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Substituted 2-oxo-azepane derivatives are potent, orally active
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Abstract—A hydroxamic acid screening hit 1 was elaborated to 5,5-dimethyl-2-oxoazepane derivatives exhibiting low nanomolar
inhibition of c-secretase, a key proteolytic enzyme involved in Alzheimer’s disease. Early ADME data showed a high metabolic
clearance for the geminal dimethyl analogs which could be overcome by replacement with the bioisosteric geminal difluoro group.
Synthesis and structure–activity relationship are discussed and in vivo active compounds are presented.
� 2007 Elsevier Ltd. All rights reserved.
Table 1. HTS hit 1 and representative early modifications
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1 NHOH 2.6

2 NH2 0.008
Alzheimer’s disease (AD) is characterized by the deposi-
tion in the brain of amyloid in extracellular plaques and
intracellular neurofibrillary tangles. The amyloid pla-
ques are composed of Ab peptides (mainly 40- and 42-
amino-acid length) which originate from b-amyloid pre-
cursor protein (APP) by a series of proteolytic cleavage
steps involving enzymes b-secretase and c-secretase.
Whereas b-secretase is a typical aspartyl protease, c-
secretase proteolytic activity consists of several proteins
including the presenilins, nicastrin, aph1, and pen-2.1

Among the known substrates of c-secretase are the
APP and the proteins of the Notch receptor family.2,3

According to the amyloid hypothesis of AD, the pro-
duction and deposition of Ab is the ultimate cause of
the disease.

In our program to identify potent and selective inhibi-
tors of c-secretase, a micromolar screening hit 1 was
identified from our propriatory compound library.
Hydroxamic acid 1 was elaborated to the primary amide
2, a nanomolar inhibitor of amyloid synthesis as deter-
mined by our cellular Ab lowering assay (Table 1).4
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The poor physicochemical properties (e.g., compound 2:
solubility <1 lg/ml; logD > 3; low PAMPA permeabil-
ity5) and relatively high clearance (e.g., compound 2: hu-
man/mouse 34/282 ll/min/mg protein) observed for
primary amides in this class led us to consider ring con-
strained structures (Table 2). Cyclic lactams 3–6 were pre-
pared, thus fusing the vectors corresponding to the
isobutyl and amide groups in 2. The azepinone (n = 3)
ring size was found to be optimal in this series with sulfon-
amide 5 having a modest inhibition of IC50 0.40 lM.6

Alternatives to the piperonyl northern vector were
examined and phenyl ring substitutions (Me, OMe
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Figure 1. Overlay of acyclic HTS derivative 2 and lactam 12. The

X-ray structure8 of 15 of the lactam series was taken as reference for a

flexible alignment of 2 using the program Moloc (Gerber, P.;

www.moloc.ch, 2007). For clarity the propionic acid side chain was

replaced by a primary amide leading to compound 12.

Table 3. Substituted 2-oxoazepane derivatives
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Compound Lactam subst. Ab lowering

IC50 (lM)

Cl (human/mouse

microsomes)a

17 5-i-Pr[Rac] 0.04 51/203

18 5-CF3 [Rac] 0.02 19/39

19 5-t-Bu[Rac] 0.12 93/110

20 5,5-Me2 0.006 45/191

21 7,7-Me2 >20 —

22 6,6-Me2 3.5 —

23 4,4-Me2 0.39 —

24 [R isomer] 5,5-Me2 0.015 36/655

32 [R isomer] 5,5-F2 0.004 1.9/2.2

33 [R isomer] 6,6-F2 0.30 0.0/5.4

a Microsomal clearance (ll/min/mg protein).

Table 2. Lactam derivatives 3–16
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OCF3, Cl, F, data not shown) indicated that larger para-
substituents were tolerated (12–15) and inhibitory activ-
ities could be improved by further addition of F to the
phenyl ring (8–11). The preferred R-stereochemistry
was established by preparing compounds 9 and 10
starting from (R)-3-amino-azepan-2-one and (S)-3-ami-
no-azepan-2-one, respectively. Furthermore, phenyl to
pyridyl replacement such as in compound 16 maintained
sub-micromolar affinity for c-secretase. Minimal varia-
tions to the aryl western vector were attempted as
para-chlorophenyl was a well-established pharmaco-
phore in sulfonamide or sulfone classes of c-secretase
inhibitors.7 Nevertheless, some variations will be dis-
cussed later (vide infra, Table 4).

Next we considered the SAR at the azepinone ring in an
attempt to improve the modest inhibition seen so far. N-
Methyl substitution of the lactam gave inactive com-
pounds (data not shown).

An overlay of lactam 12 with the most potent acyclic
analog 2 (Fig. 1) shows the high similarity of both clas-
ses. Interestingly, the structural comparison suggests
that the lactams do not occupy all available space (indi-
cated by the cyan sphere). Thus, additional substitution
in 4- or 5-position was considered for improving binding
affinity.

Indeed the introduction of an isopropyl- or CF3-substi-
tuent (Table 3, compounds 17 and 18) in position 5 led
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to stronger inhibition of c-secretase activity compared to
the corresponding unsubstituted derivative 13. This ef-
fect was less pronounced for the larger t-butyl derivative
19. A very potent compound could be obtained with
geminal dimethyl substitution 20 and also simplified
the structure by the removal of one chiral center. Start-
ing from 20 as the least complex structure, a ‘gem.di-
methyl walk’ around the caprolactam (compounds 20–
23) showed that optimal substitution was in fact the 5-
position.

The synthesis of 24 (the active R-isomer of 20) is de-
scribed in Scheme 1 and began with the hydrogenation
of a,b-unsaturated cyclohexenone 25 to yield 26 which
was subjected to a Beckmann rearrangement using
hydroxylamine-o-sulfonic acid in formic acid.9 Selective
dibromination in position 3 of the azepinone followed
by monodebromination under hydrogenolytic condi-
tions afforded 30.10 Sodium azide displacement of Br
and reduction of azide to amine was followed by prepa-
ration of sulfonamide 31 as a mixture of 1:1 enantiomers
which were separated by chiral chromatography. Fur-
ther derivatization with 4-chloromethyl-N-cyclopropyl-
benzamide under basic conditions gave compound 24.
The active isomer was tentatively assigned with the
R-configuration by comparing Ab lowering activities
of the enantiomer pair 9 and 10.

With the first potent c-secretase inhibitors in hand, we
initiated early ADME profiling. Human/mouse micro-
somal clearance was relatively high for 5-alkyl substi-
tuted derivatives 17, 19, 20, when compared to 18,
suggesting that alkyl substituents were labile to micro-
somal oxidation. Our attempts at blocking this liability
led us to the surprising result that the 5,5-difluoro and
6,6-difluoro analogs yielded highly bioavailable inhibi-
tors 32 and 33, respectively, with 32 matching the
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Scheme 1. Reagents and conditions: (i) H2, Pd–C in EtOH, 95%; (ii)

hydroxylamine-o-sulfonic acid in formic acid, reflux, 2 h, 55%; (iii)

PCl5, ZnCl2, Br2 4 h, 67 %; (iv) H2 Pd–C, NaOAc in AcOH, 71%; (v)

NaN3 in DMSO, 80 �C, 1.5 h, 21%; (vi) H2 Pd–C then 4-chloro-

benzenesulfonyl chloride, DIEA, 1.5 h 67%; (vii) chiral separation on

Chiralpak AD 20% isopropanol, 80% heptane, then 4-chloromethyl-N-

cyclopropyl-benzamide, K2CO3 KI, 65 �C 2.5 h, 31%.11
potency of the chiral 5,5-dimethyl analog 24 in the Ab
lowering assay (Table 3).

The synthesis of fluoro ring-substituted 3-amino-aze-
pan-2-ones is described in Scheme 2. (R)-N Boc-allylgly-
cine was coupled to allyl-(2,4-dimethoxybenzyl)amine to
yield the bis-allyl intermediate 34.12 Ring closure
metathesis reaction preferably using the 2nd generation
Grubb’s catalyst (0.1 equiv) proceeded efficiently with-
out the need for high dilution affording 35 in 80% yield.
The chiral integrity of the cyclization product was as-
sessed by its further reaction to yield known compound
36 where respective optical rotations could be com-
pared,13 confirming the mildness of the olefin metathesis
conditions. Alkene 35 was oxidized to the 5,6-oxo
regioisomers using a palladium complex in a saturated
oxygen environment.

The regioisomeric mixture 37a,b was used directly in the
further transformation to geminal difluorinated com-
pounds using DAST (3 equiv) in a modest 45% overall
yield and following silica gel chromatography the pre-
ferred isomer 38 was isolated in a 22% yield. In a
straightforward manner, further homologation of 38
yielded the potent inhibitor 32.14

Compound 32 was profiled in vivo in a transgenic
mouse model for inhibition of c-secretase activity15

and was found to be inactive after 3 · 20 mg/kg po
and ip administration. We attributed this finding to
possible low brain penetration due to the presence
of two amides in its structure. We therefore went back
to methoxyaryl northern substituents that we already
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Scheme 2. Reagents and conditions: (i) Grubb’s II cat., reflux, 1.5 h,

MeCl2, [0.03 M] 80%; (ii) H2 Pd–C, EtOH then TFA; (iii) O2,

PdCl2,CuCl, DMF/water, 50 �C, 2 d, 72%; (iv) DAST, MeCl2, 5 h, 45%

overall; (v) separation from 39 then HCl/1,4-dioxane, 2 h then 4-

chlorobenzene-sulfonyl chloride, DIEA in MeCl2, 2 h, 60%; (vi) TFA/

triethylsilane/water, 3 d, 40%; (vii) 4-chloromethyl-N-cyclopropyl-

benzamide, K2CO3, KI in DMF 65 �C, 1.5 h.



Table 4. 5,5-Difluoro-substituted 2-oxoazepane derivatives
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Compound R1 R2 Ab lowering IC50 (lM) Cl (human/mouse microsomes)a

42 pCl-Ph
O

F

0.02 13/105

43 pCl-Ph
O

FF

0.002 19/121

44 pCl-Ph
N

O 0.03 9/72

45 CF3(CH2)2

N
O 0.15 —

46
SCl

N
O 0.11 —

a Microsomal clearance (ll/min/mg protein).
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found active with the non-fluorinated caprolactams
(vide supra, Table 2). The methoxyphenyl derivative
42 was less potent than 32 but inhibitory activity
could be further improved by addition of another
fluorine (Table 4). In fact, compounds 43 and 44 were
found to be active in vivo at a minimal effective dose
(MED) of 20 mg/kg po. This relatively high dose may
be explained by the low brain exposure (typically
brain/plasma ratio <0.1) determined from the in vivo
experiments.16

A few examples at replacing the para-chlorophenyl moi-
ety were prepared and trifluoropropyl 45 and the 5-chlo-
rothiophene 46 derivatives were identified as potential
alternatives.

In conclusion, we have identified a series of 5,5-difluoro-
substituted 2-oxoazepane derivatives which are potent
inhibitors of c-secretase. Difluoro-substitution was
found to be a key factor to ensure both potency and
metabolic stability of the compounds. Further variation
of substituents yielded compounds 43 and 44 which were
orally active in a transgenic mouse model for AD. Low
brain exposure possibly related to observed P-glycopro-
tein interactions for representative compounds,17 is a
remaining issue that needs to be addressed for this
otherwise attractive series.
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