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Abstract: Carbohydrate derivatives 1a, 1b, 3a and 3b have been
subjected to copper(I) catalysed photoannulation to produce tetra-
cyclic products 2a, 2b, 4a and 4b respectively as single enanti-
omers. The same reaction carried out on substrates 5a and 5b leads
stereoselectively to the spiro products 6a and 6b respectively. Pho-
toannulation of substrate 7 gave an approximate 1:1 mixture of
spiro products 8 and 9. A mechanistic rationalisation of these results
is proposed.
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Synthetic chemists have used carbohydrates as polyhy-
droxylated chiral starting materials for many years.1

When the chosen target molecule in these ventures is cy-
clic, methods for the annulation of the carbohydrate start-
ing material are required, and there are many varied
strategies to achieve this objective.2 One potentially use-
ful method for carbohydrate annulation involves a [2+2]
photoannulation. To the best of our knowledge there are
three applications of intramolecular enone-olefin [2+2]
photoannulation in a carbohydrate example,3 in which ste-
reoselectivity was not always observed. There are also
two examples of intermolecular enone-olefin [2+2] pho-
toannulation on sugar derivatives, one of which occurs in
low yield with poor stereoselectivity.4 We now report the
stereoselective formation of several cyclobutane carbohy-
drate derivatives, in good yield, via the copper(I) cataly-
sed [2+2] photoannulation of the corresponding
unactivated 1,6-dienes. 

The formation of coordination complexes between cop-
per(I) and olefins is well known.5, 6 Applications of these
complexes in catalysed photoannulation reactions has
been studied by Salomon for many years.7 In particular
copper(I) catalysed [2+2] cycloaddition has been espe-
cially successful. Coordination of the copper(I) to both
olefins produces a complex which absorbs the light and
cyclizes. The product does not coordinate, and so is re-
leased from the copper, which then coordinates another
molecule of diene to complete the cycle. 

Continuing our interest in new methods for carbohydrate
annulation8 we have investigated the application of the
copper(I) triflate catalysed [2+2] photoannulation to this
problem. We were particularly interested to see if the
promising results of Salomon and Ghosh,9 on the stereo-

control of these reactions, could be applied in carbohy-
drate examples to produce single enantiomerically pure
diastereoisomers.

D
ow

nl
oa

de
d 

by
: U

C
 S

an
ta

 B
ar

ba
ra

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.



1004 D. J. Holt et al. LETTER

Synlett 1999, S1, 1003–1005 ISSN 0936-5214 © Thieme Stuttgart · New York

The 1,6-dienes10 1a-b, 3a-b, 5a-b and 7 were selected and
the results of the photoannulation reactions are sum-
marised in Table 1. The first photoannulation substrate
was the trans glucose derivative 1a, which was irradiated
at 254 nm in benzene, using a Rayonet photochemical re-
actor, with a catalytic amount copper(I) triflate benzene
complex.11 Two diastereoisomeric products are possible
in this reaction, arising from the facial selectivity of the
[2+2] cycloaddition. The 13C NMR spectrum of the crude
product showed that only one diastereoisomer was
formed, and only a single peak was observed by HPLC.
The six stereogenic centres in the enantiomerically pure
starting material 1a would not reasonably be expected to
change on irradiation, and so we conclude that product 2a,
obtained in 86% isolated yield, is enantiomerically pure.
The absolute configurations of the two new centres in 2a
were confirmed in the X-ray crystal structure12 by com-
parison with the unchanged stereogenic centres. 

Similar treatment of the more hindered trans diene 1b
gave a modest 18% yield of product 2b, whereas the cis
glucose derivatives 3a and 3b led to single diastereoiso-
mers 4a and 4b in 86% and 89% yield respectively.

To extend the range of this work we prepared two sub-
strates 5a and 5b for spiro photoannulation. Irradiation
under our usual conditions produced the products 6a and
6b as single enantiomers in moderate yield, whose struc-
tures were confirmed by X-ray crystallography.13 Diene 7
gave an approximate 1:1 mixture of the two possible prod-
ucts 8 and 9 in a 63% yield.

In order to explain the stereochemistry of these reactions
we returned to the work of Salomon and Ghosh,9 in which
there is a preference for the formation of the endo product
in the photobicyclisation of 1,6-heptadiene-3-ols. Apply-
ing these arguments to the photoannulation of our diene
glucose derivatives we arrive at the hypotheses illustrated
in Scheme 1. Coordination of the two olefins and the hy-
droxyl oxygen as shown in structures 10a and 10b means
that in the products 2a and 2b the cyclobutane ring and the

hydroxyl group are on the b-face of the molecule. In the
same way the chelated structures 11a and 11b lead to the
products 4a and 4b in which the cyclobutane and the hy-
droxyl group are on the a-face of the molecule.

We propose transition states 12a and 12b in Scheme 2 to
explain the stereochemistry of the products 6a and 6b. Co-
ordination of one of the olefins and the sugar ring oxygen
to the copper(I) leads only to the observed products 6a and
6b on irradiation.

In contrast to the stereospecific photoannulation of 5a and
5b, substrate 7 gave an approximate 1:1 mixture of the
two possible products 8 and 9. Clearly in compound 7 the
anomeric oxygen is too far away to coordinate to the cop-
per(I)-diene chelate. This is in agreement with the lack of
selectivity observed by Mackor and Evers in the photobi-
cyclisation of 4-hydroxy 1,6-heptadiene.14

In  conclusion  we  have  demonstrated  the  remarkable
stereocontrol of copper(I) triflate in the photoannulation
of six unactivated 1,6-diene carbohydrate derivatives.
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