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Abstract 

Treatment of benzyl methyl ether with a t-BuLi/chiral bis(oxazoline) complex followed by carboxylation is 
shown to afford 0t-methoxy phenylacetic acid in high % ee (up to 95%). The asymmetric induction was proved to 
occur at the post-lithiation step. © 1999 Elsevier Science Ltd. All rights reserved. 
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In view of the eminent position of organolithium chemistry in synthetic organic chemistry, the 
development of enantioselective organolithium reactions is a significant challenge to organic chemists. 
In recent years much attention has been focused on the external chiral ligand (Lc*)-based asymmetric 
lithiation protocol, and impressive successes have been achieved mostly by using (-)-sparteine (A) 
as Lc*. 1 Recently, we have reported that the [2,3]-Wittig rearrangement of benzylic and propargylic 
ethers, when induced by asymmetric lithiation using as Lc* the chiral bis(oxazoline), (S,S)-Box-i- 
Pr (B), provides a significantly higher enantioselectivity than those observed when sparteine was 
used. 2 Encouraged by this success, we became intrigued by the enantioselective SE2 reactions of 0t- 
alkoxybenzyllithiums generated via such asymmetric lithiation protocol. Herein we wish to report that the 
enantioselective ot-carboxylation of benzyl methyl ether (la) via asymmetric lithiation with t-BuLi/chiral 
bis(oxazoline) B affords et-methoxyphenylacetic acid (3a) in high enantiomeric purity (Eq. 1).3 
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A (S,S)-Box-/-Pr (B) ( ])  

la  2a (R)-3a 

At the outset, we examined the asymmetric lithiation/carboxylation reactions of the two benzyl ethers 
l a  and l b  using different combinations of butyllithiums and Lc* (A-D) 4 (Eq. 2). The results thus 
obtained are summarized in Table 1. 

CO2H " CO2CH3 
2) CO2 

la, P=CH 3 3 4 

Ph Ph ~ . .  
/ 

C D 

Among the conditions examined, the most favorable results were obtained when ether la  was used 
as substrate and the t-BuLi/ligand B complex was used as the lithiating agent (entries 7-9). Apparently, 
bis(oxazoline) B is superior to sparteine (A) as Lc*, and methyl ether l a  is superior to methoxymethyl 
ether l b  as substrate. Interestingly, the use of s-BuLi in place of t-BuLi provided a much lower % ee 
(entry 3 vs 7). Also notable is that the use of hexane as solvent is essential; other solvents such as 
ether and THF led to a much lower % ee (entries l0 and 11). Thus, the best procedure afforded (R)- 
tx-methoxyphenylacetic acid (3) 5 in respectably high % ee and chemical yield. Rather surprisingly, an 
increased % ee was observed when the period of carboxylation was extended (entry 8). Most significantly, 
when the carboxylation was conducted after the Li-species initially generated at -78°C was cooled to 
-110°C, a remarkably enhanced % ee (95% ee) was obtained (entry 9). 

The question immediately arises as to whether the enantioselectivity is determined at the lithiation 
or post-lithiation step. To answer the question, we carded out a similar reaction using the racemic 0(- 
deuterated ether la-d  under the same conditions (Eq. 3). The deuterium content of the product obtained 
in 73% yield was more than 96% and its enantiopurity was comparably high (74% ee). This observation 
strongly suggests that the initially formed B-bound Li-species 2a are epimerized to each other and 
hence the enantio-determining step is the post-lithiation event. The next question is whether or not the 
enantioselectivity is governed by a dynamic kinetic resolution where the epimerization is much faster 
than the carboxylation. Thus, we examined the influence of the relative amount of CO2 on the ee value. 
Interestingly enough, the % ee was found to decrease gradually with decreasing the amount of CO2 
added: 74% ee for >95% conversion with 4 equiv., 48% ee for 26% conv. with 0.5 equiv, and 45% 
ee for ca. 10% conv. with 0.1 equiv. 6 This trend, coupled with the enhancement of % ee observed in 



6811 

Table 1 
The enantioselective carboxylations ° 

Entry Substrate BuLl / LC" Solvent %Yield b % ee c (Config.) d 

1 l a  s-BuLi / A hexane 34 0 

2 l b  >95 10 (R) 

3 la  s-BuLl / B hexane 60 58 (R) 

4 lb  46 30 (/:7) 

5 l a  s-BuLi / C hexane <5 17 

6 s-BuLi / D hexane 5 1 

7 l a  t-BuLl / B hexane 59 74 (R) 

8 e 81 82 (R) 

9 f >95 95 (n) 

10 la  t-BuLi / B THF 85 17 (S) 

11 la  ether >95 1 

a Unless otherwise noted, ether I was treated with a butyllithium (1.5 equiv.) pre-mixed with LC* (1.5 equiv.) 

in hexane at -78 °C for 1.0 h, then excess of CO2 was added, and the resulting mixture was stirred at that 

temperature for 1.5 h to provide, after acidic workup, acid 3. b Refers to the yield of the methyl ester 4 

obtained by treatment with TMSCHN2. c Determined by GLC analysis of methyl ester 4 using 

CP-chiralsiI-DEX CB as the chiral column (I l0 °C); tR= 43.3 min (R) and 45.2 min (S) for 4a and 89.2 min (S) 

and 90.5 rain (R) for 4b. d For the assignment, see ref. 5. e The carboxylation time was extended to 4 h. f c o 2  

was added after the Li-species-containing mixture was cooled to -110 °C to make the mixture heterogeneous. 

entry 8, argues definitely against the dynamic kinetic resolution mechanism. Instead, this conversion- 
dependence of % ee suggests that, while the two epimeric Li-species initially formed are equilibrated, 
but not on the time scale of carboxylation, the predominately existing (thermodynamically more stable) 
species forming (R)-3 could be trapped more slowly than the minor species forming (S)-3 and hence 
the ee value increases with increasing the degree of carboxylation. 7 Therefore, it appears likely that the 
enantioselectivity is governed mainly by the so-called 'dynamic thermodynamic resolution 's where the 
epimerization is slower than the carboxylation. This mechanism also explains the enhancement of % ee 
observed when the epimerization was frozen out by cooling the Li-species prior to carboxylation (entry 
9). 

~ H  QCH 3 
3 t-BuLi / B CO2 ~ ~'"~O 

" " ~ 2 H ( 3 )  

(±)-la-d (R)-aa-d, 74% ee 

In summary, we have demonstrated that the enantioselective carboxylation of benzyl methyl ether via 
asymmetric lithiation using the t-BuLi/chiral bis(oxazoline) B complex affords et-methoxyphenylacetic 
acid in high enantiomeric excess. Further application of the external chiral ligand-based asymmeric 
lithiation protocol to other SE2 reactions is in progress. 
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