂ reaction in the "rich" region $(Q_{H_2}^{\circ}/Q_{N_0}^{\circ}=1.5)$.

 $\diamondsuit: X_{NO}, \nabla: X_{H_2}, \blacksquare: Y_{NH_3}, \bullet: Y_{N_2}, \blacktriangle: Y_{N_2O}.$

or 2.0. For the Pt–V₂O₅/Al₂O₃ and Pt/Al₂O₃–V₂O₅(M) catalysts, the ESR intensity of V⁴⁺ ions in the used catalyst increased markedly compared with that in the fresh catalyst. For the Pt/Al₂O₃–V₂O₅(P), on the other hand, the ESR intensity of V⁴⁺ ions in the used catalyst was the same as that in the fresh catalyst. The fresh Pt–V₂O₅ mixed catalysts were all yellow in color. The color of the used Pt–V₂O₅/Al₂O₃ and Pt/Al₂O₃–V₂O₅(M) catalyst changed to black, but the color of the used Pt/Al₂O₃–V₂O₅(P) catalyst remained yellow. These data indicate that the V₂O₅ in the Pt–V₂O₅/Al₂O₃ and Pt/Al₂O₃–V₂O₅(M) catalysts was reduced during the NO–H₂ reaction in the "rich" region, i.e. at $Q_{\rm H_2}^{\rm H_2}/Q_{\rm NO}^{\rm NO}$ = 1.5 or 2.0, while the V₂O₅ in the Pt/Al₂O₃–V₂O₅(P) catalyst was not reduced.

Effect of the Catalyst Weight on the NO- H_2 Reaction. The NO- H_2 reaction in the "rich" region $(Q_{H_2}^{\circ}/Q_{N0}^{\circ}=1.5)$ on the Pt/Al₂O₃, Pt-V₂O₅/Al₂O₃, and Pt/Al₂O₃-V₂O₅(M) catalysts was investigated using various amounts of the catalysts. The results are shown in Figs. 3 and 4. Here, the weight of Pt in the catalyst gave the measure of the catalyst weight, since V₂O₅ was not active for the NO- H_2 reaction. Figure 3(a) shows the results of the Pt/Al₂O₃ catalyst. The maximum yield of NH₃ was attained when the Pt weight in the catalysts was ca. 25 μ g, then $Y_{\rm NH_3}$ decreased gradually up to 50 μ g, and it remained unchanged even with further increase of the Pt weight in catalyst. $X_{\rm NO}$ and $X_{\rm H_2}$ increased monotonically with increasing Pt weight in the catalyst, and attained 100% when the Pt weight was 50 μ g. Figure 3(b) shows the results of the Pt-

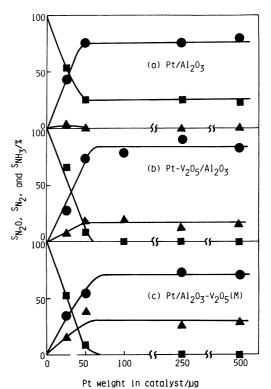


Fig. 4. Relationship between the Pt weight in the Pt/Al₂O₃ and Pt-V₂O₅ mixed catalysts and the selectivities in the NO-H₂ reaction in the "rich" region $(Q_{\rm H_2}^{\circ}/Q_{\rm NO}^{\circ}=1.5)$.

 $\blacksquare : S_{NH_3}, \ \blacksquare : S_{N_2}, \ \blacktriangle : S_{N_2O}.$

 $Y_{\rm NH_8}$ attained its maximum, V_2O_5/Al_2O_3 catalyst. which was almost the same Y_{NH_8} value as that for the Pt/Al₂O₃ catalyst when the Pt weight in the catalyst was ca. 25 µg, then decreased significantly with increasing Pt weight in the catalyst, and finally reached 0% when the Pt weight in the catalyst was 75 µg. The relationship between X_{NO} and the Pt weight was the same as that for the Pt/Al_2O_3 catalyst. However, X_{H_2} for the Pt-V₂O₅/Al₂O₃ catalyst was higher than that for the Pt/Al₂O₃ catalyst at the same Pt weight: For example, when the Pt weight in the catalyst was 25 µg, $X_{\rm H_2}$ for the Pt-V₂O₅/Al₂O₃ catalyst was about 90%, while $X_{\rm H_2}$ for the Pt/Al₂O₃ catalyst was about 70%. Figure 3(c) shows the results of the Pt/Al₂O₃-V₂O₅(M) catalyst. X_{NO} , X_{H_2} , Y_{NH_3} , Y_{N_2} , and Y_{N_2O} for the Pt/Al₂O₃-V₂O₅(M) were respectively in accord with those for the Pt-V₂O₅/Al₂O₃ catalyst. Figure 4 shows the results of S_{NH_8} , S_{N_2} , and S_{N_2O} at various catalyst weights. It is interesting to note that S_{NH_3} increased markedly with decreasing Pt weight in the catalyst in the region of low Pt weight (50 µg) and it was extrapolated to almost 100% when the Pt weight decreased to 0 µg. A similar relationship was also observed for the reaction in the "lean" region, while S_{NH_3} became 0 when the Pt weight in the catalyst was 50 µg.

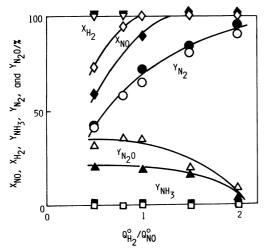


Fig. 5. Effect of the loading of V_2O_5 in the NO-H₂ reaction on various $Pt-V_2O_5/Al_2O_3$ catalysts. Catalyst weight: $Pt-V_2O_5/Al_2O_3$ (9 wt% V_2O_5)=109 mg, $Pt-V_2O_5/Al_2O_3$ (36 wt% V_2O_5)=136 mg (Pt weight in catalysts=500 µg). \diamondsuit , \spadesuit : X_{NO} , \bigtriangledown , \blacktriangledown : X_{H_2} , \Box , \blacksquare : Y_{NH_3} , \bigcirc , \blacksquare : Y_{N_2} , \triangle , \blacktriangle : Y_{N_20} . Open symbols: $Pt-V_2O_5/Al_2O_3$ (9 wt% V_2O_5); closed symbols: $Pt-V_2O_5/Al_2O_3$ (36 wt% V_2O_5).

Effect of V_2O_5 Loading on the NO- H_2 Reaction on the $Pt-V_2O_5/Al_2O_3$ Catalyst. Figure 5 shows the results of the NO- H_2 reaction on the $Pt-V_2O_5/Al_2O_3$ catalysts with two different loadings of V_2O_5 , 9 and 36 wt%. $X_{\rm H_2}$ was 100% irrespective of the V_2O_5 loading. $X_{\rm NO}$ for the $Pt-V_2O_5/Al_2O_3$ (36 wt% V_2O_5) was slightly lower than that for the $Pt-V_2O_5/Al_2O_3$ (9 wt% V_2O_5) when $Q_{\rm H_2}/Q_{\rm NO}$ was less than 1.5. NH3 was not produced with either of the catalysts. $Y_{\rm N_2}$ was not significantly changed with the V_2O_5 loading, while $Y_{\rm N_2O}$ for the

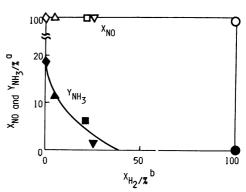


Fig. 6. Relationship between the conversion of NO (X_{NO}) and the yield of NH₃ (Y_{NH_3}) in the NO-H₂ reaction on various Pt-metal oxide(M) catalysts and the conversion of H₂ (X_{H_2}) in the reaction of H₂ with catalysts.

a: The NO-H₂ reaction, $Q_{H_2}^{\circ}/Q_{NO}^{\circ} = 1.5$, b: the reaction of H₂ with catalysts, concentration of H₂ in pulse= 3.7%. Catalyst weight; Pt/Al₂O₃=100 mg, Pt/Al₂O₃-metal oxide(M)=200 mg (Pt weight in catalysts=500 µg). \diamondsuit , \spadesuit : Pt/Al₂O₃- \diamondsuit , \diamondsuit \diamondsuit : Pt/Al₂O₃

 $Pt-V_2O_5/Al_2O_3$ (36 wt% $V_2O_5)$ was slightly lower than that for the $Pt-V_2O_5/Al_2O_3$ (9 wt% $V_2O_5).$

The NO- H_2 Reaction on Various Pt/Al_2O_3 -Metal Oxide-(M) Catalysts. Figure 6 shows the results of the NO- H_2 reaction on various Pt/Al_2O_3 -metal oxide(M) catalysts at $Q_{\rm H_2}^{\circ}/Q_{\rm NO}^{\circ}=1.5$; under this condition, $X_{\rm NO}$ was 100% for all of the catalysts and the metal oxide itself was inactive for either the NO- H_2 reaction or the reaction of H_2 (or NH₃) with the catalyst. Here, the results are represented as a relationship between $Y_{\rm NH_3}$ in the NO- H_2 reaction and $X_{\rm H_2}$ for the reaction of H_2 with the catalyst. As shown, $Y_{\rm NH_3}$ for the NO- H_2 reaction decreased monotonically with increasing $X_{\rm H_2}$ for the reaction of H_2 with the catalyst and it was 0% for the Pt/Al_2O_3 - $V_2O_5(M)$ catalyst.

The NO-NH₃ Reaction, and the Reaction of H_2 or NH_3 with the Catalysts. Table 1 shows the results of the NO-NH₃ reaction and those of the reaction of H_2 or NH_3 with the catalysts. These experiments were

Table 1. Activities of $Pt-V_2O_5$ mixed catalysts for various reactions at 573 K

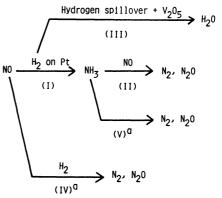
	Weight mg	Reaction		
Catalyst		$NO-NH_3^b$ $X_{NO}/\%$	$X_{ m H_2}$ -catal $^{ m c}$	NH ₃ -catal ^d) X _{NH3} /%
Pt/Al ₂ O ₃	100°)	89	0	0
$Pt-V_2O_5/Al_2O_3$	109ª)	88	100	57
$Pt/Al_2O_3-V_2O_5(M)$	200°)	87	100	2
$Pt/Al_2O_3-V_2O_5(P)$	200°)	85	0	2
V_2O_5	100	57	0	2

a) Pt weight in catalyst=500 μ g. b) The inlet NO/NH₃ ratio=1/1 (the inlet concentration of NO in pulse=2.5%). c) The reaction of H₂ with the catalyst; the inlet concentration of H₂ in pulse=3.7%. d) The reaction of NH₃ with the catalyst; the inlet concentration of NH₃ in pulse=2.5%.

Table 2. Conversion of H_2 in the reaction of H_2 with various $Pt-V_2O_5$ mixed catalysts at 573 K

Catalyst -	Pt weight	V2O5 weight	X H2
Catalyst	μg	mg	%
$Pt-V_2O_5/Al_2O_3(9 \text{ wt}\%V_2O_5)$	25	0.5	12
$Pt-V_2O_5/Al_2O_3(36 \text{ wt}\%V_2O_5)$) 25	1.8	14
$Pt/Al_2O_3-V_2O_5(M)$	25	5.0	19

a) The concentration of H_2 in pulse=10% (22 μ mol).


made because these reactions are considered to be important steps in the NO-H₂ reaction. As shown in Table 1, X_{NO} in the NO-NH₃ reaction was almost constant for the Pt/Al_2O_3 , $Pt-V_2O_5/Al_2O_3$, $Pt/Al_2O_3-V_2O_5(M)$, and $Pt/Al_2O_3-V_2O_5(P)$ catalysts, while X_{NO} for the V₂O₅ was considerably lower than those for the former catalysts. This indicates that the activity of the Pt/Al₂O₃ catalyst for the NO-NH₃ reaction is not markedly increased by the addition of V2O5. XH2 in the reaction of H₂ with the catalyst was 100% for both the Pt-V₂O₅/Al₂O₃ and Pt/Al₂O₃-V₂O₅(M) catalysts, while it was 0% with the Pt/Al₂O₃, Pt/Al₂O₃-V₂O₅(P), or V_2O_5 catalyst. Table 2 also shows the results of X_{H_2} in the reaction of H₂ with the catalyst; the catalyst weight was considerably decreased in order to decrease the value of $X_{\rm H_2}$. As shown, $X_{\rm H_2}$ was almost constant for the $Pt-V_2O_5/Al_2O_3$ (9 wt% V_2O_5), $Pt-V_2O_5/Al_2O_3$ (36 wt% V_2O_5), and $Pt/Al_2O_3-V_2O_5(M)$ catalysts. These data indicate that the V_2O_5 in the $Pt-V_2O_5/Al_2O_3$ and $Pt/Al_2O_3-V_2O_5(M)$ catalysts was reduced by H_2 , while the V_2O_5 in the $Pt/Al_2O_3-V_2O_5(P)$ or V_2O_5 catalyst was not reduced. The data of X_{NH_8} for the reaction of NH₃ with the catalyst (Table 1) indicate that this reaction occurred with the Pt-V₂O₅/Al₂O₃ catalyst, but NH₃ was not decomposed very much on the Pt/Al_2O_3 , $Pt/Al_2O_3-V_2O_5(M)$, $Pt/Al_2O_3-V_2O_5(P)$, or V_2O_5 catalyst.

Discussion

Selective Reduction of NO with H2 on the Pt-V2O5/Al2O3 A large amount of NH₃ is formed in the NO-H₂ reaction on Pt/Al₂O₃ catalyst.³²⁾ production of a large amount of NH₃ has also been confirmed in the NO-H₂-O₂ reaction on Pt/Al₂O₃ catalyst in the "rich" region.³¹⁾ These results are undesirable from the viewpoint of the selective reduction of NO to N₂ or N₂O. As shown in Fig. 2, for the NO-H₂ reaction on the Pt/Al₂O₃ catalyst, also, a significant amount of NH3 was produced in the "rich" region of the reactant $(Q_{\text{H}_2}^{\circ}/Q_{\text{NO}}^{\circ}>1)$, and the yield of NH₃ increased significantly with increasing $Q_{\rm H_2}^{\circ}/Q_{\rm NO}^{\circ}$. This is in accordance with the behavior in the NO-H₂ reaction³²⁾ and in the NO-H₂-O₂ reaction³¹⁾ on Pt-Al₂O₃ catalyst. It is interesting that no NH₃ was produced in the NO-H₂ reaction on the Pt-V₂O₅/Al₂O₃ catalyst even in the "rich" region of the reactants; in addition, the conversion of NO was 100%. This behavior of the NO-H₂ reaction on the Pt-V₂O₅/Al₂O₃ catalyst is similar to that of the reaction of the synthetic exhaust gas on a three-way catalyst containing a metal oxide.²⁸⁾ This indicates that the action of the added metal oxide for

the selective reduction of NO to N_2 or N_2O can also be observed in the NO- H_2 reaction on Pt/Al_2O_3 catalyst containing V_2O_5 —a system which is much simpler than the real three-way catalyst system.

Reaction Scheme. Although the scheme of the NO-H₂ reaction on the Pt/Al₂O₃ or Pt-V₂O₅/Al₂O₃ has not been well established, the previous data of the NO-H₂ reaction and NO-NH₃ reaction on Pt/Al₂O₃ and metal oxide catalysts lead to the reaction steps shown in Scheme I. Here, Step I is a process where NH₃

Scheme 1. Mechanism of the NO-H₂ reaction on the Pt/Al₂O₃ and Pt-V₂O₅/Al₂O₃ catalysts. a: Step IV or V does not play an important role in the NO-H₂ reaction under the conditions of this study.

is produced by the NO-H₂ reaction on Pt.³²⁾ Step II is a process where N₂ or N₂O is formed by the NO-NH₃ reaction on Pt/Al₂O₃^{38,39)} and V₂O₅.40,41) Step III is a process where V2O5 is reduced by the reaction with hydrogen spilled over from Pt.42-44) Step IV is a process where NO is directly reduced to N2 or N2O without the formation of NH₃ as an intermediate, and it is observed in the NO-H₂ reaction on some metal oxides.41,45-47) Step V is a process where NH3 is decomposed to N_2 on Pt or is oxidized by V_2O_5 to N_2 or N_2O and the latter is observed on $Pt-V_2O_5/BaSO_4^{48)}$ and metal oxides.49) Scheme 1 merely indicates some possible steps for the NO-H₂ reaction on the Pt/Al₂O₃, and Pt-V2O5/Al2O3 catalysts; therefore, it is necessary to investigate which of these Steps I-V play the main role in the NO-H₂ reaction on the Pt/Al₂O₃ and Pt- V_2O_5/Al_2O_3 catalysts.

First, the scheme of the NO-H₂ reaction on the Pt/ Al₂O₃ catalyst is discussed: Step III cannot play an important role on the Pt/Al₂O₃ catalyst because of the absence of the metal oxide. Step V is also negligible, since the decomposition of NH₃ did not occur on the Pt/Al₂O₃ (Table 1). According to Scheme 1, the primary products of the NO-H2 reaction are determined by the relative rate of Step I to that of Step IV. From the results of S_{NH_8} , S_{N_2} , and S_{N_20} shown in Fig. 4(a), Step IV is not considered to play a significant role in the NO-H₂ reaction on the Pt/Al₂O₃ catalyst. This is because S_{NH_3} is extrapolated to almost 100%when the Pt weight is decreased to 0. In other words, NH₃ formed by Step I is the main primary product of the NO-H₂ reaction on the Pt/Al₂O₃ catalyst. The formation of NH₃ for the reaction even in the "lean"

region supports the validity of this conclusion. As the catalyst weight increases, $Y_{\rm NO}$ and $S_{\rm N2}$ increase, while $S_{\rm NH_3}$ decreases [Fig. 4(a)]. According to Scheme 1, this is ascribable to the formation of N₂ by the reaction of the unreacted NO with the formed NH₃, that is, Step II. It is therefore considered that Steps I and II proceed successively in the NO-H₂ reaction on the Pt/Al₂O₃ catalyst. This agrees with the previous inference that NH₃ is an important intermediate for the reduction of NO in the synthetic exhaust emissions⁵⁰) or for the NO-H₂-O₂ reaction³¹) on the Pt/Al₂O₃ catalyst.

Next, the scheme of the NO-H₂ reaction on the Pt-V₂O₅/Al₂O₃ catalyst is discussed. As mentioned above, the V_2O_5 in the Pt- V_2O_5/Al_2O_3 and Pt/ $Al_2O_3-V_2O_5(M)$ catalysts was reduced from V5+ to V4+ during the NO-H₂ reaction in the "rich" region; and these catalysts were effective for the selective reduction of NO to N2 or N₂O in the "rich" region. On the other hand, the V₂O₅ in the Pt/Al₂O₃-V₂O₅(P) was not reduced during the NO-H₂ reaction; and this catalyst was not effective for the selective reduction of NO. From these results coupled with the data of the reaction of H₂ with the catalyst (Table 1), Step III is considered to proceed readily in the NO-H₂ reaction on the Pt-V₂O₅/Al₂O₃ and Pt/Al₂O₃-V₂O₅(M) catalysts. Similar to the case of the Pt/Al_2O_3 catalyst, S_{NH_3} for the $Pt-V_2O_5/Al_2O_3$ and Pt/Al₂O₃-V₂O₅(M) catalysts is extrapolated to almost 100% when the catalyst weight decreases to 0. This indicates that Step IV does not play an important role in the NO-H₂ reaction on the Pt-V₂O₅/Al₂O₃ or Pt/Al₂O₃-V₂O₅(M) catalyst; in other words, NH₃ is the main primary product of the NO-H2 reaction. From the data of the reaction of NH₃ with the catalyst (Table 1), Step V can take place for the Pt-V₂O₅/Al₂O₃, but it proceeds on neither the Pt/Al₂O₃-V₂O₅(M) nor Pt/Al₂O₃-V₂O₅(P) catalyst. However, Step V also does not play an important role in the selective reduction of NO to N2 or N2O.51)

Rates of Steps I and III. As mentioned above, the NO-H₂ reaction on the Pt-V₂O₅/Al₂O₃ catalyst is composed of Steps I, II, and III, and the consumption of hydrogen by Step III proceeding competitively with Step I at the upper part of the catalyst bed is the main factor for the selective reduction of NO in the "rich" region. According to Scheme 1, if the rate of Step III is much slower than that of Step 1, an excess amount of NH₃ is formed in Step I. Even if a part of the excess NH₃ is converted to N₂ or N₂O in Step II, a considerable amount of NH₃ is exhausted from the catalyst bed. According to Scheme 1, also, if the rate of Step III is much faster than that of Step I, the amount of NH₃ produced in Step I is not enough to convert NO completely to N2 or N2O in Step II; therefore, the unreacted NO is emitted from the outlet of the catalyst bed. If the rate of formation of NH₃ in Step I is successfully controlled by Step III, the NH3 produced in Step I reacts with the unreacted NO to form N2 or N2O selectively (Step II). Therefore, it is important to investigate the rates of Steps I and III in terms of the composition of the reactants and structures of the catalysts. Although we have not conducted experiments

to determine the rates of Steps I and III, $Q_{\rm H_2}(I)$ and $Q_{\rm H_2}(III)$ defined by Eqs. 9 and 10 would be useful as measures of the rates of Steps I and III.

$$Q_{\rm H_2}(I) = Q_{\rm NO}^{\circ}(5/2 Y_{\rm NH_3} + Y_{\rm N_2} + 1/2 Y_{\rm N_2O}), \tag{9}$$

$$Q_{\rm H_2}({\rm III}) = Q_{\rm H_2}^{\circ} \cdot X_{\rm H_2} - Q_{\rm H_2}({\rm I}). \tag{10}$$

Each coefficient of $Y_{\rm NH_3}$, $Y_{\rm N_2}$, or $Y_{\rm N_2O}$ in Eq. 9 is determined by the stoichiometry of the formation of each product. As is evident from Eqs. 9 and 10, $Q_{\rm H_2}(\rm II)$ and $Q_{\rm H_2}(\rm III)$ are respectively the amounts of $\rm H_2$ consumed by Steps I and III during the NO- $\rm H_2$ reaction. Under the experimental conditions shown in Figs. 1, 2, and 5, $X_{\rm H_2}$ is 100%; therefore, Eq. 10 leads to Eq. 11 under the stated conditions.

$$Q_{\rm H_2}({\rm III}) = Q_{\rm H_2}^{\circ} - Q_{\rm H_2}^{\circ}({\rm I}). \tag{11}$$

 $Q_{\rm H_2}({\rm I})$ and $Q_{\rm H_2}({\rm III})$ are calculated from the data of the NO-H₂ reaction shown in Figs. 1, 2, and 5. As shown in Figs. 7 and 8, $Q_{\rm H_2}(I)$ for the Pt/Al₂O₃ is almost equal to $Q_{\rm H_2}^{\circ}$ at any $Q_{\rm H_2}^{\circ}/Q_{\rm NO}^{\circ}$, while $Q_{\rm H_2}({\rm III})$ for the Pt/Al₂O₃ is very small, which means that almost all of the H2 in the reactants are consumed by Step I. This is reasonable since Step III occurs only very slightly on the Pt/Al₂O₃ catalyst. As for the results of the Pt-V2O5/Al2O3 catalysts, $Q_{\rm H_2}(I)$ is almost equal to $Q_{\rm H_2}^{\circ}$ in the "lean" region of the reactants $(Q_{\rm H_2}^{\circ}/Q_{\rm NO}^{\circ} < 1)$. Correspondingly, the value of $Q_{\rm H_2}(III)$ is very small in this region. In other words, in the "lean" region of the reactants, little H₂ is consumed in Step III but most of the H₂ is consumed in Step I. In the "rich" region of the reactants $(Q_{H_2}^{\circ}/Q_{NO}^{\circ}>1)$, $Q_{H_2}(I)$ for the Pt-V₂O₅/Al₂O₃ catalyst is almost independent of $Q_{\rm H_2}^{\circ}/Q_{\rm NO}^{\circ}$, while $Q_{\rm H_2}({\rm III})$ increases markedly with increasing $Q_{H_2}^{\circ}/Q_{NO}^{\circ}$. This means that excess H_2 in the "rich" region is almost selectively removed by Step III, and hence the formation of excess NH3 in Step I is suppressed. Such changes of $Q_{\rm H_2}(I)$ and $Q_{\rm H_2}(III)$ with $Q_{\rm H_2}^{\circ}/Q_{\rm NO}^{\circ}$ for the Pt-V₂O₅/

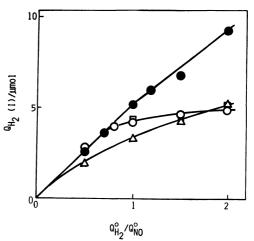


Fig. 7. Consumption of H₂ in Step I in the NO-H₂ reaction on the Pt/Al₂O₃ and various Pt-V₂O₅ mixed catalysts.

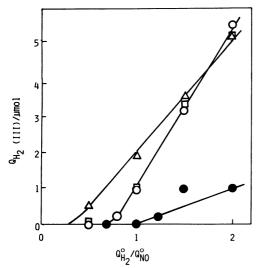


Fig. 8. Consumption of H₂ in Step III in the NO-H₂ reaction on the Pt/Al₂O₃ and various Pt-V₂O₅ mixed catalysts.

Al₂O₃ catalyst are desirable from the viewpoint of the selective reduction of NO. The reason for this is that, in the "lean" region, a reducing agent (H2) is effectively used for the reduction of NO, whereas, in the "rich" region, an excess amount of reducing agent is removed by Step III and the formation of excess NH₃ is suppressed. In this manner, selective reduction of NO to N₂ or N₂O is warranted for a broad composition of the reactants. As shown in Fig. 7, $Q_{H_2}(I)$ for the Pt-V₂O₅/Al₂O₃ is almost independent of $Q_{\text{H}_2}^{\circ}/Q_{\text{NO}}^{\circ}$ in the "rich" region of the reactants. This is in accordance with the behavior of the reduction of NO in the NO-H₂-O₂ reaction on Pt/Al₂O₃ catalyst.³¹⁾ According to the computer simulation of the NO-H₂-O₂ reaction on the Pt/Al₂O₃ catalyst,31) the rate of the reduction of NO with H₂ is only slightly decreased even if the amount of adsorbed hydrogens on Pt surface is decreased by the addition of O_2 to the system.

References

- 1) M. Shelef, Catal. Rev., 11, 1 (1975).
- 2) J. Wei, Adv. Catal., 24, 57 (1975).
- 3) T. Ono, Shokubai, 19, 142 (1977).
- 4) H. Ohara, S. Kondo, and Y. Fujitani, Papers Soc. Automotive Eng. Jpn., 16, 9 (1978).
 - 5) W. M. Wang, SAE Paper, 800052 (1980).
 - 6) J. G. Riverd, SAE Paper, 730005 (1973).
- 7) R. Zechnall, G. Baumann, H. Eisele, and R. Bosch, SAE Paper, 730566 (1973).
- 8) W.E. Bernhardt, "The Catalytic Chemistry of Nitrogen Oxides," ed by R. L. Klimisch and J. G. Larson, Plenum Press, New York, N.Y. (1975), p. 297.
- 9) S. Nakagawa and T. Yamaguchi, J. Soc. Automotive Eng. Jpn., 31, 1175 (1977).

- 10) M. Konno, J. Soc. Automotive Eng. Jpn., 31, 1182 (1977).
- 11) M. Kawai and H. Watanabe, J. Soc. Automotive Eng. Jpn., 32, 122 (1978).
- 12) R. P. Canale, C. R. Carlson, S. R. Winegarden, and D. L. Miles, *SAE Paper*, 780205 (1978).
- 13) R. E. Seiter and R. J. Clark, SAE Paper, 780203 (1978).
- 14) C. D. Falk and J. J. Mooney, SAE Paper, 800462 (1980).
- 15) G. L. Beuerle, G. R. Service, and K. Nobe, Ind. Eng. Chem. Prod. Res. Dev., 11, 54 (1972).
- 16) D. R. Ashmead, J. S. Campbell, P. Davies, and K. Famery, SAE Paper, 740249 (1974).
- 17) K. C. Taylor, "The Catalytic Chemistry of Nitrogen Oxides," ed by R. L. Klimisch and J. G. Larson, Plenum Press, New York, N.Y. (1975), p. 173.
- 18) J. C. Schlatter, SAE Paper, 780199 (1978).
- 19) P. Oser, SAE Paper, 790306 (1979).
- 20) F. Morikawa, Kagaku To Kogyo, 34, 203 (1981).
- 21) H. Ohara, Y. Miura, and Y. Fujitani, *Preprints Meeting Soc. Automotive Eng. Jpn.*, 1978, 629.
- 22) H. S. Gandhi and M. Shelef, Patent Application, No. 607660 (1975).
- 23) H. C. Yao and M. Shelef, J. Catal., 44, 392 (1976).
- 24) H. S. Gandhi, H. C. Yao, Y. K. Steipein, and J. T. Kummer, 2nd Chem. North Am. Continent, San Francisco, 1980, No. 150.
- 25) J. C. Summers and S. A. Ausen, J. Catal., 58, 131 (1979).
- 26) J. C. Schlatter and P. J. Mitchell, *Ind. Eng. Chem. Prod. Res. Dev.*, **19**, 288 (1980).
- 27) J. E. Hunter, SAE Paper, 720122 (1972).
- 28) H. S. Gandhi, A. G. Piken, M. Shelef, and R. G. Delosh, *SAE Paper*, 760210 (1976).
- 29) S. Nakagawa and A. Tamano, J. Soc. Automotive Eng. Jpn., 32, 1025 (1978).
- 30) J. H. Jones, J. T. Kummer, K. Otto, M. Shelef, and E. E. Weaver, *Environ. Sci. Technol.*, 5, 790 (1971).
- 31) A. Miyamoto, B. Inoue, and Y. Murakami, Ind. Eng. Chem. Prod. Res. Dev., 18, 104 (1979).
- 32) M. Schelef and H. S. Gandhi, Ind. Eng. Chem. Prod. Res. Dev., 11, 393 (1972).
- 33) Y. Murakami, M. Inomata, A. Miyamoto, and K. Mori, *Proc. 7th Int. Congr. Catal.*, Tokyo, 1980, Kodansha (Tokyo) and Elseiver (Amsterdam-Oxford-New York) (1981), p. 1344.
- 34) M. Niwa and Y. Murakami, J. Catal., 26, 359 (1972).
- 35) M. Niwa and Y. Murakami, J. Catal., 27, 26 (1972).
- 36) Y. Murakami, "Some Theoretical Problems of Catalysis," ed by T. Kwan, G. K. Boreskov, and K. Tamaru, University of Tokyo Press, Tokyo (1973), p. 203.
- 37) Y. Murakami, Bull. Chem. Soc. Jpn., 32, 316 (1959).
- 38) T. Otto, M. Shelef, and J. T. Kummer, J. Phy. Chem., 74, 2690 (1970).
- 39) T. Otto, M. Shelef, and J. T. Kummer, J. Phy. Chem., **75**, 875 (1971).
- 40) A. Miyamoto, Y. Yamazaki, and Y. Murakami Nippon Kagaku Kaishi, 1977, 619.
- 41) Y. Murakami, K. Hayashi, K. Yasuda, T. Ito, T, Minami, and A. Miyamoto, Nippon Kagaku Kaishi, 1977, 173.
- 42) Since V₂O₅ alone was not reduced by H₂ (Table 1), one can neglect a mechanism that V₂O₅ is directly reduced by H₂.
- 43) P. A. Sermon and G. C. Bond, Catal. Rev., 8, 211 (1973).
- 44) K. Fujimoto and S. Asaoka, Sekiyu Gakkai Shi, 19, 837 (1976).
- 45) E. Echigoya, H. Niiyama, and A. Ebitani, Nippon Kagaku Kaishi, 1974, 222.
- 46) A. Ebitani, H. Niiyama, and E. Echigoya, Nippon Kagaku Kaishi, 1974, 1185.

- 47) E. Echigoya, H. Niiyama, A. Ebitani, and H. Iida, Bull. Jpn. Petrol. Inst., 17, 232 (1975).
- 48) N. I. Il'chenko, Kinet. Katal., 17, 380 (1976).
 49) Y. Kosaki, A. Miyamoto, and Y. Murakami, Bull. Chem. Soc. Jpn., 52, 617 (1979).
- 50) R. L. Klimisch and K. C. Taylor, Environ. Sci. Technol., **7**, 12 (1973).
- 51) (i) The activity of the Pt-V₂O₅/Al₂O₃ catalyst for the

reaction with NH₃ was considerably lower than that for the reaction with H₂ (Table 1). (ii) Although the activity of the $Pt-V_2O_5/Al_2O_3$ catalyst for the reaction with NH3 was much higher than that of the Pt/Al₂O₃-V₂O₅ (M) catalyst, the behavior of Y_{NH3} in the NO-H₂ reaction on the Pt/Al₂O₃-V₂O₅ (M) catalyst at various catalyst weights was almost the same as that on the Pt-V₂O₅/Al₂O₃ catalyst (Fig. 3).